1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SSAUpdater class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SSAUpdater.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugLoc.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 34 #include <cassert> 35 #include <utility> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ssaupdater" 40 41 using AvailableValsTy = DenseMap<BasicBlock *, Value *>; 42 43 static AvailableValsTy &getAvailableVals(void *AV) { 44 return *static_cast<AvailableValsTy*>(AV); 45 } 46 47 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) 48 : InsertedPHIs(NewPHI) {} 49 50 SSAUpdater::~SSAUpdater() { 51 delete static_cast<AvailableValsTy*>(AV); 52 } 53 54 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 55 if (!AV) 56 AV = new AvailableValsTy(); 57 else 58 getAvailableVals(AV).clear(); 59 ProtoType = Ty; 60 ProtoName = Name; 61 } 62 63 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 64 return getAvailableVals(AV).count(BB); 65 } 66 67 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 68 assert(ProtoType && "Need to initialize SSAUpdater"); 69 assert(ProtoType == V->getType() && 70 "All rewritten values must have the same type"); 71 getAvailableVals(AV)[BB] = V; 72 } 73 74 static bool IsEquivalentPHI(PHINode *PHI, 75 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { 76 unsigned PHINumValues = PHI->getNumIncomingValues(); 77 if (PHINumValues != ValueMapping.size()) 78 return false; 79 80 // Scan the phi to see if it matches. 81 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 82 if (ValueMapping[PHI->getIncomingBlock(i)] != 83 PHI->getIncomingValue(i)) { 84 return false; 85 } 86 87 return true; 88 } 89 90 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 91 Value *Res = GetValueAtEndOfBlockInternal(BB); 92 return Res; 93 } 94 95 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 96 // If there is no definition of the renamed variable in this block, just use 97 // GetValueAtEndOfBlock to do our work. 98 if (!HasValueForBlock(BB)) 99 return GetValueAtEndOfBlock(BB); 100 101 // Otherwise, we have the hard case. Get the live-in values for each 102 // predecessor. 103 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; 104 Value *SingularValue = nullptr; 105 106 // We can get our predecessor info by walking the pred_iterator list, but it 107 // is relatively slow. If we already have PHI nodes in this block, walk one 108 // of them to get the predecessor list instead. 109 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 110 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 111 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 112 Value *PredVal = GetValueAtEndOfBlock(PredBB); 113 PredValues.push_back(std::make_pair(PredBB, PredVal)); 114 115 // Compute SingularValue. 116 if (i == 0) 117 SingularValue = PredVal; 118 else if (PredVal != SingularValue) 119 SingularValue = nullptr; 120 } 121 } else { 122 bool isFirstPred = true; 123 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 124 BasicBlock *PredBB = *PI; 125 Value *PredVal = GetValueAtEndOfBlock(PredBB); 126 PredValues.push_back(std::make_pair(PredBB, PredVal)); 127 128 // Compute SingularValue. 129 if (isFirstPred) { 130 SingularValue = PredVal; 131 isFirstPred = false; 132 } else if (PredVal != SingularValue) 133 SingularValue = nullptr; 134 } 135 } 136 137 // If there are no predecessors, just return undef. 138 if (PredValues.empty()) 139 return UndefValue::get(ProtoType); 140 141 // Otherwise, if all the merged values are the same, just use it. 142 if (SingularValue) 143 return SingularValue; 144 145 // Otherwise, we do need a PHI: check to see if we already have one available 146 // in this block that produces the right value. 147 if (isa<PHINode>(BB->begin())) { 148 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), 149 PredValues.end()); 150 for (PHINode &SomePHI : BB->phis()) { 151 if (IsEquivalentPHI(&SomePHI, ValueMapping)) 152 return &SomePHI; 153 } 154 } 155 156 // Ok, we have no way out, insert a new one now. 157 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 158 ProtoName, &BB->front()); 159 160 // Fill in all the predecessors of the PHI. 161 for (const auto &PredValue : PredValues) 162 InsertedPHI->addIncoming(PredValue.second, PredValue.first); 163 164 // See if the PHI node can be merged to a single value. This can happen in 165 // loop cases when we get a PHI of itself and one other value. 166 if (Value *V = 167 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { 168 InsertedPHI->eraseFromParent(); 169 return V; 170 } 171 172 // Set the DebugLoc of the inserted PHI, if available. 173 DebugLoc DL; 174 if (const Instruction *I = BB->getFirstNonPHI()) 175 DL = I->getDebugLoc(); 176 InsertedPHI->setDebugLoc(DL); 177 178 // If the client wants to know about all new instructions, tell it. 179 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 180 181 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 182 return InsertedPHI; 183 } 184 185 void SSAUpdater::RewriteUse(Use &U) { 186 Instruction *User = cast<Instruction>(U.getUser()); 187 188 Value *V; 189 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 190 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 191 else 192 V = GetValueInMiddleOfBlock(User->getParent()); 193 194 // Notify that users of the existing value that it is being replaced. 195 Value *OldVal = U.get(); 196 if (OldVal != V && OldVal->hasValueHandle()) 197 ValueHandleBase::ValueIsRAUWd(OldVal, V); 198 199 U.set(V); 200 } 201 202 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 203 Instruction *User = cast<Instruction>(U.getUser()); 204 205 Value *V; 206 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 207 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 208 else 209 V = GetValueAtEndOfBlock(User->getParent()); 210 211 U.set(V); 212 } 213 214 namespace llvm { 215 216 template<> 217 class SSAUpdaterTraits<SSAUpdater> { 218 public: 219 using BlkT = BasicBlock; 220 using ValT = Value *; 221 using PhiT = PHINode; 222 using BlkSucc_iterator = succ_iterator; 223 224 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 225 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 226 227 class PHI_iterator { 228 private: 229 PHINode *PHI; 230 unsigned idx; 231 232 public: 233 explicit PHI_iterator(PHINode *P) // begin iterator 234 : PHI(P), idx(0) {} 235 PHI_iterator(PHINode *P, bool) // end iterator 236 : PHI(P), idx(PHI->getNumIncomingValues()) {} 237 238 PHI_iterator &operator++() { ++idx; return *this; } 239 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 240 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 241 242 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 243 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 244 }; 245 246 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 247 static PHI_iterator PHI_end(PhiT *PHI) { 248 return PHI_iterator(PHI, true); 249 } 250 251 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 252 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 253 static void FindPredecessorBlocks(BasicBlock *BB, 254 SmallVectorImpl<BasicBlock *> *Preds) { 255 // We can get our predecessor info by walking the pred_iterator list, 256 // but it is relatively slow. If we already have PHI nodes in this 257 // block, walk one of them to get the predecessor list instead. 258 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 259 Preds->append(SomePhi->block_begin(), SomePhi->block_end()); 260 } else { 261 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 262 Preds->push_back(*PI); 263 } 264 } 265 266 /// GetUndefVal - Get an undefined value of the same type as the value 267 /// being handled. 268 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 269 return UndefValue::get(Updater->ProtoType); 270 } 271 272 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 273 /// Reserve space for the operands but do not fill them in yet. 274 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 275 SSAUpdater *Updater) { 276 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 277 Updater->ProtoName, &BB->front()); 278 return PHI; 279 } 280 281 /// AddPHIOperand - Add the specified value as an operand of the PHI for 282 /// the specified predecessor block. 283 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 284 PHI->addIncoming(Val, Pred); 285 } 286 287 /// InstrIsPHI - Check if an instruction is a PHI. 288 /// 289 static PHINode *InstrIsPHI(Instruction *I) { 290 return dyn_cast<PHINode>(I); 291 } 292 293 /// ValueIsPHI - Check if a value is a PHI. 294 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 295 return dyn_cast<PHINode>(Val); 296 } 297 298 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 299 /// operands, i.e., it was just added. 300 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 301 PHINode *PHI = ValueIsPHI(Val, Updater); 302 if (PHI && PHI->getNumIncomingValues() == 0) 303 return PHI; 304 return nullptr; 305 } 306 307 /// GetPHIValue - For the specified PHI instruction, return the value 308 /// that it defines. 309 static Value *GetPHIValue(PHINode *PHI) { 310 return PHI; 311 } 312 }; 313 314 } // end namespace llvm 315 316 /// Check to see if AvailableVals has an entry for the specified BB and if so, 317 /// return it. If not, construct SSA form by first calculating the required 318 /// placement of PHIs and then inserting new PHIs where needed. 319 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 320 AvailableValsTy &AvailableVals = getAvailableVals(AV); 321 if (Value *V = AvailableVals[BB]) 322 return V; 323 324 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 325 return Impl.GetValue(BB); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // LoadAndStorePromoter Implementation 330 //===----------------------------------------------------------------------===// 331 332 LoadAndStorePromoter:: 333 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, 334 SSAUpdater &S, StringRef BaseName) : SSA(S) { 335 if (Insts.empty()) return; 336 337 const Value *SomeVal; 338 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 339 SomeVal = LI; 340 else 341 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 342 343 if (BaseName.empty()) 344 BaseName = SomeVal->getName(); 345 SSA.Initialize(SomeVal->getType(), BaseName); 346 } 347 348 void LoadAndStorePromoter:: 349 run(const SmallVectorImpl<Instruction *> &Insts) const { 350 // First step: bucket up uses of the alloca by the block they occur in. 351 // This is important because we have to handle multiple defs/uses in a block 352 // ourselves: SSAUpdater is purely for cross-block references. 353 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; 354 355 for (Instruction *User : Insts) 356 UsesByBlock[User->getParent()].push_back(User); 357 358 // Okay, now we can iterate over all the blocks in the function with uses, 359 // processing them. Keep track of which loads are loading a live-in value. 360 // Walk the uses in the use-list order to be determinstic. 361 SmallVector<LoadInst *, 32> LiveInLoads; 362 DenseMap<Value *, Value *> ReplacedLoads; 363 364 for (Instruction *User : Insts) { 365 BasicBlock *BB = User->getParent(); 366 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; 367 368 // If this block has already been processed, ignore this repeat use. 369 if (BlockUses.empty()) continue; 370 371 // Okay, this is the first use in the block. If this block just has a 372 // single user in it, we can rewrite it trivially. 373 if (BlockUses.size() == 1) { 374 // If it is a store, it is a trivial def of the value in the block. 375 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 376 updateDebugInfo(SI); 377 SSA.AddAvailableValue(BB, SI->getOperand(0)); 378 } else 379 // Otherwise it is a load, queue it to rewrite as a live-in load. 380 LiveInLoads.push_back(cast<LoadInst>(User)); 381 BlockUses.clear(); 382 continue; 383 } 384 385 // Otherwise, check to see if this block is all loads. 386 bool HasStore = false; 387 for (Instruction *I : BlockUses) { 388 if (isa<StoreInst>(I)) { 389 HasStore = true; 390 break; 391 } 392 } 393 394 // If so, we can queue them all as live in loads. We don't have an 395 // efficient way to tell which on is first in the block and don't want to 396 // scan large blocks, so just add all loads as live ins. 397 if (!HasStore) { 398 for (Instruction *I : BlockUses) 399 LiveInLoads.push_back(cast<LoadInst>(I)); 400 BlockUses.clear(); 401 continue; 402 } 403 404 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 405 // Since SSAUpdater is purely for cross-block values, we need to determine 406 // the order of these instructions in the block. If the first use in the 407 // block is a load, then it uses the live in value. The last store defines 408 // the live out value. We handle this by doing a linear scan of the block. 409 Value *StoredValue = nullptr; 410 for (Instruction &I : *BB) { 411 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 412 // If this is a load from an unrelated pointer, ignore it. 413 if (!isInstInList(L, Insts)) continue; 414 415 // If we haven't seen a store yet, this is a live in use, otherwise 416 // use the stored value. 417 if (StoredValue) { 418 replaceLoadWithValue(L, StoredValue); 419 L->replaceAllUsesWith(StoredValue); 420 ReplacedLoads[L] = StoredValue; 421 } else { 422 LiveInLoads.push_back(L); 423 } 424 continue; 425 } 426 427 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 428 // If this is a store to an unrelated pointer, ignore it. 429 if (!isInstInList(SI, Insts)) continue; 430 updateDebugInfo(SI); 431 432 // Remember that this is the active value in the block. 433 StoredValue = SI->getOperand(0); 434 } 435 } 436 437 // The last stored value that happened is the live-out for the block. 438 assert(StoredValue && "Already checked that there is a store in block"); 439 SSA.AddAvailableValue(BB, StoredValue); 440 BlockUses.clear(); 441 } 442 443 // Okay, now we rewrite all loads that use live-in values in the loop, 444 // inserting PHI nodes as necessary. 445 for (LoadInst *ALoad : LiveInLoads) { 446 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 447 replaceLoadWithValue(ALoad, NewVal); 448 449 // Avoid assertions in unreachable code. 450 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 451 ALoad->replaceAllUsesWith(NewVal); 452 ReplacedLoads[ALoad] = NewVal; 453 } 454 455 // Allow the client to do stuff before we start nuking things. 456 doExtraRewritesBeforeFinalDeletion(); 457 458 // Now that everything is rewritten, delete the old instructions from the 459 // function. They should all be dead now. 460 for (Instruction *User : Insts) { 461 // If this is a load that still has uses, then the load must have been added 462 // as a live value in the SSAUpdate data structure for a block (e.g. because 463 // the loaded value was stored later). In this case, we need to recursively 464 // propagate the updates until we get to the real value. 465 if (!User->use_empty()) { 466 Value *NewVal = ReplacedLoads[User]; 467 assert(NewVal && "not a replaced load?"); 468 469 // Propagate down to the ultimate replacee. The intermediately loads 470 // could theoretically already have been deleted, so we don't want to 471 // dereference the Value*'s. 472 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 473 while (RLI != ReplacedLoads.end()) { 474 NewVal = RLI->second; 475 RLI = ReplacedLoads.find(NewVal); 476 } 477 478 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 479 User->replaceAllUsesWith(NewVal); 480 } 481 482 instructionDeleted(User); 483 User->eraseFromParent(); 484 } 485 } 486 487 bool 488 LoadAndStorePromoter::isInstInList(Instruction *I, 489 const SmallVectorImpl<Instruction *> &Insts) 490 const { 491 return is_contained(Insts, I); 492 } 493