17cc2493dSspupyrev //===- SampleProfileInference.cpp - Adjust sample profiles in the IR ------===// 27cc2493dSspupyrev // 37cc2493dSspupyrev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 47cc2493dSspupyrev // See https://llvm.org/LICENSE.txt for license information. 57cc2493dSspupyrev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 67cc2493dSspupyrev // 77cc2493dSspupyrev //===----------------------------------------------------------------------===// 87cc2493dSspupyrev // 97cc2493dSspupyrev // This file implements a profile inference algorithm. Given an incomplete and 107cc2493dSspupyrev // possibly imprecise block counts, the algorithm reconstructs realistic block 117cc2493dSspupyrev // and edge counts that satisfy flow conservation rules, while minimally modify 127cc2493dSspupyrev // input block counts. 137cc2493dSspupyrev // 147cc2493dSspupyrev //===----------------------------------------------------------------------===// 157cc2493dSspupyrev 167cc2493dSspupyrev #include "llvm/Transforms/Utils/SampleProfileInference.h" 175f4ae564SJan Svoboda #include "llvm/ADT/BitVector.h" 18*f2ade65fSspupyrev #include "llvm/Support/CommandLine.h" 197cc2493dSspupyrev #include "llvm/Support/Debug.h" 207cc2493dSspupyrev #include <queue> 217cc2493dSspupyrev #include <set> 22*f2ade65fSspupyrev #include <stack> 237cc2493dSspupyrev 247cc2493dSspupyrev using namespace llvm; 257cc2493dSspupyrev #define DEBUG_TYPE "sample-profile-inference" 267cc2493dSspupyrev 277cc2493dSspupyrev namespace { 287cc2493dSspupyrev 29*f2ade65fSspupyrev static cl::opt<bool> SampleProfileEvenCountDistribution( 30*f2ade65fSspupyrev "sample-profile-even-count-distribution", cl::init(true), cl::Hidden, 31*f2ade65fSspupyrev cl::ZeroOrMore, 32*f2ade65fSspupyrev cl::desc("Try to evenly distribute counts when there are multiple equally " 33*f2ade65fSspupyrev "likely options.")); 34*f2ade65fSspupyrev 35*f2ade65fSspupyrev static cl::opt<unsigned> SampleProfileMaxDfsCalls( 36*f2ade65fSspupyrev "sample-profile-max-dfs-calls", cl::init(10), cl::Hidden, cl::ZeroOrMore, 37*f2ade65fSspupyrev cl::desc("Maximum number of dfs iterations for even count distribution.")); 38*f2ade65fSspupyrev 397cc2493dSspupyrev /// A value indicating an infinite flow/capacity/weight of a block/edge. 407cc2493dSspupyrev /// Not using numeric_limits<int64_t>::max(), as the values can be summed up 417cc2493dSspupyrev /// during the execution. 427cc2493dSspupyrev static constexpr int64_t INF = ((int64_t)1) << 50; 437cc2493dSspupyrev 447cc2493dSspupyrev /// The minimum-cost maximum flow algorithm. 457cc2493dSspupyrev /// 467cc2493dSspupyrev /// The algorithm finds the maximum flow of minimum cost on a given (directed) 477cc2493dSspupyrev /// network using a modified version of the classical Moore-Bellman-Ford 487cc2493dSspupyrev /// approach. The algorithm applies a number of augmentation iterations in which 497cc2493dSspupyrev /// flow is sent along paths of positive capacity from the source to the sink. 507cc2493dSspupyrev /// The worst-case time complexity of the implementation is O(v(f)*m*n), where 517cc2493dSspupyrev /// where m is the number of edges, n is the number of vertices, and v(f) is the 527cc2493dSspupyrev /// value of the maximum flow. However, the observed running time on typical 537cc2493dSspupyrev /// instances is sub-quadratic, that is, o(n^2). 547cc2493dSspupyrev /// 557cc2493dSspupyrev /// The input is a set of edges with specified costs and capacities, and a pair 567cc2493dSspupyrev /// of nodes (source and sink). The output is the flow along each edge of the 577cc2493dSspupyrev /// minimum total cost respecting the given edge capacities. 587cc2493dSspupyrev class MinCostMaxFlow { 597cc2493dSspupyrev public: 607cc2493dSspupyrev // Initialize algorithm's data structures for a network of a given size. 617cc2493dSspupyrev void initialize(uint64_t NodeCount, uint64_t SourceNode, uint64_t SinkNode) { 627cc2493dSspupyrev Source = SourceNode; 637cc2493dSspupyrev Target = SinkNode; 647cc2493dSspupyrev 657cc2493dSspupyrev Nodes = std::vector<Node>(NodeCount); 667cc2493dSspupyrev Edges = std::vector<std::vector<Edge>>(NodeCount, std::vector<Edge>()); 67*f2ade65fSspupyrev if (SampleProfileEvenCountDistribution) 68*f2ade65fSspupyrev AugmentingEdges = 69*f2ade65fSspupyrev std::vector<std::vector<Edge *>>(NodeCount, std::vector<Edge *>()); 707cc2493dSspupyrev } 717cc2493dSspupyrev 727cc2493dSspupyrev // Run the algorithm. 737cc2493dSspupyrev int64_t run() { 74*f2ade65fSspupyrev // Iteratively find an augmentation path/dag in the network and send the 75*f2ade65fSspupyrev // flow along its edges 76*f2ade65fSspupyrev size_t AugmentationIters = applyFlowAugmentation(); 777cc2493dSspupyrev 787cc2493dSspupyrev // Compute the total flow and its cost 797cc2493dSspupyrev int64_t TotalCost = 0; 807cc2493dSspupyrev int64_t TotalFlow = 0; 817cc2493dSspupyrev for (uint64_t Src = 0; Src < Nodes.size(); Src++) { 827cc2493dSspupyrev for (auto &Edge : Edges[Src]) { 837cc2493dSspupyrev if (Edge.Flow > 0) { 847cc2493dSspupyrev TotalCost += Edge.Cost * Edge.Flow; 857cc2493dSspupyrev if (Src == Source) 867cc2493dSspupyrev TotalFlow += Edge.Flow; 877cc2493dSspupyrev } 887cc2493dSspupyrev } 897cc2493dSspupyrev } 907cc2493dSspupyrev LLVM_DEBUG(dbgs() << "Completed profi after " << AugmentationIters 917cc2493dSspupyrev << " iterations with " << TotalFlow << " total flow" 927cc2493dSspupyrev << " of " << TotalCost << " cost\n"); 9322d82949SKazu Hirata (void)TotalFlow; 94*f2ade65fSspupyrev (void)AugmentationIters; 957cc2493dSspupyrev return TotalCost; 967cc2493dSspupyrev } 977cc2493dSspupyrev 987cc2493dSspupyrev /// Adding an edge to the network with a specified capacity and a cost. 997cc2493dSspupyrev /// Multiple edges between a pair of nodes are allowed but self-edges 1007cc2493dSspupyrev /// are not supported. 1017cc2493dSspupyrev void addEdge(uint64_t Src, uint64_t Dst, int64_t Capacity, int64_t Cost) { 1027cc2493dSspupyrev assert(Capacity > 0 && "adding an edge of zero capacity"); 1037cc2493dSspupyrev assert(Src != Dst && "loop edge are not supported"); 1047cc2493dSspupyrev 1057cc2493dSspupyrev Edge SrcEdge; 1067cc2493dSspupyrev SrcEdge.Dst = Dst; 1077cc2493dSspupyrev SrcEdge.Cost = Cost; 1087cc2493dSspupyrev SrcEdge.Capacity = Capacity; 1097cc2493dSspupyrev SrcEdge.Flow = 0; 1107cc2493dSspupyrev SrcEdge.RevEdgeIndex = Edges[Dst].size(); 1117cc2493dSspupyrev 1127cc2493dSspupyrev Edge DstEdge; 1137cc2493dSspupyrev DstEdge.Dst = Src; 1147cc2493dSspupyrev DstEdge.Cost = -Cost; 1157cc2493dSspupyrev DstEdge.Capacity = 0; 1167cc2493dSspupyrev DstEdge.Flow = 0; 1177cc2493dSspupyrev DstEdge.RevEdgeIndex = Edges[Src].size(); 1187cc2493dSspupyrev 1197cc2493dSspupyrev Edges[Src].push_back(SrcEdge); 1207cc2493dSspupyrev Edges[Dst].push_back(DstEdge); 1217cc2493dSspupyrev } 1227cc2493dSspupyrev 1237cc2493dSspupyrev /// Adding an edge to the network of infinite capacity and a given cost. 1247cc2493dSspupyrev void addEdge(uint64_t Src, uint64_t Dst, int64_t Cost) { 1257cc2493dSspupyrev addEdge(Src, Dst, INF, Cost); 1267cc2493dSspupyrev } 1277cc2493dSspupyrev 1287cc2493dSspupyrev /// Get the total flow from a given source node. 1297cc2493dSspupyrev /// Returns a list of pairs (target node, amount of flow to the target). 1307cc2493dSspupyrev const std::vector<std::pair<uint64_t, int64_t>> getFlow(uint64_t Src) const { 1317cc2493dSspupyrev std::vector<std::pair<uint64_t, int64_t>> Flow; 1327cc2493dSspupyrev for (auto &Edge : Edges[Src]) { 1337cc2493dSspupyrev if (Edge.Flow > 0) 1347cc2493dSspupyrev Flow.push_back(std::make_pair(Edge.Dst, Edge.Flow)); 1357cc2493dSspupyrev } 1367cc2493dSspupyrev return Flow; 1377cc2493dSspupyrev } 1387cc2493dSspupyrev 1397cc2493dSspupyrev /// Get the total flow between a pair of nodes. 1407cc2493dSspupyrev int64_t getFlow(uint64_t Src, uint64_t Dst) const { 1417cc2493dSspupyrev int64_t Flow = 0; 1427cc2493dSspupyrev for (auto &Edge : Edges[Src]) { 1437cc2493dSspupyrev if (Edge.Dst == Dst) { 1447cc2493dSspupyrev Flow += Edge.Flow; 1457cc2493dSspupyrev } 1467cc2493dSspupyrev } 1477cc2493dSspupyrev return Flow; 1487cc2493dSspupyrev } 1497cc2493dSspupyrev 1507cc2493dSspupyrev /// A cost of increasing a block's count by one. 1517cc2493dSspupyrev static constexpr int64_t AuxCostInc = 10; 1527cc2493dSspupyrev /// A cost of decreasing a block's count by one. 1537cc2493dSspupyrev static constexpr int64_t AuxCostDec = 20; 1547cc2493dSspupyrev /// A cost of increasing a count of zero-weight block by one. 1557cc2493dSspupyrev static constexpr int64_t AuxCostIncZero = 11; 1567cc2493dSspupyrev /// A cost of increasing the entry block's count by one. 1577cc2493dSspupyrev static constexpr int64_t AuxCostIncEntry = 40; 1587cc2493dSspupyrev /// A cost of decreasing the entry block's count by one. 1597cc2493dSspupyrev static constexpr int64_t AuxCostDecEntry = 10; 1607cc2493dSspupyrev /// A cost of taking an unlikely jump. 16113d1364aSspupyrev static constexpr int64_t AuxCostUnlikely = ((int64_t)1) << 30; 1627cc2493dSspupyrev 1637cc2493dSspupyrev private: 164*f2ade65fSspupyrev /// Iteratively find an augmentation path/dag in the network and send the 165*f2ade65fSspupyrev /// flow along its edges. The method returns the number of applied iterations. 166*f2ade65fSspupyrev size_t applyFlowAugmentation() { 167*f2ade65fSspupyrev size_t AugmentationIters = 0; 168*f2ade65fSspupyrev while (findAugmentingPath()) { 169*f2ade65fSspupyrev uint64_t PathCapacity = computeAugmentingPathCapacity(); 170*f2ade65fSspupyrev while (PathCapacity > 0) { 171*f2ade65fSspupyrev bool Progress = false; 172*f2ade65fSspupyrev if (SampleProfileEvenCountDistribution) { 173*f2ade65fSspupyrev // Identify node/edge candidates for augmentation 174*f2ade65fSspupyrev identifyShortestEdges(PathCapacity); 175*f2ade65fSspupyrev 176*f2ade65fSspupyrev // Find an augmenting DAG 177*f2ade65fSspupyrev auto AugmentingOrder = findAugmentingDAG(); 178*f2ade65fSspupyrev 179*f2ade65fSspupyrev // Apply the DAG augmentation 180*f2ade65fSspupyrev Progress = augmentFlowAlongDAG(AugmentingOrder); 181*f2ade65fSspupyrev PathCapacity = computeAugmentingPathCapacity(); 182*f2ade65fSspupyrev } 183*f2ade65fSspupyrev 184*f2ade65fSspupyrev if (!Progress) { 185*f2ade65fSspupyrev augmentFlowAlongPath(PathCapacity); 186*f2ade65fSspupyrev PathCapacity = 0; 187*f2ade65fSspupyrev } 188*f2ade65fSspupyrev 189*f2ade65fSspupyrev AugmentationIters++; 190*f2ade65fSspupyrev } 191*f2ade65fSspupyrev } 192*f2ade65fSspupyrev return AugmentationIters; 193*f2ade65fSspupyrev } 194*f2ade65fSspupyrev 195*f2ade65fSspupyrev /// Compute the capacity of the cannonical augmenting path. If the path is 196*f2ade65fSspupyrev /// saturated (that is, no flow can be sent along the path), then return 0. 197*f2ade65fSspupyrev uint64_t computeAugmentingPathCapacity() { 198*f2ade65fSspupyrev uint64_t PathCapacity = INF; 199*f2ade65fSspupyrev uint64_t Now = Target; 200*f2ade65fSspupyrev while (Now != Source) { 201*f2ade65fSspupyrev uint64_t Pred = Nodes[Now].ParentNode; 202*f2ade65fSspupyrev auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex]; 203*f2ade65fSspupyrev 204*f2ade65fSspupyrev assert(Edge.Capacity >= Edge.Flow && "incorrect edge flow"); 205*f2ade65fSspupyrev uint64_t EdgeCapacity = uint64_t(Edge.Capacity - Edge.Flow); 206*f2ade65fSspupyrev PathCapacity = std::min(PathCapacity, EdgeCapacity); 207*f2ade65fSspupyrev 208*f2ade65fSspupyrev Now = Pred; 209*f2ade65fSspupyrev } 210*f2ade65fSspupyrev return PathCapacity; 211*f2ade65fSspupyrev } 212*f2ade65fSspupyrev 2137cc2493dSspupyrev /// Check for existence of an augmenting path with a positive capacity. 2147cc2493dSspupyrev bool findAugmentingPath() { 2157cc2493dSspupyrev // Initialize data structures 2167cc2493dSspupyrev for (auto &Node : Nodes) { 2177cc2493dSspupyrev Node.Distance = INF; 2187cc2493dSspupyrev Node.ParentNode = uint64_t(-1); 2197cc2493dSspupyrev Node.ParentEdgeIndex = uint64_t(-1); 2207cc2493dSspupyrev Node.Taken = false; 2217cc2493dSspupyrev } 2227cc2493dSspupyrev 2237cc2493dSspupyrev std::queue<uint64_t> Queue; 2247cc2493dSspupyrev Queue.push(Source); 2257cc2493dSspupyrev Nodes[Source].Distance = 0; 2267cc2493dSspupyrev Nodes[Source].Taken = true; 2277cc2493dSspupyrev while (!Queue.empty()) { 2287cc2493dSspupyrev uint64_t Src = Queue.front(); 2297cc2493dSspupyrev Queue.pop(); 2307cc2493dSspupyrev Nodes[Src].Taken = false; 2317cc2493dSspupyrev // Although the residual network contains edges with negative costs 2327cc2493dSspupyrev // (in particular, backward edges), it can be shown that there are no 2337cc2493dSspupyrev // negative-weight cycles and the following two invariants are maintained: 2347cc2493dSspupyrev // (i) Dist[Source, V] >= 0 and (ii) Dist[V, Target] >= 0 for all nodes V, 2357cc2493dSspupyrev // where Dist is the length of the shortest path between two nodes. This 2367cc2493dSspupyrev // allows to prune the search-space of the path-finding algorithm using 2377cc2493dSspupyrev // the following early-stop criteria: 2387cc2493dSspupyrev // -- If we find a path with zero-distance from Source to Target, stop the 2397cc2493dSspupyrev // search, as the path is the shortest since Dist[Source, Target] >= 0; 2407cc2493dSspupyrev // -- If we have Dist[Source, V] > Dist[Source, Target], then do not 2417cc2493dSspupyrev // process node V, as it is guaranteed _not_ to be on a shortest path 2427cc2493dSspupyrev // from Source to Target; it follows from inequalities 2437cc2493dSspupyrev // Dist[Source, Target] >= Dist[Source, V] + Dist[V, Target] 2447cc2493dSspupyrev // >= Dist[Source, V] 245*f2ade65fSspupyrev if (!SampleProfileEvenCountDistribution && Nodes[Target].Distance == 0) 2467cc2493dSspupyrev break; 2477cc2493dSspupyrev if (Nodes[Src].Distance > Nodes[Target].Distance) 2487cc2493dSspupyrev continue; 2497cc2493dSspupyrev 2507cc2493dSspupyrev // Process adjacent edges 2517cc2493dSspupyrev for (uint64_t EdgeIdx = 0; EdgeIdx < Edges[Src].size(); EdgeIdx++) { 2527cc2493dSspupyrev auto &Edge = Edges[Src][EdgeIdx]; 2537cc2493dSspupyrev if (Edge.Flow < Edge.Capacity) { 2547cc2493dSspupyrev uint64_t Dst = Edge.Dst; 2557cc2493dSspupyrev int64_t NewDistance = Nodes[Src].Distance + Edge.Cost; 2567cc2493dSspupyrev if (Nodes[Dst].Distance > NewDistance) { 2577cc2493dSspupyrev // Update the distance and the parent node/edge 2587cc2493dSspupyrev Nodes[Dst].Distance = NewDistance; 2597cc2493dSspupyrev Nodes[Dst].ParentNode = Src; 2607cc2493dSspupyrev Nodes[Dst].ParentEdgeIndex = EdgeIdx; 2617cc2493dSspupyrev // Add the node to the queue, if it is not there yet 2627cc2493dSspupyrev if (!Nodes[Dst].Taken) { 2637cc2493dSspupyrev Queue.push(Dst); 2647cc2493dSspupyrev Nodes[Dst].Taken = true; 2657cc2493dSspupyrev } 2667cc2493dSspupyrev } 2677cc2493dSspupyrev } 2687cc2493dSspupyrev } 2697cc2493dSspupyrev } 2707cc2493dSspupyrev 2717cc2493dSspupyrev return Nodes[Target].Distance != INF; 2727cc2493dSspupyrev } 2737cc2493dSspupyrev 2747cc2493dSspupyrev /// Update the current flow along the augmenting path. 275*f2ade65fSspupyrev void augmentFlowAlongPath(uint64_t PathCapacity) { 27693a2c291Sspupyrev assert(PathCapacity > 0 && "found an incorrect augmenting path"); 277*f2ade65fSspupyrev uint64_t Now = Target; 2787cc2493dSspupyrev while (Now != Source) { 2797cc2493dSspupyrev uint64_t Pred = Nodes[Now].ParentNode; 2807cc2493dSspupyrev auto &Edge = Edges[Pred][Nodes[Now].ParentEdgeIndex]; 2817cc2493dSspupyrev auto &RevEdge = Edges[Now][Edge.RevEdgeIndex]; 2827cc2493dSspupyrev 2837cc2493dSspupyrev Edge.Flow += PathCapacity; 2847cc2493dSspupyrev RevEdge.Flow -= PathCapacity; 2857cc2493dSspupyrev 2867cc2493dSspupyrev Now = Pred; 2877cc2493dSspupyrev } 2887cc2493dSspupyrev } 2897cc2493dSspupyrev 290*f2ade65fSspupyrev /// Find an Augmenting DAG order using a modified version of DFS in which we 291*f2ade65fSspupyrev /// can visit a node multiple times. In the DFS search, when scanning each 292*f2ade65fSspupyrev /// edge out of a node, continue search at Edge.Dst endpoint if it has not 293*f2ade65fSspupyrev /// been discovered yet and its NumCalls < MaxDfsCalls. The algorithm 294*f2ade65fSspupyrev /// runs in O(MaxDfsCalls * |Edges| + |Nodes|) time. 295*f2ade65fSspupyrev /// It returns an Augmenting Order (Taken nodes in decreasing Finish time) 296*f2ade65fSspupyrev /// that starts with Source and ends with Target. 297*f2ade65fSspupyrev std::vector<uint64_t> findAugmentingDAG() { 298*f2ade65fSspupyrev // We use a stack based implemenation of DFS to avoid recursion. 299*f2ade65fSspupyrev // Defining DFS data structures: 300*f2ade65fSspupyrev // A pair (NodeIdx, EdgeIdx) at the top of the Stack denotes that 301*f2ade65fSspupyrev // - we are currently visiting Nodes[NodeIdx] and 302*f2ade65fSspupyrev // - the next edge to scan is Edges[NodeIdx][EdgeIdx] 303*f2ade65fSspupyrev typedef std::pair<uint64_t, uint64_t> StackItemType; 304*f2ade65fSspupyrev std::stack<StackItemType> Stack; 305*f2ade65fSspupyrev std::vector<uint64_t> AugmentingOrder; 306*f2ade65fSspupyrev 307*f2ade65fSspupyrev // Phase 0: Initialize Node attributes and Time for DFS run 308*f2ade65fSspupyrev for (auto &Node : Nodes) { 309*f2ade65fSspupyrev Node.Discovery = 0; 310*f2ade65fSspupyrev Node.Finish = 0; 311*f2ade65fSspupyrev Node.NumCalls = 0; 312*f2ade65fSspupyrev Node.Taken = false; 313*f2ade65fSspupyrev } 314*f2ade65fSspupyrev uint64_t Time = 0; 315*f2ade65fSspupyrev // Mark Target as Taken 316*f2ade65fSspupyrev // Taken attribute will be propagated backwards from Target towards Source 317*f2ade65fSspupyrev Nodes[Target].Taken = true; 318*f2ade65fSspupyrev 319*f2ade65fSspupyrev // Phase 1: Start DFS traversal from Source 320*f2ade65fSspupyrev Stack.emplace(Source, 0); 321*f2ade65fSspupyrev Nodes[Source].Discovery = ++Time; 322*f2ade65fSspupyrev while (!Stack.empty()) { 323*f2ade65fSspupyrev auto NodeIdx = Stack.top().first; 324*f2ade65fSspupyrev auto EdgeIdx = Stack.top().second; 325*f2ade65fSspupyrev 326*f2ade65fSspupyrev // If we haven't scanned all edges out of NodeIdx, continue scanning 327*f2ade65fSspupyrev if (EdgeIdx < Edges[NodeIdx].size()) { 328*f2ade65fSspupyrev auto &Edge = Edges[NodeIdx][EdgeIdx]; 329*f2ade65fSspupyrev auto &Dst = Nodes[Edge.Dst]; 330*f2ade65fSspupyrev Stack.top().second++; 331*f2ade65fSspupyrev 332*f2ade65fSspupyrev if (Edge.OnShortestPath) { 333*f2ade65fSspupyrev // If we haven't seen Edge.Dst so far, continue DFS search there 334*f2ade65fSspupyrev if (Dst.Discovery == 0 && Dst.NumCalls < SampleProfileMaxDfsCalls) { 335*f2ade65fSspupyrev Dst.Discovery = ++Time; 336*f2ade65fSspupyrev Stack.emplace(Edge.Dst, 0); 337*f2ade65fSspupyrev Dst.NumCalls++; 338*f2ade65fSspupyrev } else if (Dst.Taken && Dst.Finish != 0) { 339*f2ade65fSspupyrev // Else, if Edge.Dst already have a path to Target, so that NodeIdx 340*f2ade65fSspupyrev Nodes[NodeIdx].Taken = true; 341*f2ade65fSspupyrev } 342*f2ade65fSspupyrev } 343*f2ade65fSspupyrev } else { 344*f2ade65fSspupyrev // If we are done scanning all edge out of NodeIdx 345*f2ade65fSspupyrev Stack.pop(); 346*f2ade65fSspupyrev // If we haven't found a path from NodeIdx to Target, forget about it 347*f2ade65fSspupyrev if (!Nodes[NodeIdx].Taken) { 348*f2ade65fSspupyrev Nodes[NodeIdx].Discovery = 0; 349*f2ade65fSspupyrev } else { 350*f2ade65fSspupyrev // If we have found a path from NodeIdx to Target, then finish NodeIdx 351*f2ade65fSspupyrev // and propagate Taken flag to DFS parent unless at the Source 352*f2ade65fSspupyrev Nodes[NodeIdx].Finish = ++Time; 353*f2ade65fSspupyrev // NodeIdx == Source if and only if the stack is empty 354*f2ade65fSspupyrev if (NodeIdx != Source) { 355*f2ade65fSspupyrev assert(!Stack.empty() && "empty stack while running dfs"); 356*f2ade65fSspupyrev Nodes[Stack.top().first].Taken = true; 357*f2ade65fSspupyrev } 358*f2ade65fSspupyrev AugmentingOrder.push_back(NodeIdx); 359*f2ade65fSspupyrev } 360*f2ade65fSspupyrev } 361*f2ade65fSspupyrev } 362*f2ade65fSspupyrev // Nodes are collected decreasing Finish time, so the order is reversed 363*f2ade65fSspupyrev std::reverse(AugmentingOrder.begin(), AugmentingOrder.end()); 364*f2ade65fSspupyrev 365*f2ade65fSspupyrev // Phase 2: Extract all forward (DAG) edges and fill in AugmentingEdges 366*f2ade65fSspupyrev for (size_t Src : AugmentingOrder) { 367*f2ade65fSspupyrev AugmentingEdges[Src].clear(); 368*f2ade65fSspupyrev for (auto &Edge : Edges[Src]) { 369*f2ade65fSspupyrev uint64_t Dst = Edge.Dst; 370*f2ade65fSspupyrev if (Edge.OnShortestPath && Nodes[Src].Taken && Nodes[Dst].Taken && 371*f2ade65fSspupyrev Nodes[Dst].Finish < Nodes[Src].Finish) { 372*f2ade65fSspupyrev AugmentingEdges[Src].push_back(&Edge); 373*f2ade65fSspupyrev } 374*f2ade65fSspupyrev } 375*f2ade65fSspupyrev assert((Src == Target || !AugmentingEdges[Src].empty()) && 376*f2ade65fSspupyrev "incorrectly constructed augmenting edges"); 377*f2ade65fSspupyrev } 378*f2ade65fSspupyrev 379*f2ade65fSspupyrev return AugmentingOrder; 380*f2ade65fSspupyrev } 381*f2ade65fSspupyrev 382*f2ade65fSspupyrev /// Update the current flow along the given (acyclic) subgraph specified by 383*f2ade65fSspupyrev /// the vertex order, AugmentingOrder. The objective is to send as much flow 384*f2ade65fSspupyrev /// as possible while evenly distributing flow among successors of each node. 385*f2ade65fSspupyrev /// After the update at least one edge is saturated. 386*f2ade65fSspupyrev bool augmentFlowAlongDAG(const std::vector<uint64_t> &AugmentingOrder) { 387*f2ade65fSspupyrev // Phase 0: Initialization 388*f2ade65fSspupyrev for (uint64_t Src : AugmentingOrder) { 389*f2ade65fSspupyrev Nodes[Src].FracFlow = 0; 390*f2ade65fSspupyrev Nodes[Src].IntFlow = 0; 391*f2ade65fSspupyrev for (auto &Edge : AugmentingEdges[Src]) { 392*f2ade65fSspupyrev Edge->AugmentedFlow = 0; 393*f2ade65fSspupyrev } 394*f2ade65fSspupyrev } 395*f2ade65fSspupyrev 396*f2ade65fSspupyrev // Phase 1: Send a unit of fractional flow along the DAG 397*f2ade65fSspupyrev uint64_t MaxFlowAmount = INF; 398*f2ade65fSspupyrev Nodes[Source].FracFlow = 1.0; 399*f2ade65fSspupyrev for (uint64_t Src : AugmentingOrder) { 400*f2ade65fSspupyrev assert((Src == Target || Nodes[Src].FracFlow > 0.0) && 401*f2ade65fSspupyrev "incorrectly computed fractional flow"); 402*f2ade65fSspupyrev // Distribute flow evenly among successors of Src 403*f2ade65fSspupyrev uint64_t Degree = AugmentingEdges[Src].size(); 404*f2ade65fSspupyrev for (auto &Edge : AugmentingEdges[Src]) { 405*f2ade65fSspupyrev double EdgeFlow = Nodes[Src].FracFlow / Degree; 406*f2ade65fSspupyrev Nodes[Edge->Dst].FracFlow += EdgeFlow; 407*f2ade65fSspupyrev if (Edge->Capacity == INF) 408*f2ade65fSspupyrev continue; 409*f2ade65fSspupyrev uint64_t MaxIntFlow = double(Edge->Capacity - Edge->Flow) / EdgeFlow; 410*f2ade65fSspupyrev MaxFlowAmount = std::min(MaxFlowAmount, MaxIntFlow); 411*f2ade65fSspupyrev } 412*f2ade65fSspupyrev } 413*f2ade65fSspupyrev // Stop early if we cannot send any (integral) flow from Source to Target 414*f2ade65fSspupyrev if (MaxFlowAmount == 0) 415*f2ade65fSspupyrev return false; 416*f2ade65fSspupyrev 417*f2ade65fSspupyrev // Phase 2: Send an integral flow of MaxFlowAmount 418*f2ade65fSspupyrev Nodes[Source].IntFlow = MaxFlowAmount; 419*f2ade65fSspupyrev for (uint64_t Src : AugmentingOrder) { 420*f2ade65fSspupyrev if (Src == Target) 421*f2ade65fSspupyrev break; 422*f2ade65fSspupyrev // Distribute flow evenly among successors of Src, rounding up to make 423*f2ade65fSspupyrev // sure all flow is sent 424*f2ade65fSspupyrev uint64_t Degree = AugmentingEdges[Src].size(); 425*f2ade65fSspupyrev // We are guaranteeed that Node[Src].IntFlow <= SuccFlow * Degree 426*f2ade65fSspupyrev uint64_t SuccFlow = (Nodes[Src].IntFlow + Degree - 1) / Degree; 427*f2ade65fSspupyrev for (auto &Edge : AugmentingEdges[Src]) { 428*f2ade65fSspupyrev uint64_t Dst = Edge->Dst; 429*f2ade65fSspupyrev uint64_t EdgeFlow = std::min(Nodes[Src].IntFlow, SuccFlow); 430*f2ade65fSspupyrev EdgeFlow = std::min(EdgeFlow, uint64_t(Edge->Capacity - Edge->Flow)); 431*f2ade65fSspupyrev Nodes[Dst].IntFlow += EdgeFlow; 432*f2ade65fSspupyrev Nodes[Src].IntFlow -= EdgeFlow; 433*f2ade65fSspupyrev Edge->AugmentedFlow += EdgeFlow; 434*f2ade65fSspupyrev } 435*f2ade65fSspupyrev } 436*f2ade65fSspupyrev assert(Nodes[Target].IntFlow <= MaxFlowAmount); 437*f2ade65fSspupyrev Nodes[Target].IntFlow = 0; 438*f2ade65fSspupyrev 439*f2ade65fSspupyrev // Phase 3: Send excess flow back traversing the nodes backwards. 440*f2ade65fSspupyrev // Because of rounding, not all flow can be sent along the edges of Src. 441*f2ade65fSspupyrev // Hence, sending the remaining flow back to maintain flow conservation 442*f2ade65fSspupyrev for (size_t Idx = AugmentingOrder.size() - 1; Idx > 0; Idx--) { 443*f2ade65fSspupyrev uint64_t Src = AugmentingOrder[Idx - 1]; 444*f2ade65fSspupyrev // Try to send excess flow back along each edge. 445*f2ade65fSspupyrev // Make sure we only send back flow we just augmented (AugmentedFlow). 446*f2ade65fSspupyrev for (auto &Edge : AugmentingEdges[Src]) { 447*f2ade65fSspupyrev uint64_t Dst = Edge->Dst; 448*f2ade65fSspupyrev if (Nodes[Dst].IntFlow == 0) 449*f2ade65fSspupyrev continue; 450*f2ade65fSspupyrev uint64_t EdgeFlow = std::min(Nodes[Dst].IntFlow, Edge->AugmentedFlow); 451*f2ade65fSspupyrev Nodes[Dst].IntFlow -= EdgeFlow; 452*f2ade65fSspupyrev Nodes[Src].IntFlow += EdgeFlow; 453*f2ade65fSspupyrev Edge->AugmentedFlow -= EdgeFlow; 454*f2ade65fSspupyrev } 455*f2ade65fSspupyrev } 456*f2ade65fSspupyrev 457*f2ade65fSspupyrev // Phase 4: Update flow values along all edges 458*f2ade65fSspupyrev bool HasSaturatedEdges = false; 459*f2ade65fSspupyrev for (uint64_t Src : AugmentingOrder) { 460*f2ade65fSspupyrev // Verify that we have sent all the excess flow from the node 461*f2ade65fSspupyrev assert(Src == Source || Nodes[Src].IntFlow == 0); 462*f2ade65fSspupyrev for (auto &Edge : AugmentingEdges[Src]) { 463*f2ade65fSspupyrev assert(uint64_t(Edge->Capacity - Edge->Flow) >= Edge->AugmentedFlow); 464*f2ade65fSspupyrev // Update flow values along the edge and its reverse copy 465*f2ade65fSspupyrev auto &RevEdge = Edges[Edge->Dst][Edge->RevEdgeIndex]; 466*f2ade65fSspupyrev Edge->Flow += Edge->AugmentedFlow; 467*f2ade65fSspupyrev RevEdge.Flow -= Edge->AugmentedFlow; 468*f2ade65fSspupyrev if (Edge->Capacity == Edge->Flow && Edge->AugmentedFlow > 0) 469*f2ade65fSspupyrev HasSaturatedEdges = true; 470*f2ade65fSspupyrev } 471*f2ade65fSspupyrev } 472*f2ade65fSspupyrev 473*f2ade65fSspupyrev // The augmentation is successful iff at least one edge becomes saturated 474*f2ade65fSspupyrev return HasSaturatedEdges; 475*f2ade65fSspupyrev } 476*f2ade65fSspupyrev 477*f2ade65fSspupyrev /// Identify candidate (shortest) edges for augmentation. 478*f2ade65fSspupyrev void identifyShortestEdges(uint64_t PathCapacity) { 479*f2ade65fSspupyrev assert(PathCapacity > 0 && "found an incorrect augmenting DAG"); 480*f2ade65fSspupyrev // To make sure the augmentation DAG contains only edges with large residual 481*f2ade65fSspupyrev // capacity, we prune all edges whose capacity is below a fraction of 482*f2ade65fSspupyrev // the capacity of the augmented path. 483*f2ade65fSspupyrev // (All edges of the path itself are always in the DAG) 484*f2ade65fSspupyrev uint64_t MinCapacity = std::max(PathCapacity / 2, uint64_t(1)); 485*f2ade65fSspupyrev 486*f2ade65fSspupyrev // Decide which edges are on a shortest path from Source to Target 487*f2ade65fSspupyrev for (size_t Src = 0; Src < Nodes.size(); Src++) { 488*f2ade65fSspupyrev // An edge cannot be augmenting if the endpoint has large distance 489*f2ade65fSspupyrev if (Nodes[Src].Distance > Nodes[Target].Distance) 490*f2ade65fSspupyrev continue; 491*f2ade65fSspupyrev 492*f2ade65fSspupyrev for (auto &Edge : Edges[Src]) { 493*f2ade65fSspupyrev uint64_t Dst = Edge.Dst; 494*f2ade65fSspupyrev Edge.OnShortestPath = 495*f2ade65fSspupyrev Src != Target && Dst != Source && 496*f2ade65fSspupyrev Nodes[Dst].Distance <= Nodes[Target].Distance && 497*f2ade65fSspupyrev Nodes[Dst].Distance == Nodes[Src].Distance + Edge.Cost && 498*f2ade65fSspupyrev Edge.Capacity > Edge.Flow && 499*f2ade65fSspupyrev uint64_t(Edge.Capacity - Edge.Flow) >= MinCapacity; 500*f2ade65fSspupyrev } 501*f2ade65fSspupyrev } 502*f2ade65fSspupyrev } 503*f2ade65fSspupyrev 50413d1364aSspupyrev /// A node in a flow network. 5057cc2493dSspupyrev struct Node { 5067cc2493dSspupyrev /// The cost of the cheapest path from the source to the current node. 5077cc2493dSspupyrev int64_t Distance; 5087cc2493dSspupyrev /// The node preceding the current one in the path. 5097cc2493dSspupyrev uint64_t ParentNode; 5107cc2493dSspupyrev /// The index of the edge between ParentNode and the current node. 5117cc2493dSspupyrev uint64_t ParentEdgeIndex; 5127cc2493dSspupyrev /// An indicator of whether the current node is in a queue. 5137cc2493dSspupyrev bool Taken; 514*f2ade65fSspupyrev 515*f2ade65fSspupyrev /// Data fields utilized in DAG-augmentation: 516*f2ade65fSspupyrev /// Fractional flow. 517*f2ade65fSspupyrev double FracFlow; 518*f2ade65fSspupyrev /// Integral flow. 519*f2ade65fSspupyrev uint64_t IntFlow; 520*f2ade65fSspupyrev /// Discovery time. 521*f2ade65fSspupyrev uint64_t Discovery; 522*f2ade65fSspupyrev /// Finish time. 523*f2ade65fSspupyrev uint64_t Finish; 524*f2ade65fSspupyrev /// NumCalls. 525*f2ade65fSspupyrev uint64_t NumCalls; 5267cc2493dSspupyrev }; 527*f2ade65fSspupyrev 5287cc2493dSspupyrev /// An edge in a flow network. 5297cc2493dSspupyrev struct Edge { 5307cc2493dSspupyrev /// The cost of the edge. 5317cc2493dSspupyrev int64_t Cost; 5327cc2493dSspupyrev /// The capacity of the edge. 5337cc2493dSspupyrev int64_t Capacity; 5347cc2493dSspupyrev /// The current flow on the edge. 5357cc2493dSspupyrev int64_t Flow; 5367cc2493dSspupyrev /// The destination node of the edge. 5377cc2493dSspupyrev uint64_t Dst; 5387cc2493dSspupyrev /// The index of the reverse edge between Dst and the current node. 5397cc2493dSspupyrev uint64_t RevEdgeIndex; 540*f2ade65fSspupyrev 541*f2ade65fSspupyrev /// Data fields utilized in DAG-augmentation: 542*f2ade65fSspupyrev /// Whether the edge is currently on a shortest path from Source to Target. 543*f2ade65fSspupyrev bool OnShortestPath; 544*f2ade65fSspupyrev /// Extra flow along the edge. 545*f2ade65fSspupyrev uint64_t AugmentedFlow; 5467cc2493dSspupyrev }; 5477cc2493dSspupyrev 5487cc2493dSspupyrev /// The set of network nodes. 5497cc2493dSspupyrev std::vector<Node> Nodes; 5507cc2493dSspupyrev /// The set of network edges. 5517cc2493dSspupyrev std::vector<std::vector<Edge>> Edges; 5527cc2493dSspupyrev /// Source node of the flow. 5537cc2493dSspupyrev uint64_t Source; 5547cc2493dSspupyrev /// Target (sink) node of the flow. 5557cc2493dSspupyrev uint64_t Target; 556*f2ade65fSspupyrev /// Augmenting edges. 557*f2ade65fSspupyrev std::vector<std::vector<Edge *>> AugmentingEdges; 5587cc2493dSspupyrev }; 5597cc2493dSspupyrev 56093a2c291Sspupyrev /// A post-processing adjustment of control flow. It applies two steps by 56193a2c291Sspupyrev /// rerouting some flow and making it more realistic: 56293a2c291Sspupyrev /// 56393a2c291Sspupyrev /// - First, it removes all isolated components ("islands") with a positive flow 56493a2c291Sspupyrev /// that are unreachable from the entry block. For every such component, we 56593a2c291Sspupyrev /// find the shortest from the entry to an exit passing through the component, 56693a2c291Sspupyrev /// and increase the flow by one unit along the path. 56793a2c291Sspupyrev /// 56893a2c291Sspupyrev /// - Second, it identifies all "unknown subgraphs" consisting of basic blocks 56993a2c291Sspupyrev /// with no sampled counts. Then it rebalnces the flow that goes through such 57093a2c291Sspupyrev /// a subgraph so that each branch is taken with probability 50%. 57193a2c291Sspupyrev /// An unknown subgraph is such that for every two nodes u and v: 57293a2c291Sspupyrev /// - u dominates v and u is not unknown; 57393a2c291Sspupyrev /// - v post-dominates u; and 57493a2c291Sspupyrev /// - all inner-nodes of all (u,v)-paths are unknown. 57593a2c291Sspupyrev /// 57698dd2f9eSspupyrev class FlowAdjuster { 57798dd2f9eSspupyrev public: 57898dd2f9eSspupyrev FlowAdjuster(FlowFunction &Func) : Func(Func) { 57998dd2f9eSspupyrev assert(Func.Blocks[Func.Entry].isEntry() && 58098dd2f9eSspupyrev "incorrect index of the entry block"); 58198dd2f9eSspupyrev } 58298dd2f9eSspupyrev 58398dd2f9eSspupyrev // Run the post-processing 58498dd2f9eSspupyrev void run() { 58593a2c291Sspupyrev /// Adjust the flow to get rid of isolated components. 58698dd2f9eSspupyrev joinIsolatedComponents(); 58793a2c291Sspupyrev 58893a2c291Sspupyrev /// Rebalance the flow inside unknown subgraphs. 58993a2c291Sspupyrev rebalanceUnknownSubgraphs(); 59098dd2f9eSspupyrev } 59198dd2f9eSspupyrev 59298dd2f9eSspupyrev private: 59398dd2f9eSspupyrev void joinIsolatedComponents() { 59498dd2f9eSspupyrev // Find blocks that are reachable from the source 5955f4ae564SJan Svoboda auto Visited = BitVector(NumBlocks(), false); 59698dd2f9eSspupyrev findReachable(Func.Entry, Visited); 59798dd2f9eSspupyrev 59898dd2f9eSspupyrev // Iterate over all non-reachable blocks and adjust their weights 59998dd2f9eSspupyrev for (uint64_t I = 0; I < NumBlocks(); I++) { 60098dd2f9eSspupyrev auto &Block = Func.Blocks[I]; 60198dd2f9eSspupyrev if (Block.Flow > 0 && !Visited[I]) { 60298dd2f9eSspupyrev // Find a path from the entry to an exit passing through the block I 60398dd2f9eSspupyrev auto Path = findShortestPath(I); 60498dd2f9eSspupyrev // Increase the flow along the path 60598dd2f9eSspupyrev assert(Path.size() > 0 && Path[0]->Source == Func.Entry && 60698dd2f9eSspupyrev "incorrectly computed path adjusting control flow"); 60798dd2f9eSspupyrev Func.Blocks[Func.Entry].Flow += 1; 60898dd2f9eSspupyrev for (auto &Jump : Path) { 60998dd2f9eSspupyrev Jump->Flow += 1; 61098dd2f9eSspupyrev Func.Blocks[Jump->Target].Flow += 1; 61198dd2f9eSspupyrev // Update reachability 61298dd2f9eSspupyrev findReachable(Jump->Target, Visited); 61398dd2f9eSspupyrev } 61498dd2f9eSspupyrev } 61598dd2f9eSspupyrev } 61698dd2f9eSspupyrev } 61798dd2f9eSspupyrev 61893a2c291Sspupyrev /// Run BFS from a given block along the jumps with a positive flow and mark 61998dd2f9eSspupyrev /// all reachable blocks. 6205f4ae564SJan Svoboda void findReachable(uint64_t Src, BitVector &Visited) { 62198dd2f9eSspupyrev if (Visited[Src]) 62298dd2f9eSspupyrev return; 62398dd2f9eSspupyrev std::queue<uint64_t> Queue; 62498dd2f9eSspupyrev Queue.push(Src); 62598dd2f9eSspupyrev Visited[Src] = true; 62698dd2f9eSspupyrev while (!Queue.empty()) { 62798dd2f9eSspupyrev Src = Queue.front(); 62898dd2f9eSspupyrev Queue.pop(); 62998dd2f9eSspupyrev for (auto Jump : Func.Blocks[Src].SuccJumps) { 63098dd2f9eSspupyrev uint64_t Dst = Jump->Target; 63198dd2f9eSspupyrev if (Jump->Flow > 0 && !Visited[Dst]) { 63298dd2f9eSspupyrev Queue.push(Dst); 63398dd2f9eSspupyrev Visited[Dst] = true; 63498dd2f9eSspupyrev } 63598dd2f9eSspupyrev } 63698dd2f9eSspupyrev } 63798dd2f9eSspupyrev } 63898dd2f9eSspupyrev 63998dd2f9eSspupyrev /// Find the shortest path from the entry block to an exit block passing 64098dd2f9eSspupyrev /// through a given block. 64198dd2f9eSspupyrev std::vector<FlowJump *> findShortestPath(uint64_t BlockIdx) { 64298dd2f9eSspupyrev // A path from the entry block to BlockIdx 64398dd2f9eSspupyrev auto ForwardPath = findShortestPath(Func.Entry, BlockIdx); 64498dd2f9eSspupyrev // A path from BlockIdx to an exit block 64598dd2f9eSspupyrev auto BackwardPath = findShortestPath(BlockIdx, AnyExitBlock); 64698dd2f9eSspupyrev 64798dd2f9eSspupyrev // Concatenate the two paths 64898dd2f9eSspupyrev std::vector<FlowJump *> Result; 64998dd2f9eSspupyrev Result.insert(Result.end(), ForwardPath.begin(), ForwardPath.end()); 65098dd2f9eSspupyrev Result.insert(Result.end(), BackwardPath.begin(), BackwardPath.end()); 65198dd2f9eSspupyrev return Result; 65298dd2f9eSspupyrev } 65398dd2f9eSspupyrev 65498dd2f9eSspupyrev /// Apply the Dijkstra algorithm to find the shortest path from a given 65598dd2f9eSspupyrev /// Source to a given Target block. 65698dd2f9eSspupyrev /// If Target == -1, then the path ends at an exit block. 65798dd2f9eSspupyrev std::vector<FlowJump *> findShortestPath(uint64_t Source, uint64_t Target) { 65898dd2f9eSspupyrev // Quit early, if possible 65998dd2f9eSspupyrev if (Source == Target) 66098dd2f9eSspupyrev return std::vector<FlowJump *>(); 66198dd2f9eSspupyrev if (Func.Blocks[Source].isExit() && Target == AnyExitBlock) 66298dd2f9eSspupyrev return std::vector<FlowJump *>(); 66398dd2f9eSspupyrev 66498dd2f9eSspupyrev // Initialize data structures 66598dd2f9eSspupyrev auto Distance = std::vector<int64_t>(NumBlocks(), INF); 66698dd2f9eSspupyrev auto Parent = std::vector<FlowJump *>(NumBlocks(), nullptr); 66798dd2f9eSspupyrev Distance[Source] = 0; 66898dd2f9eSspupyrev std::set<std::pair<uint64_t, uint64_t>> Queue; 66998dd2f9eSspupyrev Queue.insert(std::make_pair(Distance[Source], Source)); 67098dd2f9eSspupyrev 67198dd2f9eSspupyrev // Run the Dijkstra algorithm 67298dd2f9eSspupyrev while (!Queue.empty()) { 67398dd2f9eSspupyrev uint64_t Src = Queue.begin()->second; 67498dd2f9eSspupyrev Queue.erase(Queue.begin()); 67598dd2f9eSspupyrev // If we found a solution, quit early 67698dd2f9eSspupyrev if (Src == Target || 67798dd2f9eSspupyrev (Func.Blocks[Src].isExit() && Target == AnyExitBlock)) 67898dd2f9eSspupyrev break; 67998dd2f9eSspupyrev 68098dd2f9eSspupyrev for (auto Jump : Func.Blocks[Src].SuccJumps) { 68198dd2f9eSspupyrev uint64_t Dst = Jump->Target; 68298dd2f9eSspupyrev int64_t JumpDist = jumpDistance(Jump); 68398dd2f9eSspupyrev if (Distance[Dst] > Distance[Src] + JumpDist) { 68498dd2f9eSspupyrev Queue.erase(std::make_pair(Distance[Dst], Dst)); 68598dd2f9eSspupyrev 68698dd2f9eSspupyrev Distance[Dst] = Distance[Src] + JumpDist; 68798dd2f9eSspupyrev Parent[Dst] = Jump; 68898dd2f9eSspupyrev 68998dd2f9eSspupyrev Queue.insert(std::make_pair(Distance[Dst], Dst)); 69098dd2f9eSspupyrev } 69198dd2f9eSspupyrev } 69298dd2f9eSspupyrev } 69398dd2f9eSspupyrev // If Target is not provided, find the closest exit block 69498dd2f9eSspupyrev if (Target == AnyExitBlock) { 69598dd2f9eSspupyrev for (uint64_t I = 0; I < NumBlocks(); I++) { 69698dd2f9eSspupyrev if (Func.Blocks[I].isExit() && Parent[I] != nullptr) { 69798dd2f9eSspupyrev if (Target == AnyExitBlock || Distance[Target] > Distance[I]) { 69898dd2f9eSspupyrev Target = I; 69998dd2f9eSspupyrev } 70098dd2f9eSspupyrev } 70198dd2f9eSspupyrev } 70298dd2f9eSspupyrev } 70398dd2f9eSspupyrev assert(Parent[Target] != nullptr && "a path does not exist"); 70498dd2f9eSspupyrev 70598dd2f9eSspupyrev // Extract the constructed path 70698dd2f9eSspupyrev std::vector<FlowJump *> Result; 70798dd2f9eSspupyrev uint64_t Now = Target; 70898dd2f9eSspupyrev while (Now != Source) { 70998dd2f9eSspupyrev assert(Now == Parent[Now]->Target && "incorrect parent jump"); 71098dd2f9eSspupyrev Result.push_back(Parent[Now]); 71198dd2f9eSspupyrev Now = Parent[Now]->Source; 71298dd2f9eSspupyrev } 71398dd2f9eSspupyrev // Reverse the path, since it is extracted from Target to Source 71498dd2f9eSspupyrev std::reverse(Result.begin(), Result.end()); 71598dd2f9eSspupyrev return Result; 71698dd2f9eSspupyrev } 71798dd2f9eSspupyrev 71898dd2f9eSspupyrev /// A distance of a path for a given jump. 71998dd2f9eSspupyrev /// In order to incite the path to use blocks/jumps with large positive flow, 72098dd2f9eSspupyrev /// and avoid changing branch probability of outgoing edges drastically, 72198dd2f9eSspupyrev /// set the distance as follows: 72298dd2f9eSspupyrev /// if Jump.Flow > 0, then distance = max(100 - Jump->Flow, 0) 72398dd2f9eSspupyrev /// if Block.Weight > 0, then distance = 1 72498dd2f9eSspupyrev /// otherwise distance >> 1 72598dd2f9eSspupyrev int64_t jumpDistance(FlowJump *Jump) const { 72698dd2f9eSspupyrev int64_t BaseDistance = 100; 72798dd2f9eSspupyrev if (Jump->IsUnlikely) 72898dd2f9eSspupyrev return MinCostMaxFlow::AuxCostUnlikely; 72998dd2f9eSspupyrev if (Jump->Flow > 0) 73098dd2f9eSspupyrev return std::max(BaseDistance - (int64_t)Jump->Flow, (int64_t)0); 73198dd2f9eSspupyrev if (Func.Blocks[Jump->Target].Weight > 0) 73298dd2f9eSspupyrev return BaseDistance; 73398dd2f9eSspupyrev return BaseDistance * (NumBlocks() + 1); 73498dd2f9eSspupyrev }; 73598dd2f9eSspupyrev 73698dd2f9eSspupyrev uint64_t NumBlocks() const { return Func.Blocks.size(); } 73798dd2f9eSspupyrev 73813d1364aSspupyrev /// Rebalance unknown subgraphs so that the flow is split evenly across the 73913d1364aSspupyrev /// outgoing branches of every block of the subgraph. The method iterates over 74013d1364aSspupyrev /// blocks with known weight and identifies unknown subgraphs rooted at the 74113d1364aSspupyrev /// blocks. Then it verifies if flow rebalancing is feasible and applies it. 74293a2c291Sspupyrev void rebalanceUnknownSubgraphs() { 74313d1364aSspupyrev // Try to find unknown subgraphs from each block 74493a2c291Sspupyrev for (uint64_t I = 0; I < Func.Blocks.size(); I++) { 74593a2c291Sspupyrev auto SrcBlock = &Func.Blocks[I]; 74613d1364aSspupyrev // Verify if rebalancing rooted at SrcBlock is feasible 74713d1364aSspupyrev if (!canRebalanceAtRoot(SrcBlock)) 74893a2c291Sspupyrev continue; 74993a2c291Sspupyrev 75013d1364aSspupyrev // Find an unknown subgraphs starting at SrcBlock. Along the way, 75113d1364aSspupyrev // fill in known destinations and intermediate unknown blocks. 75213d1364aSspupyrev std::vector<FlowBlock *> UnknownBlocks; 75313d1364aSspupyrev std::vector<FlowBlock *> KnownDstBlocks; 75413d1364aSspupyrev findUnknownSubgraph(SrcBlock, KnownDstBlocks, UnknownBlocks); 75513d1364aSspupyrev 75613d1364aSspupyrev // Verify if rebalancing of the subgraph is feasible. If the search is 75713d1364aSspupyrev // successful, find the unique destination block (which can be null) 75893a2c291Sspupyrev FlowBlock *DstBlock = nullptr; 75913d1364aSspupyrev if (!canRebalanceSubgraph(SrcBlock, KnownDstBlocks, UnknownBlocks, 76013d1364aSspupyrev DstBlock)) 76193a2c291Sspupyrev continue; 76213d1364aSspupyrev 76313d1364aSspupyrev // We cannot rebalance subgraphs containing cycles among unknown blocks 76413d1364aSspupyrev if (!isAcyclicSubgraph(SrcBlock, DstBlock, UnknownBlocks)) 76593a2c291Sspupyrev continue; 76693a2c291Sspupyrev 76793a2c291Sspupyrev // Rebalance the flow 76813d1364aSspupyrev rebalanceUnknownSubgraph(SrcBlock, DstBlock, UnknownBlocks); 76993a2c291Sspupyrev } 77093a2c291Sspupyrev } 77193a2c291Sspupyrev 77213d1364aSspupyrev /// Verify if rebalancing rooted at a given block is possible. 77313d1364aSspupyrev bool canRebalanceAtRoot(const FlowBlock *SrcBlock) { 77413d1364aSspupyrev // Do not attempt to find unknown subgraphs from an unknown or a 77513d1364aSspupyrev // zero-flow block 77613d1364aSspupyrev if (SrcBlock->UnknownWeight || SrcBlock->Flow == 0) 77713d1364aSspupyrev return false; 77813d1364aSspupyrev 77913d1364aSspupyrev // Do not attempt to process subgraphs from a block w/o unknown sucessors 78013d1364aSspupyrev bool HasUnknownSuccs = false; 78113d1364aSspupyrev for (auto Jump : SrcBlock->SuccJumps) { 78213d1364aSspupyrev if (Func.Blocks[Jump->Target].UnknownWeight) { 78313d1364aSspupyrev HasUnknownSuccs = true; 78413d1364aSspupyrev break; 78513d1364aSspupyrev } 78613d1364aSspupyrev } 78713d1364aSspupyrev if (!HasUnknownSuccs) 78813d1364aSspupyrev return false; 78913d1364aSspupyrev 79013d1364aSspupyrev return true; 79113d1364aSspupyrev } 79213d1364aSspupyrev 79313d1364aSspupyrev /// Find an unknown subgraph starting at block SrcBlock. The method sets 79413d1364aSspupyrev /// identified destinations, KnownDstBlocks, and intermediate UnknownBlocks. 79513d1364aSspupyrev void findUnknownSubgraph(const FlowBlock *SrcBlock, 79613d1364aSspupyrev std::vector<FlowBlock *> &KnownDstBlocks, 79713d1364aSspupyrev std::vector<FlowBlock *> &UnknownBlocks) { 79893a2c291Sspupyrev // Run BFS from SrcBlock and make sure all paths are going through unknown 799*f2ade65fSspupyrev // blocks and end at a known DstBlock 8005f4ae564SJan Svoboda auto Visited = BitVector(NumBlocks(), false); 80193a2c291Sspupyrev std::queue<uint64_t> Queue; 80293a2c291Sspupyrev 80393a2c291Sspupyrev Queue.push(SrcBlock->Index); 80493a2c291Sspupyrev Visited[SrcBlock->Index] = true; 80593a2c291Sspupyrev while (!Queue.empty()) { 80693a2c291Sspupyrev auto &Block = Func.Blocks[Queue.front()]; 80793a2c291Sspupyrev Queue.pop(); 80893a2c291Sspupyrev // Process blocks reachable from Block 80993a2c291Sspupyrev for (auto Jump : Block.SuccJumps) { 81013d1364aSspupyrev // If Jump can be ignored, skip it 81113d1364aSspupyrev if (ignoreJump(SrcBlock, nullptr, Jump)) 81213d1364aSspupyrev continue; 81313d1364aSspupyrev 81493a2c291Sspupyrev uint64_t Dst = Jump->Target; 81513d1364aSspupyrev // If Dst has been visited, skip Jump 81693a2c291Sspupyrev if (Visited[Dst]) 81793a2c291Sspupyrev continue; 81813d1364aSspupyrev // Process block Dst 81993a2c291Sspupyrev Visited[Dst] = true; 82093a2c291Sspupyrev if (!Func.Blocks[Dst].UnknownWeight) { 82113d1364aSspupyrev KnownDstBlocks.push_back(&Func.Blocks[Dst]); 82293a2c291Sspupyrev } else { 82393a2c291Sspupyrev Queue.push(Dst); 82413d1364aSspupyrev UnknownBlocks.push_back(&Func.Blocks[Dst]); 82513d1364aSspupyrev } 82693a2c291Sspupyrev } 82793a2c291Sspupyrev } 82893a2c291Sspupyrev } 82993a2c291Sspupyrev 83013d1364aSspupyrev /// Verify if rebalancing of the subgraph is feasible. If the checks are 83113d1364aSspupyrev /// successful, set the unique destination block, DstBlock (can be null). 83213d1364aSspupyrev bool canRebalanceSubgraph(const FlowBlock *SrcBlock, 83313d1364aSspupyrev const std::vector<FlowBlock *> &KnownDstBlocks, 83413d1364aSspupyrev const std::vector<FlowBlock *> &UnknownBlocks, 83513d1364aSspupyrev FlowBlock *&DstBlock) { 83693a2c291Sspupyrev // If the list of unknown blocks is empty, we don't need rebalancing 83713d1364aSspupyrev if (UnknownBlocks.empty()) 83893a2c291Sspupyrev return false; 83913d1364aSspupyrev 84013d1364aSspupyrev // If there are multiple known sinks, we can't rebalance 84113d1364aSspupyrev if (KnownDstBlocks.size() > 1) 84293a2c291Sspupyrev return false; 84313d1364aSspupyrev DstBlock = KnownDstBlocks.empty() ? nullptr : KnownDstBlocks.front(); 84413d1364aSspupyrev 84513d1364aSspupyrev // Verify sinks of the subgraph 84613d1364aSspupyrev for (auto Block : UnknownBlocks) { 84713d1364aSspupyrev if (Block->SuccJumps.empty()) { 84813d1364aSspupyrev // If there are multiple (known and unknown) sinks, we can't rebalance 84913d1364aSspupyrev if (DstBlock != nullptr) 85013d1364aSspupyrev return false; 85113d1364aSspupyrev continue; 85213d1364aSspupyrev } 85313d1364aSspupyrev size_t NumIgnoredJumps = 0; 85413d1364aSspupyrev for (auto Jump : Block->SuccJumps) { 85513d1364aSspupyrev if (ignoreJump(SrcBlock, DstBlock, Jump)) 85613d1364aSspupyrev NumIgnoredJumps++; 85713d1364aSspupyrev } 85813d1364aSspupyrev // If there is a non-sink block in UnknownBlocks with all jumps ignored, 85913d1364aSspupyrev // then we can't rebalance 86013d1364aSspupyrev if (NumIgnoredJumps == Block->SuccJumps.size()) 86193a2c291Sspupyrev return false; 86293a2c291Sspupyrev } 86393a2c291Sspupyrev 86493a2c291Sspupyrev return true; 86593a2c291Sspupyrev } 86693a2c291Sspupyrev 86713d1364aSspupyrev /// Decide whether the Jump is ignored while processing an unknown subgraphs 86813d1364aSspupyrev /// rooted at basic block SrcBlock with the destination block, DstBlock. 86913d1364aSspupyrev bool ignoreJump(const FlowBlock *SrcBlock, const FlowBlock *DstBlock, 87013d1364aSspupyrev const FlowJump *Jump) { 87113d1364aSspupyrev // Ignore unlikely jumps with zero flow 87213d1364aSspupyrev if (Jump->IsUnlikely && Jump->Flow == 0) 87313d1364aSspupyrev return true; 87413d1364aSspupyrev 87513d1364aSspupyrev auto JumpSource = &Func.Blocks[Jump->Source]; 87613d1364aSspupyrev auto JumpTarget = &Func.Blocks[Jump->Target]; 87713d1364aSspupyrev 87813d1364aSspupyrev // Do not ignore jumps coming into DstBlock 87913d1364aSspupyrev if (DstBlock != nullptr && JumpTarget == DstBlock) 88013d1364aSspupyrev return false; 88113d1364aSspupyrev 88213d1364aSspupyrev // Ignore jumps out of SrcBlock to known blocks 88313d1364aSspupyrev if (!JumpTarget->UnknownWeight && JumpSource == SrcBlock) 88413d1364aSspupyrev return true; 88513d1364aSspupyrev 88613d1364aSspupyrev // Ignore jumps to known blocks with zero flow 88713d1364aSspupyrev if (!JumpTarget->UnknownWeight && JumpTarget->Flow == 0) 88813d1364aSspupyrev return true; 88913d1364aSspupyrev 89013d1364aSspupyrev return false; 89113d1364aSspupyrev } 89213d1364aSspupyrev 89393a2c291Sspupyrev /// Verify if the given unknown subgraph is acyclic, and if yes, reorder 89413d1364aSspupyrev /// UnknownBlocks in the topological order (so that all jumps are "forward"). 89513d1364aSspupyrev bool isAcyclicSubgraph(const FlowBlock *SrcBlock, const FlowBlock *DstBlock, 89613d1364aSspupyrev std::vector<FlowBlock *> &UnknownBlocks) { 89793a2c291Sspupyrev // Extract local in-degrees in the considered subgraph 89893a2c291Sspupyrev auto LocalInDegree = std::vector<uint64_t>(NumBlocks(), 0); 89913d1364aSspupyrev auto fillInDegree = [&](const FlowBlock *Block) { 90013d1364aSspupyrev for (auto Jump : Block->SuccJumps) { 90113d1364aSspupyrev if (ignoreJump(SrcBlock, DstBlock, Jump)) 90213d1364aSspupyrev continue; 90393a2c291Sspupyrev LocalInDegree[Jump->Target]++; 90493a2c291Sspupyrev } 90513d1364aSspupyrev }; 90613d1364aSspupyrev fillInDegree(SrcBlock); 90713d1364aSspupyrev for (auto Block : UnknownBlocks) { 90813d1364aSspupyrev fillInDegree(Block); 90993a2c291Sspupyrev } 91093a2c291Sspupyrev // A loop containing SrcBlock 91193a2c291Sspupyrev if (LocalInDegree[SrcBlock->Index] > 0) 91293a2c291Sspupyrev return false; 91393a2c291Sspupyrev 91493a2c291Sspupyrev std::vector<FlowBlock *> AcyclicOrder; 91593a2c291Sspupyrev std::queue<uint64_t> Queue; 91693a2c291Sspupyrev Queue.push(SrcBlock->Index); 91793a2c291Sspupyrev while (!Queue.empty()) { 91813d1364aSspupyrev FlowBlock *Block = &Func.Blocks[Queue.front()]; 91993a2c291Sspupyrev Queue.pop(); 92013d1364aSspupyrev // Stop propagation once we reach DstBlock, if any 92113d1364aSspupyrev if (DstBlock != nullptr && Block == DstBlock) 92293a2c291Sspupyrev break; 92393a2c291Sspupyrev 92413d1364aSspupyrev // Keep an acyclic order of unknown blocks 92513d1364aSspupyrev if (Block->UnknownWeight && Block != SrcBlock) 92613d1364aSspupyrev AcyclicOrder.push_back(Block); 92713d1364aSspupyrev 92893a2c291Sspupyrev // Add to the queue all successors with zero local in-degree 92913d1364aSspupyrev for (auto Jump : Block->SuccJumps) { 93013d1364aSspupyrev if (ignoreJump(SrcBlock, DstBlock, Jump)) 93113d1364aSspupyrev continue; 93293a2c291Sspupyrev uint64_t Dst = Jump->Target; 93393a2c291Sspupyrev LocalInDegree[Dst]--; 93493a2c291Sspupyrev if (LocalInDegree[Dst] == 0) { 93593a2c291Sspupyrev Queue.push(Dst); 93693a2c291Sspupyrev } 93793a2c291Sspupyrev } 93893a2c291Sspupyrev } 93993a2c291Sspupyrev 94093a2c291Sspupyrev // If there is a cycle in the subgraph, AcyclicOrder contains only a subset 94193a2c291Sspupyrev // of all blocks 94213d1364aSspupyrev if (UnknownBlocks.size() != AcyclicOrder.size()) 94393a2c291Sspupyrev return false; 94413d1364aSspupyrev UnknownBlocks = AcyclicOrder; 94593a2c291Sspupyrev return true; 94693a2c291Sspupyrev } 94793a2c291Sspupyrev 94813d1364aSspupyrev /// Rebalance a given subgraph rooted at SrcBlock, ending at DstBlock and 94913d1364aSspupyrev /// having UnknownBlocks intermediate blocks. 95013d1364aSspupyrev void rebalanceUnknownSubgraph(const FlowBlock *SrcBlock, 95113d1364aSspupyrev const FlowBlock *DstBlock, 95213d1364aSspupyrev const std::vector<FlowBlock *> &UnknownBlocks) { 95393a2c291Sspupyrev assert(SrcBlock->Flow > 0 && "zero-flow block in unknown subgraph"); 95493a2c291Sspupyrev 95513d1364aSspupyrev // Ditribute flow from the source block 95613d1364aSspupyrev uint64_t BlockFlow = 0; 95713d1364aSspupyrev // SrcBlock's flow is the sum of outgoing flows along non-ignored jumps 95813d1364aSspupyrev for (auto Jump : SrcBlock->SuccJumps) { 95913d1364aSspupyrev if (ignoreJump(SrcBlock, DstBlock, Jump)) 96093a2c291Sspupyrev continue; 96113d1364aSspupyrev BlockFlow += Jump->Flow; 96293a2c291Sspupyrev } 96313d1364aSspupyrev rebalanceBlock(SrcBlock, DstBlock, SrcBlock, BlockFlow); 96413d1364aSspupyrev 96513d1364aSspupyrev // Ditribute flow from the remaining blocks 96613d1364aSspupyrev for (auto Block : UnknownBlocks) { 96713d1364aSspupyrev assert(Block->UnknownWeight && "incorrect unknown subgraph"); 96813d1364aSspupyrev uint64_t BlockFlow = 0; 96913d1364aSspupyrev // Block's flow is the sum of incoming flows 97013d1364aSspupyrev for (auto Jump : Block->PredJumps) { 97113d1364aSspupyrev BlockFlow += Jump->Flow; 97213d1364aSspupyrev } 97313d1364aSspupyrev Block->Flow = BlockFlow; 97413d1364aSspupyrev rebalanceBlock(SrcBlock, DstBlock, Block, BlockFlow); 97513d1364aSspupyrev } 97613d1364aSspupyrev } 97713d1364aSspupyrev 97813d1364aSspupyrev /// Redistribute flow for a block in a subgraph rooted at SrcBlock, 97913d1364aSspupyrev /// and ending at DstBlock. 98013d1364aSspupyrev void rebalanceBlock(const FlowBlock *SrcBlock, const FlowBlock *DstBlock, 98113d1364aSspupyrev const FlowBlock *Block, uint64_t BlockFlow) { 98213d1364aSspupyrev // Process all successor jumps and update corresponding flow values 98313d1364aSspupyrev size_t BlockDegree = 0; 98413d1364aSspupyrev for (auto Jump : Block->SuccJumps) { 98513d1364aSspupyrev if (ignoreJump(SrcBlock, DstBlock, Jump)) 98613d1364aSspupyrev continue; 98713d1364aSspupyrev BlockDegree++; 98813d1364aSspupyrev } 98913d1364aSspupyrev // If all successor jumps of the block are ignored, skip it 99013d1364aSspupyrev if (DstBlock == nullptr && BlockDegree == 0) 99113d1364aSspupyrev return; 99213d1364aSspupyrev assert(BlockDegree > 0 && "all outgoing jumps are ignored"); 99313d1364aSspupyrev 99413d1364aSspupyrev // Each of the Block's successors gets the following amount of flow. 99513d1364aSspupyrev // Rounding the value up so that all flow is propagated 99613d1364aSspupyrev uint64_t SuccFlow = (BlockFlow + BlockDegree - 1) / BlockDegree; 99713d1364aSspupyrev for (auto Jump : Block->SuccJumps) { 99813d1364aSspupyrev if (ignoreJump(SrcBlock, DstBlock, Jump)) 99913d1364aSspupyrev continue; 100013d1364aSspupyrev uint64_t Flow = std::min(SuccFlow, BlockFlow); 100193a2c291Sspupyrev Jump->Flow = Flow; 100213d1364aSspupyrev BlockFlow -= Flow; 100393a2c291Sspupyrev } 100413d1364aSspupyrev assert(BlockFlow == 0 && "not all flow is propagated"); 100593a2c291Sspupyrev } 100693a2c291Sspupyrev 100798dd2f9eSspupyrev /// A constant indicating an arbitrary exit block of a function. 100898dd2f9eSspupyrev static constexpr uint64_t AnyExitBlock = uint64_t(-1); 100998dd2f9eSspupyrev 101098dd2f9eSspupyrev /// The function. 101198dd2f9eSspupyrev FlowFunction &Func; 101298dd2f9eSspupyrev }; 101398dd2f9eSspupyrev 10147cc2493dSspupyrev /// Initializing flow network for a given function. 10157cc2493dSspupyrev /// 10167cc2493dSspupyrev /// Every block is split into three nodes that are responsible for (i) an 10177cc2493dSspupyrev /// incoming flow, (ii) an outgoing flow, and (iii) penalizing an increase or 10187cc2493dSspupyrev /// reduction of the block weight. 10197cc2493dSspupyrev void initializeNetwork(MinCostMaxFlow &Network, FlowFunction &Func) { 10207cc2493dSspupyrev uint64_t NumBlocks = Func.Blocks.size(); 10217cc2493dSspupyrev assert(NumBlocks > 1 && "Too few blocks in a function"); 10227cc2493dSspupyrev LLVM_DEBUG(dbgs() << "Initializing profi for " << NumBlocks << " blocks\n"); 10237cc2493dSspupyrev 10247cc2493dSspupyrev // Pre-process data: make sure the entry weight is at least 1 10257cc2493dSspupyrev if (Func.Blocks[Func.Entry].Weight == 0) { 10267cc2493dSspupyrev Func.Blocks[Func.Entry].Weight = 1; 10277cc2493dSspupyrev } 10287cc2493dSspupyrev // Introducing dummy source/sink pairs to allow flow circulation. 10297cc2493dSspupyrev // The nodes corresponding to blocks of Func have indicies in the range 10307cc2493dSspupyrev // [0..3 * NumBlocks); the dummy nodes are indexed by the next four values. 10317cc2493dSspupyrev uint64_t S = 3 * NumBlocks; 10327cc2493dSspupyrev uint64_t T = S + 1; 10337cc2493dSspupyrev uint64_t S1 = S + 2; 10347cc2493dSspupyrev uint64_t T1 = S + 3; 10357cc2493dSspupyrev 10367cc2493dSspupyrev Network.initialize(3 * NumBlocks + 4, S1, T1); 10377cc2493dSspupyrev 10387cc2493dSspupyrev // Create three nodes for every block of the function 10397cc2493dSspupyrev for (uint64_t B = 0; B < NumBlocks; B++) { 10407cc2493dSspupyrev auto &Block = Func.Blocks[B]; 10417cc2493dSspupyrev assert((!Block.UnknownWeight || Block.Weight == 0 || Block.isEntry()) && 10427cc2493dSspupyrev "non-zero weight of a block w/o weight except for an entry"); 10437cc2493dSspupyrev 10447cc2493dSspupyrev // Split every block into two nodes 10457cc2493dSspupyrev uint64_t Bin = 3 * B; 10467cc2493dSspupyrev uint64_t Bout = 3 * B + 1; 10477cc2493dSspupyrev uint64_t Baux = 3 * B + 2; 10487cc2493dSspupyrev if (Block.Weight > 0) { 10497cc2493dSspupyrev Network.addEdge(S1, Bout, Block.Weight, 0); 10507cc2493dSspupyrev Network.addEdge(Bin, T1, Block.Weight, 0); 10517cc2493dSspupyrev } 10527cc2493dSspupyrev 10537cc2493dSspupyrev // Edges from S and to T 10547cc2493dSspupyrev assert((!Block.isEntry() || !Block.isExit()) && 10557cc2493dSspupyrev "a block cannot be an entry and an exit"); 10567cc2493dSspupyrev if (Block.isEntry()) { 10577cc2493dSspupyrev Network.addEdge(S, Bin, 0); 10587cc2493dSspupyrev } else if (Block.isExit()) { 10597cc2493dSspupyrev Network.addEdge(Bout, T, 0); 10607cc2493dSspupyrev } 10617cc2493dSspupyrev 10627cc2493dSspupyrev // An auxiliary node to allow increase/reduction of block counts: 10637cc2493dSspupyrev // We assume that decreasing block counts is more expensive than increasing, 10647cc2493dSspupyrev // and thus, setting separate costs here. In the future we may want to tune 10657cc2493dSspupyrev // the relative costs so as to maximize the quality of generated profiles. 10667cc2493dSspupyrev int64_t AuxCostInc = MinCostMaxFlow::AuxCostInc; 10677cc2493dSspupyrev int64_t AuxCostDec = MinCostMaxFlow::AuxCostDec; 10687cc2493dSspupyrev if (Block.UnknownWeight) { 10697cc2493dSspupyrev // Do not penalize changing weights of blocks w/o known profile count 10707cc2493dSspupyrev AuxCostInc = 0; 10717cc2493dSspupyrev AuxCostDec = 0; 10727cc2493dSspupyrev } else { 10737cc2493dSspupyrev // Increasing the count for "cold" blocks with zero initial count is more 10747cc2493dSspupyrev // expensive than for "hot" ones 10757cc2493dSspupyrev if (Block.Weight == 0) { 10767cc2493dSspupyrev AuxCostInc = MinCostMaxFlow::AuxCostIncZero; 10777cc2493dSspupyrev } 10787cc2493dSspupyrev // Modifying the count of the entry block is expensive 10797cc2493dSspupyrev if (Block.isEntry()) { 10807cc2493dSspupyrev AuxCostInc = MinCostMaxFlow::AuxCostIncEntry; 10817cc2493dSspupyrev AuxCostDec = MinCostMaxFlow::AuxCostDecEntry; 10827cc2493dSspupyrev } 10837cc2493dSspupyrev } 10847cc2493dSspupyrev // For blocks with self-edges, do not penalize a reduction of the count, 10857cc2493dSspupyrev // as all of the increase can be attributed to the self-edge 10867cc2493dSspupyrev if (Block.HasSelfEdge) { 10877cc2493dSspupyrev AuxCostDec = 0; 10887cc2493dSspupyrev } 10897cc2493dSspupyrev 10907cc2493dSspupyrev Network.addEdge(Bin, Baux, AuxCostInc); 10917cc2493dSspupyrev Network.addEdge(Baux, Bout, AuxCostInc); 10927cc2493dSspupyrev if (Block.Weight > 0) { 10937cc2493dSspupyrev Network.addEdge(Bout, Baux, AuxCostDec); 10947cc2493dSspupyrev Network.addEdge(Baux, Bin, AuxCostDec); 10957cc2493dSspupyrev } 10967cc2493dSspupyrev } 10977cc2493dSspupyrev 10987cc2493dSspupyrev // Creating edges for every jump 10997cc2493dSspupyrev for (auto &Jump : Func.Jumps) { 11007cc2493dSspupyrev uint64_t Src = Jump.Source; 11017cc2493dSspupyrev uint64_t Dst = Jump.Target; 11027cc2493dSspupyrev if (Src != Dst) { 11037cc2493dSspupyrev uint64_t SrcOut = 3 * Src + 1; 11047cc2493dSspupyrev uint64_t DstIn = 3 * Dst; 11057cc2493dSspupyrev uint64_t Cost = Jump.IsUnlikely ? MinCostMaxFlow::AuxCostUnlikely : 0; 11067cc2493dSspupyrev Network.addEdge(SrcOut, DstIn, Cost); 11077cc2493dSspupyrev } 11087cc2493dSspupyrev } 11097cc2493dSspupyrev 11107cc2493dSspupyrev // Make sure we have a valid flow circulation 11117cc2493dSspupyrev Network.addEdge(T, S, 0); 11127cc2493dSspupyrev } 11137cc2493dSspupyrev 11147cc2493dSspupyrev /// Extract resulting block and edge counts from the flow network. 11157cc2493dSspupyrev void extractWeights(MinCostMaxFlow &Network, FlowFunction &Func) { 11167cc2493dSspupyrev uint64_t NumBlocks = Func.Blocks.size(); 11177cc2493dSspupyrev 11187cc2493dSspupyrev // Extract resulting block counts 11197cc2493dSspupyrev for (uint64_t Src = 0; Src < NumBlocks; Src++) { 11207cc2493dSspupyrev auto &Block = Func.Blocks[Src]; 11217cc2493dSspupyrev uint64_t SrcOut = 3 * Src + 1; 11227cc2493dSspupyrev int64_t Flow = 0; 11237cc2493dSspupyrev for (auto &Adj : Network.getFlow(SrcOut)) { 11247cc2493dSspupyrev uint64_t DstIn = Adj.first; 11257cc2493dSspupyrev int64_t DstFlow = Adj.second; 11267cc2493dSspupyrev bool IsAuxNode = (DstIn < 3 * NumBlocks && DstIn % 3 == 2); 11277cc2493dSspupyrev if (!IsAuxNode || Block.HasSelfEdge) { 11287cc2493dSspupyrev Flow += DstFlow; 11297cc2493dSspupyrev } 11307cc2493dSspupyrev } 11317cc2493dSspupyrev Block.Flow = Flow; 11327cc2493dSspupyrev assert(Flow >= 0 && "negative block flow"); 11337cc2493dSspupyrev } 11347cc2493dSspupyrev 11357cc2493dSspupyrev // Extract resulting jump counts 11367cc2493dSspupyrev for (auto &Jump : Func.Jumps) { 11377cc2493dSspupyrev uint64_t Src = Jump.Source; 11387cc2493dSspupyrev uint64_t Dst = Jump.Target; 11397cc2493dSspupyrev int64_t Flow = 0; 11407cc2493dSspupyrev if (Src != Dst) { 11417cc2493dSspupyrev uint64_t SrcOut = 3 * Src + 1; 11427cc2493dSspupyrev uint64_t DstIn = 3 * Dst; 11437cc2493dSspupyrev Flow = Network.getFlow(SrcOut, DstIn); 11447cc2493dSspupyrev } else { 11457cc2493dSspupyrev uint64_t SrcOut = 3 * Src + 1; 11467cc2493dSspupyrev uint64_t SrcAux = 3 * Src + 2; 11477cc2493dSspupyrev int64_t AuxFlow = Network.getFlow(SrcOut, SrcAux); 11487cc2493dSspupyrev if (AuxFlow > 0) 11497cc2493dSspupyrev Flow = AuxFlow; 11507cc2493dSspupyrev } 11517cc2493dSspupyrev Jump.Flow = Flow; 11527cc2493dSspupyrev assert(Flow >= 0 && "negative jump flow"); 11537cc2493dSspupyrev } 11547cc2493dSspupyrev } 11557cc2493dSspupyrev 11567cc2493dSspupyrev #ifndef NDEBUG 11577cc2493dSspupyrev /// Verify that the computed flow values satisfy flow conservation rules 11587cc2493dSspupyrev void verifyWeights(const FlowFunction &Func) { 11597cc2493dSspupyrev const uint64_t NumBlocks = Func.Blocks.size(); 11607cc2493dSspupyrev auto InFlow = std::vector<uint64_t>(NumBlocks, 0); 11617cc2493dSspupyrev auto OutFlow = std::vector<uint64_t>(NumBlocks, 0); 11627cc2493dSspupyrev for (auto &Jump : Func.Jumps) { 11637cc2493dSspupyrev InFlow[Jump.Target] += Jump.Flow; 11647cc2493dSspupyrev OutFlow[Jump.Source] += Jump.Flow; 11657cc2493dSspupyrev } 11667cc2493dSspupyrev 11677cc2493dSspupyrev uint64_t TotalInFlow = 0; 11687cc2493dSspupyrev uint64_t TotalOutFlow = 0; 11697cc2493dSspupyrev for (uint64_t I = 0; I < NumBlocks; I++) { 11707cc2493dSspupyrev auto &Block = Func.Blocks[I]; 11717cc2493dSspupyrev if (Block.isEntry()) { 11727cc2493dSspupyrev TotalInFlow += Block.Flow; 11737cc2493dSspupyrev assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow"); 11747cc2493dSspupyrev } else if (Block.isExit()) { 11757cc2493dSspupyrev TotalOutFlow += Block.Flow; 11767cc2493dSspupyrev assert(Block.Flow == InFlow[I] && "incorrectly computed control flow"); 11777cc2493dSspupyrev } else { 11787cc2493dSspupyrev assert(Block.Flow == OutFlow[I] && "incorrectly computed control flow"); 11797cc2493dSspupyrev assert(Block.Flow == InFlow[I] && "incorrectly computed control flow"); 11807cc2493dSspupyrev } 11817cc2493dSspupyrev } 11827cc2493dSspupyrev assert(TotalInFlow == TotalOutFlow && "incorrectly computed control flow"); 118398dd2f9eSspupyrev 118498dd2f9eSspupyrev // Verify that there are no isolated flow components 118598dd2f9eSspupyrev // One could modify FlowFunction to hold edges indexed by the sources, which 118698dd2f9eSspupyrev // will avoid a creation of the object 118798dd2f9eSspupyrev auto PositiveFlowEdges = std::vector<std::vector<uint64_t>>(NumBlocks); 118898dd2f9eSspupyrev for (auto &Jump : Func.Jumps) { 118998dd2f9eSspupyrev if (Jump.Flow > 0) { 119098dd2f9eSspupyrev PositiveFlowEdges[Jump.Source].push_back(Jump.Target); 119198dd2f9eSspupyrev } 119298dd2f9eSspupyrev } 119398dd2f9eSspupyrev 119493a2c291Sspupyrev // Run BFS from the source along edges with positive flow 119598dd2f9eSspupyrev std::queue<uint64_t> Queue; 11965f4ae564SJan Svoboda auto Visited = BitVector(NumBlocks, false); 119798dd2f9eSspupyrev Queue.push(Func.Entry); 119898dd2f9eSspupyrev Visited[Func.Entry] = true; 119998dd2f9eSspupyrev while (!Queue.empty()) { 120098dd2f9eSspupyrev uint64_t Src = Queue.front(); 120198dd2f9eSspupyrev Queue.pop(); 120298dd2f9eSspupyrev for (uint64_t Dst : PositiveFlowEdges[Src]) { 120398dd2f9eSspupyrev if (!Visited[Dst]) { 120498dd2f9eSspupyrev Queue.push(Dst); 120598dd2f9eSspupyrev Visited[Dst] = true; 120698dd2f9eSspupyrev } 120798dd2f9eSspupyrev } 120898dd2f9eSspupyrev } 120998dd2f9eSspupyrev 121098dd2f9eSspupyrev // Verify that every block that has a positive flow is reached from the source 121198dd2f9eSspupyrev // along edges with a positive flow 121298dd2f9eSspupyrev for (uint64_t I = 0; I < NumBlocks; I++) { 121398dd2f9eSspupyrev auto &Block = Func.Blocks[I]; 121498dd2f9eSspupyrev assert((Visited[I] || Block.Flow == 0) && "an isolated flow component"); 121598dd2f9eSspupyrev } 12167cc2493dSspupyrev } 12177cc2493dSspupyrev #endif 12187cc2493dSspupyrev 12197cc2493dSspupyrev } // end of anonymous namespace 12207cc2493dSspupyrev 12217cc2493dSspupyrev /// Apply the profile inference algorithm for a given flow function 12227cc2493dSspupyrev void llvm::applyFlowInference(FlowFunction &Func) { 12237cc2493dSspupyrev // Create and apply an inference network model 12247cc2493dSspupyrev auto InferenceNetwork = MinCostMaxFlow(); 12257cc2493dSspupyrev initializeNetwork(InferenceNetwork, Func); 12267cc2493dSspupyrev InferenceNetwork.run(); 12277cc2493dSspupyrev 12287cc2493dSspupyrev // Extract flow values for every block and every edge 12297cc2493dSspupyrev extractWeights(InferenceNetwork, Func); 12307cc2493dSspupyrev 123198dd2f9eSspupyrev // Post-processing adjustments to the flow 123298dd2f9eSspupyrev auto Adjuster = FlowAdjuster(Func); 123398dd2f9eSspupyrev Adjuster.run(); 123498dd2f9eSspupyrev 12357cc2493dSspupyrev #ifndef NDEBUG 12367cc2493dSspupyrev // Verify the result 12377cc2493dSspupyrev verifyWeights(Func); 12387cc2493dSspupyrev #endif 12397cc2493dSspupyrev } 1240