1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements the Sparse Conditional Constant Propagation (SCCP) 11 // utility. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/InitializePasses.h" 19 #include "llvm/Pass.h" 20 #include "llvm/Support/Casting.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Transforms/Utils/SCCPSolver.h" 26 #include <cassert> 27 #include <utility> 28 #include <vector> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "sccp" 33 34 // The maximum number of range extensions allowed for operations requiring 35 // widening. 36 static const unsigned MaxNumRangeExtensions = 10; 37 38 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. 39 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { 40 return ValueLatticeElement::MergeOptions().setMaxWidenSteps( 41 MaxNumRangeExtensions); 42 } 43 44 namespace { 45 46 // Helper to check if \p LV is either a constant or a constant 47 // range with a single element. This should cover exactly the same cases as the 48 // old ValueLatticeElement::isConstant() and is intended to be used in the 49 // transition to ValueLatticeElement. 50 bool isConstant(const ValueLatticeElement &LV) { 51 return LV.isConstant() || 52 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 53 } 54 55 // Helper to check if \p LV is either overdefined or a constant range with more 56 // than a single element. This should cover exactly the same cases as the old 57 // ValueLatticeElement::isOverdefined() and is intended to be used in the 58 // transition to ValueLatticeElement. 59 bool isOverdefined(const ValueLatticeElement &LV) { 60 return !LV.isUnknownOrUndef() && !isConstant(LV); 61 } 62 63 } // namespace 64 65 namespace llvm { 66 67 /// Helper class for SCCPSolver. This implements the instruction visitor and 68 /// holds all the state. 69 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { 70 const DataLayout &DL; 71 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 72 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 73 DenseMap<Value *, ValueLatticeElement> 74 ValueState; // The state each value is in. 75 76 /// StructValueState - This maintains ValueState for values that have 77 /// StructType, for example for formal arguments, calls, insertelement, etc. 78 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; 79 80 /// GlobalValue - If we are tracking any values for the contents of a global 81 /// variable, we keep a mapping from the constant accessor to the element of 82 /// the global, to the currently known value. If the value becomes 83 /// overdefined, it's entry is simply removed from this map. 84 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; 85 86 /// TrackedRetVals - If we are tracking arguments into and the return 87 /// value out of a function, it will have an entry in this map, indicating 88 /// what the known return value for the function is. 89 MapVector<Function *, ValueLatticeElement> TrackedRetVals; 90 91 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 92 /// that return multiple values. 93 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> 94 TrackedMultipleRetVals; 95 96 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 97 /// represented here for efficient lookup. 98 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 99 100 /// A list of functions whose return cannot be modified. 101 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; 102 103 /// TrackingIncomingArguments - This is the set of functions for whose 104 /// arguments we make optimistic assumptions about and try to prove as 105 /// constants. 106 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 107 108 /// The reason for two worklists is that overdefined is the lowest state 109 /// on the lattice, and moving things to overdefined as fast as possible 110 /// makes SCCP converge much faster. 111 /// 112 /// By having a separate worklist, we accomplish this because everything 113 /// possibly overdefined will become overdefined at the soonest possible 114 /// point. 115 SmallVector<Value *, 64> OverdefinedInstWorkList; 116 SmallVector<Value *, 64> InstWorkList; 117 118 // The BasicBlock work list 119 SmallVector<BasicBlock *, 64> BBWorkList; 120 121 /// KnownFeasibleEdges - Entries in this set are edges which have already had 122 /// PHI nodes retriggered. 123 using Edge = std::pair<BasicBlock *, BasicBlock *>; 124 DenseSet<Edge> KnownFeasibleEdges; 125 126 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; 127 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 128 129 LLVMContext &Ctx; 130 131 private: 132 ConstantInt *getConstantInt(const ValueLatticeElement &IV) const { 133 return dyn_cast_or_null<ConstantInt>(getConstant(IV)); 134 } 135 136 // pushToWorkList - Helper for markConstant/markOverdefined 137 void pushToWorkList(ValueLatticeElement &IV, Value *V); 138 139 // Helper to push \p V to the worklist, after updating it to \p IV. Also 140 // prints a debug message with the updated value. 141 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); 142 143 // markConstant - Make a value be marked as "constant". If the value 144 // is not already a constant, add it to the instruction work list so that 145 // the users of the instruction are updated later. 146 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, 147 bool MayIncludeUndef = false); 148 149 bool markConstant(Value *V, Constant *C) { 150 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 151 return markConstant(ValueState[V], V, C); 152 } 153 154 // markOverdefined - Make a value be marked as "overdefined". If the 155 // value is not already overdefined, add it to the overdefined instruction 156 // work list so that the users of the instruction are updated later. 157 bool markOverdefined(ValueLatticeElement &IV, Value *V); 158 159 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV 160 /// changes. 161 bool mergeInValue(ValueLatticeElement &IV, Value *V, 162 ValueLatticeElement MergeWithV, 163 ValueLatticeElement::MergeOptions Opts = { 164 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); 165 166 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, 167 ValueLatticeElement::MergeOptions Opts = { 168 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { 169 assert(!V->getType()->isStructTy() && 170 "non-structs should use markConstant"); 171 return mergeInValue(ValueState[V], V, MergeWithV, Opts); 172 } 173 174 /// getValueState - Return the ValueLatticeElement object that corresponds to 175 /// the value. This function handles the case when the value hasn't been seen 176 /// yet by properly seeding constants etc. 177 ValueLatticeElement &getValueState(Value *V) { 178 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 179 180 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); 181 ValueLatticeElement &LV = I.first->second; 182 183 if (!I.second) 184 return LV; // Common case, already in the map. 185 186 if (auto *C = dyn_cast<Constant>(V)) 187 LV.markConstant(C); // Constants are constant 188 189 // All others are unknown by default. 190 return LV; 191 } 192 193 /// getStructValueState - Return the ValueLatticeElement object that 194 /// corresponds to the value/field pair. This function handles the case when 195 /// the value hasn't been seen yet by properly seeding constants etc. 196 ValueLatticeElement &getStructValueState(Value *V, unsigned i) { 197 assert(V->getType()->isStructTy() && "Should use getValueState"); 198 assert(i < cast<StructType>(V->getType())->getNumElements() && 199 "Invalid element #"); 200 201 auto I = StructValueState.insert( 202 std::make_pair(std::make_pair(V, i), ValueLatticeElement())); 203 ValueLatticeElement &LV = I.first->second; 204 205 if (!I.second) 206 return LV; // Common case, already in the map. 207 208 if (auto *C = dyn_cast<Constant>(V)) { 209 Constant *Elt = C->getAggregateElement(i); 210 211 if (!Elt) 212 LV.markOverdefined(); // Unknown sort of constant. 213 else if (isa<UndefValue>(Elt)) 214 ; // Undef values remain unknown. 215 else 216 LV.markConstant(Elt); // Constants are constant. 217 } 218 219 // All others are underdefined by default. 220 return LV; 221 } 222 223 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 224 /// work list if it is not already executable. 225 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 226 227 // getFeasibleSuccessors - Return a vector of booleans to indicate which 228 // successors are reachable from a given terminator instruction. 229 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 230 231 // OperandChangedState - This method is invoked on all of the users of an 232 // instruction that was just changed state somehow. Based on this 233 // information, we need to update the specified user of this instruction. 234 void OperandChangedState(Instruction *I) { 235 if (BBExecutable.count(I->getParent())) // Inst is executable? 236 visit(*I); 237 } 238 239 // Add U as additional user of V. 240 void addAdditionalUser(Value *V, User *U) { 241 auto Iter = AdditionalUsers.insert({V, {}}); 242 Iter.first->second.insert(U); 243 } 244 245 // Mark I's users as changed, including AdditionalUsers. 246 void markUsersAsChanged(Value *I) { 247 // Functions include their arguments in the use-list. Changed function 248 // values mean that the result of the function changed. We only need to 249 // update the call sites with the new function result and do not have to 250 // propagate the call arguments. 251 if (isa<Function>(I)) { 252 for (User *U : I->users()) { 253 if (auto *CB = dyn_cast<CallBase>(U)) 254 handleCallResult(*CB); 255 } 256 } else { 257 for (User *U : I->users()) 258 if (auto *UI = dyn_cast<Instruction>(U)) 259 OperandChangedState(UI); 260 } 261 262 auto Iter = AdditionalUsers.find(I); 263 if (Iter != AdditionalUsers.end()) { 264 // Copy additional users before notifying them of changes, because new 265 // users may be added, potentially invalidating the iterator. 266 SmallVector<Instruction *, 2> ToNotify; 267 for (User *U : Iter->second) 268 if (auto *UI = dyn_cast<Instruction>(U)) 269 ToNotify.push_back(UI); 270 for (Instruction *UI : ToNotify) 271 OperandChangedState(UI); 272 } 273 } 274 void handleCallOverdefined(CallBase &CB); 275 void handleCallResult(CallBase &CB); 276 void handleCallArguments(CallBase &CB); 277 278 private: 279 friend class InstVisitor<SCCPInstVisitor>; 280 281 // visit implementations - Something changed in this instruction. Either an 282 // operand made a transition, or the instruction is newly executable. Change 283 // the value type of I to reflect these changes if appropriate. 284 void visitPHINode(PHINode &I); 285 286 // Terminators 287 288 void visitReturnInst(ReturnInst &I); 289 void visitTerminator(Instruction &TI); 290 291 void visitCastInst(CastInst &I); 292 void visitSelectInst(SelectInst &I); 293 void visitUnaryOperator(Instruction &I); 294 void visitBinaryOperator(Instruction &I); 295 void visitCmpInst(CmpInst &I); 296 void visitExtractValueInst(ExtractValueInst &EVI); 297 void visitInsertValueInst(InsertValueInst &IVI); 298 299 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 300 markOverdefined(&CPI); 301 visitTerminator(CPI); 302 } 303 304 // Instructions that cannot be folded away. 305 306 void visitStoreInst(StoreInst &I); 307 void visitLoadInst(LoadInst &I); 308 void visitGetElementPtrInst(GetElementPtrInst &I); 309 310 void visitCallInst(CallInst &I) { visitCallBase(I); } 311 312 void visitInvokeInst(InvokeInst &II) { 313 visitCallBase(II); 314 visitTerminator(II); 315 } 316 317 void visitCallBrInst(CallBrInst &CBI) { 318 visitCallBase(CBI); 319 visitTerminator(CBI); 320 } 321 322 void visitCallBase(CallBase &CB); 323 void visitResumeInst(ResumeInst &I) { /*returns void*/ 324 } 325 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ 326 } 327 void visitFenceInst(FenceInst &I) { /*returns void*/ 328 } 329 330 void visitInstruction(Instruction &I); 331 332 public: 333 void addAnalysis(Function &F, AnalysisResultsForFn A) { 334 AnalysisResults.insert({&F, std::move(A)}); 335 } 336 337 bool MarkBlockExecutable(BasicBlock *BB); 338 339 const PredicateBase *getPredicateInfoFor(Instruction *I) { 340 auto A = AnalysisResults.find(I->getParent()->getParent()); 341 if (A == AnalysisResults.end()) 342 return nullptr; 343 return A->second.PredInfo->getPredicateInfoFor(I); 344 } 345 346 DomTreeUpdater getDTU(Function &F) { 347 auto A = AnalysisResults.find(&F); 348 assert(A != AnalysisResults.end() && "Need analysis results for function."); 349 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; 350 } 351 352 SCCPInstVisitor(const DataLayout &DL, 353 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 354 LLVMContext &Ctx) 355 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} 356 357 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 358 // We only track the contents of scalar globals. 359 if (GV->getValueType()->isSingleValueType()) { 360 ValueLatticeElement &IV = TrackedGlobals[GV]; 361 if (!isa<UndefValue>(GV->getInitializer())) 362 IV.markConstant(GV->getInitializer()); 363 } 364 } 365 366 void AddTrackedFunction(Function *F) { 367 // Add an entry, F -> undef. 368 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 369 MRVFunctionsTracked.insert(F); 370 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 371 TrackedMultipleRetVals.insert( 372 std::make_pair(std::make_pair(F, i), ValueLatticeElement())); 373 } else if (!F->getReturnType()->isVoidTy()) 374 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); 375 } 376 377 void addToMustPreserveReturnsInFunctions(Function *F) { 378 MustPreserveReturnsInFunctions.insert(F); 379 } 380 381 bool mustPreserveReturn(Function *F) { 382 return MustPreserveReturnsInFunctions.count(F); 383 } 384 385 void AddArgumentTrackedFunction(Function *F) { 386 TrackingIncomingArguments.insert(F); 387 } 388 389 bool isArgumentTrackedFunction(Function *F) { 390 return TrackingIncomingArguments.count(F); 391 } 392 393 void Solve(); 394 395 bool ResolvedUndefsIn(Function &F); 396 397 bool isBlockExecutable(BasicBlock *BB) const { 398 return BBExecutable.count(BB); 399 } 400 401 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; 402 403 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { 404 std::vector<ValueLatticeElement> StructValues; 405 auto *STy = dyn_cast<StructType>(V->getType()); 406 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 407 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 408 auto I = StructValueState.find(std::make_pair(V, i)); 409 assert(I != StructValueState.end() && "Value not in valuemap!"); 410 StructValues.push_back(I->second); 411 } 412 return StructValues; 413 } 414 415 void removeLatticeValueFor(Value *V) { ValueState.erase(V); } 416 417 const ValueLatticeElement &getLatticeValueFor(Value *V) const { 418 assert(!V->getType()->isStructTy() && 419 "Should use getStructLatticeValueFor"); 420 DenseMap<Value *, ValueLatticeElement>::const_iterator I = 421 ValueState.find(V); 422 assert(I != ValueState.end() && 423 "V not found in ValueState nor Paramstate map!"); 424 return I->second; 425 } 426 427 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() { 428 return TrackedRetVals; 429 } 430 431 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() { 432 return TrackedGlobals; 433 } 434 435 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 436 return MRVFunctionsTracked; 437 } 438 439 void markOverdefined(Value *V) { 440 if (auto *STy = dyn_cast<StructType>(V->getType())) 441 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 442 markOverdefined(getStructValueState(V, i), V); 443 else 444 markOverdefined(ValueState[V], V); 445 } 446 447 bool isStructLatticeConstant(Function *F, StructType *STy); 448 449 Constant *getConstant(const ValueLatticeElement &LV) const; 450 }; 451 452 } // namespace llvm 453 454 bool SCCPInstVisitor::MarkBlockExecutable(BasicBlock *BB) { 455 if (!BBExecutable.insert(BB).second) 456 return false; 457 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 458 BBWorkList.push_back(BB); // Add the block to the work list! 459 return true; 460 } 461 462 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { 463 if (IV.isOverdefined()) 464 return OverdefinedInstWorkList.push_back(V); 465 InstWorkList.push_back(V); 466 } 467 468 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { 469 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); 470 pushToWorkList(IV, V); 471 } 472 473 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, 474 Constant *C, bool MayIncludeUndef) { 475 if (!IV.markConstant(C, MayIncludeUndef)) 476 return false; 477 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 478 pushToWorkList(IV, V); 479 return true; 480 } 481 482 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { 483 if (!IV.markOverdefined()) 484 return false; 485 486 LLVM_DEBUG(dbgs() << "markOverdefined: "; 487 if (auto *F = dyn_cast<Function>(V)) dbgs() 488 << "Function '" << F->getName() << "'\n"; 489 else dbgs() << *V << '\n'); 490 // Only instructions go on the work list 491 pushToWorkList(IV, V); 492 return true; 493 } 494 495 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { 496 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 497 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 498 assert(It != TrackedMultipleRetVals.end()); 499 ValueLatticeElement LV = It->second; 500 if (!isConstant(LV)) 501 return false; 502 } 503 return true; 504 } 505 506 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const { 507 if (LV.isConstant()) 508 return LV.getConstant(); 509 510 if (LV.isConstantRange()) { 511 auto &CR = LV.getConstantRange(); 512 if (CR.getSingleElement()) 513 return ConstantInt::get(Ctx, *CR.getSingleElement()); 514 } 515 return nullptr; 516 } 517 518 void SCCPInstVisitor::visitInstruction(Instruction &I) { 519 // All the instructions we don't do any special handling for just 520 // go to overdefined. 521 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 522 markOverdefined(&I); 523 } 524 525 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, 526 ValueLatticeElement MergeWithV, 527 ValueLatticeElement::MergeOptions Opts) { 528 if (IV.mergeIn(MergeWithV, Opts)) { 529 pushToWorkList(IV, V); 530 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " 531 << IV << "\n"); 532 return true; 533 } 534 return false; 535 } 536 537 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 538 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 539 return false; // This edge is already known to be executable! 540 541 if (!MarkBlockExecutable(Dest)) { 542 // If the destination is already executable, we just made an *edge* 543 // feasible that wasn't before. Revisit the PHI nodes in the block 544 // because they have potentially new operands. 545 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 546 << " -> " << Dest->getName() << '\n'); 547 548 for (PHINode &PN : Dest->phis()) 549 visitPHINode(PN); 550 } 551 return true; 552 } 553 554 // getFeasibleSuccessors - Return a vector of booleans to indicate which 555 // successors are reachable from a given terminator instruction. 556 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, 557 SmallVectorImpl<bool> &Succs) { 558 Succs.resize(TI.getNumSuccessors()); 559 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 560 if (BI->isUnconditional()) { 561 Succs[0] = true; 562 return; 563 } 564 565 ValueLatticeElement BCValue = getValueState(BI->getCondition()); 566 ConstantInt *CI = getConstantInt(BCValue); 567 if (!CI) { 568 // Overdefined condition variables, and branches on unfoldable constant 569 // conditions, mean the branch could go either way. 570 if (!BCValue.isUnknownOrUndef()) 571 Succs[0] = Succs[1] = true; 572 return; 573 } 574 575 // Constant condition variables mean the branch can only go a single way. 576 Succs[CI->isZero()] = true; 577 return; 578 } 579 580 // Unwinding instructions successors are always executable. 581 if (TI.isExceptionalTerminator()) { 582 Succs.assign(TI.getNumSuccessors(), true); 583 return; 584 } 585 586 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 587 if (!SI->getNumCases()) { 588 Succs[0] = true; 589 return; 590 } 591 const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); 592 if (ConstantInt *CI = getConstantInt(SCValue)) { 593 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 594 return; 595 } 596 597 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM 598 // is ready. 599 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { 600 const ConstantRange &Range = SCValue.getConstantRange(); 601 for (const auto &Case : SI->cases()) { 602 const APInt &CaseValue = Case.getCaseValue()->getValue(); 603 if (Range.contains(CaseValue)) 604 Succs[Case.getSuccessorIndex()] = true; 605 } 606 607 // TODO: Determine whether default case is reachable. 608 Succs[SI->case_default()->getSuccessorIndex()] = true; 609 return; 610 } 611 612 // Overdefined or unknown condition? All destinations are executable! 613 if (!SCValue.isUnknownOrUndef()) 614 Succs.assign(TI.getNumSuccessors(), true); 615 return; 616 } 617 618 // In case of indirect branch and its address is a blockaddress, we mark 619 // the target as executable. 620 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 621 // Casts are folded by visitCastInst. 622 ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); 623 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue)); 624 if (!Addr) { // Overdefined or unknown condition? 625 // All destinations are executable! 626 if (!IBRValue.isUnknownOrUndef()) 627 Succs.assign(TI.getNumSuccessors(), true); 628 return; 629 } 630 631 BasicBlock *T = Addr->getBasicBlock(); 632 assert(Addr->getFunction() == T->getParent() && 633 "Block address of a different function ?"); 634 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 635 // This is the target. 636 if (IBR->getDestination(i) == T) { 637 Succs[i] = true; 638 return; 639 } 640 } 641 642 // If we didn't find our destination in the IBR successor list, then we 643 // have undefined behavior. Its ok to assume no successor is executable. 644 return; 645 } 646 647 // In case of callbr, we pessimistically assume that all successors are 648 // feasible. 649 if (isa<CallBrInst>(&TI)) { 650 Succs.assign(TI.getNumSuccessors(), true); 651 return; 652 } 653 654 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 655 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 656 } 657 658 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 659 // block to the 'To' basic block is currently feasible. 660 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 661 // Check if we've called markEdgeExecutable on the edge yet. (We could 662 // be more aggressive and try to consider edges which haven't been marked 663 // yet, but there isn't any need.) 664 return KnownFeasibleEdges.count(Edge(From, To)); 665 } 666 667 // visit Implementations - Something changed in this instruction, either an 668 // operand made a transition, or the instruction is newly executable. Change 669 // the value type of I to reflect these changes if appropriate. This method 670 // makes sure to do the following actions: 671 // 672 // 1. If a phi node merges two constants in, and has conflicting value coming 673 // from different branches, or if the PHI node merges in an overdefined 674 // value, then the PHI node becomes overdefined. 675 // 2. If a phi node merges only constants in, and they all agree on value, the 676 // PHI node becomes a constant value equal to that. 677 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 678 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 679 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 680 // 6. If a conditional branch has a value that is constant, make the selected 681 // destination executable 682 // 7. If a conditional branch has a value that is overdefined, make all 683 // successors executable. 684 void SCCPInstVisitor::visitPHINode(PHINode &PN) { 685 // If this PN returns a struct, just mark the result overdefined. 686 // TODO: We could do a lot better than this if code actually uses this. 687 if (PN.getType()->isStructTy()) 688 return (void)markOverdefined(&PN); 689 690 if (getValueState(&PN).isOverdefined()) 691 return; // Quick exit 692 693 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 694 // and slow us down a lot. Just mark them overdefined. 695 if (PN.getNumIncomingValues() > 64) 696 return (void)markOverdefined(&PN); 697 698 unsigned NumActiveIncoming = 0; 699 700 // Look at all of the executable operands of the PHI node. If any of them 701 // are overdefined, the PHI becomes overdefined as well. If they are all 702 // constant, and they agree with each other, the PHI becomes the identical 703 // constant. If they are constant and don't agree, the PHI is a constant 704 // range. If there are no executable operands, the PHI remains unknown. 705 ValueLatticeElement PhiState = getValueState(&PN); 706 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 707 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 708 continue; 709 710 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); 711 PhiState.mergeIn(IV); 712 NumActiveIncoming++; 713 if (PhiState.isOverdefined()) 714 break; 715 } 716 717 // We allow up to 1 range extension per active incoming value and one 718 // additional extension. Note that we manually adjust the number of range 719 // extensions to match the number of active incoming values. This helps to 720 // limit multiple extensions caused by the same incoming value, if other 721 // incoming values are equal. 722 mergeInValue(&PN, PhiState, 723 ValueLatticeElement::MergeOptions().setMaxWidenSteps( 724 NumActiveIncoming + 1)); 725 ValueLatticeElement &PhiStateRef = getValueState(&PN); 726 PhiStateRef.setNumRangeExtensions( 727 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); 728 } 729 730 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { 731 if (I.getNumOperands() == 0) 732 return; // ret void 733 734 Function *F = I.getParent()->getParent(); 735 Value *ResultOp = I.getOperand(0); 736 737 // If we are tracking the return value of this function, merge it in. 738 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 739 auto TFRVI = TrackedRetVals.find(F); 740 if (TFRVI != TrackedRetVals.end()) { 741 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 742 return; 743 } 744 } 745 746 // Handle functions that return multiple values. 747 if (!TrackedMultipleRetVals.empty()) { 748 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 749 if (MRVFunctionsTracked.count(F)) 750 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 751 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 752 getStructValueState(ResultOp, i)); 753 } 754 } 755 756 void SCCPInstVisitor::visitTerminator(Instruction &TI) { 757 SmallVector<bool, 16> SuccFeasible; 758 getFeasibleSuccessors(TI, SuccFeasible); 759 760 BasicBlock *BB = TI.getParent(); 761 762 // Mark all feasible successors executable. 763 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 764 if (SuccFeasible[i]) 765 markEdgeExecutable(BB, TI.getSuccessor(i)); 766 } 767 768 void SCCPInstVisitor::visitCastInst(CastInst &I) { 769 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 770 // discover a concrete value later. 771 if (ValueState[&I].isOverdefined()) 772 return; 773 774 ValueLatticeElement OpSt = getValueState(I.getOperand(0)); 775 if (Constant *OpC = getConstant(OpSt)) { 776 // Fold the constant as we build. 777 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL); 778 if (isa<UndefValue>(C)) 779 return; 780 // Propagate constant value 781 markConstant(&I, C); 782 } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) { 783 auto &LV = getValueState(&I); 784 ConstantRange OpRange = OpSt.getConstantRange(); 785 Type *DestTy = I.getDestTy(); 786 // Vectors where all elements have the same known constant range are treated 787 // as a single constant range in the lattice. When bitcasting such vectors, 788 // there is a mis-match between the width of the lattice value (single 789 // constant range) and the original operands (vector). Go to overdefined in 790 // that case. 791 if (I.getOpcode() == Instruction::BitCast && 792 I.getOperand(0)->getType()->isVectorTy() && 793 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) 794 return (void)markOverdefined(&I); 795 796 ConstantRange Res = 797 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); 798 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); 799 } else if (!OpSt.isUnknownOrUndef()) 800 markOverdefined(&I); 801 } 802 803 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { 804 // If this returns a struct, mark all elements over defined, we don't track 805 // structs in structs. 806 if (EVI.getType()->isStructTy()) 807 return (void)markOverdefined(&EVI); 808 809 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 810 // discover a concrete value later. 811 if (ValueState[&EVI].isOverdefined()) 812 return (void)markOverdefined(&EVI); 813 814 // If this is extracting from more than one level of struct, we don't know. 815 if (EVI.getNumIndices() != 1) 816 return (void)markOverdefined(&EVI); 817 818 Value *AggVal = EVI.getAggregateOperand(); 819 if (AggVal->getType()->isStructTy()) { 820 unsigned i = *EVI.idx_begin(); 821 ValueLatticeElement EltVal = getStructValueState(AggVal, i); 822 mergeInValue(getValueState(&EVI), &EVI, EltVal); 823 } else { 824 // Otherwise, must be extracting from an array. 825 return (void)markOverdefined(&EVI); 826 } 827 } 828 829 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { 830 auto *STy = dyn_cast<StructType>(IVI.getType()); 831 if (!STy) 832 return (void)markOverdefined(&IVI); 833 834 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 835 // discover a concrete value later. 836 if (isOverdefined(ValueState[&IVI])) 837 return (void)markOverdefined(&IVI); 838 839 // If this has more than one index, we can't handle it, drive all results to 840 // undef. 841 if (IVI.getNumIndices() != 1) 842 return (void)markOverdefined(&IVI); 843 844 Value *Aggr = IVI.getAggregateOperand(); 845 unsigned Idx = *IVI.idx_begin(); 846 847 // Compute the result based on what we're inserting. 848 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 849 // This passes through all values that aren't the inserted element. 850 if (i != Idx) { 851 ValueLatticeElement EltVal = getStructValueState(Aggr, i); 852 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 853 continue; 854 } 855 856 Value *Val = IVI.getInsertedValueOperand(); 857 if (Val->getType()->isStructTy()) 858 // We don't track structs in structs. 859 markOverdefined(getStructValueState(&IVI, i), &IVI); 860 else { 861 ValueLatticeElement InVal = getValueState(Val); 862 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 863 } 864 } 865 } 866 867 void SCCPInstVisitor::visitSelectInst(SelectInst &I) { 868 // If this select returns a struct, just mark the result overdefined. 869 // TODO: We could do a lot better than this if code actually uses this. 870 if (I.getType()->isStructTy()) 871 return (void)markOverdefined(&I); 872 873 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 874 // discover a concrete value later. 875 if (ValueState[&I].isOverdefined()) 876 return (void)markOverdefined(&I); 877 878 ValueLatticeElement CondValue = getValueState(I.getCondition()); 879 if (CondValue.isUnknownOrUndef()) 880 return; 881 882 if (ConstantInt *CondCB = getConstantInt(CondValue)) { 883 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 884 mergeInValue(&I, getValueState(OpVal)); 885 return; 886 } 887 888 // Otherwise, the condition is overdefined or a constant we can't evaluate. 889 // See if we can produce something better than overdefined based on the T/F 890 // value. 891 ValueLatticeElement TVal = getValueState(I.getTrueValue()); 892 ValueLatticeElement FVal = getValueState(I.getFalseValue()); 893 894 bool Changed = ValueState[&I].mergeIn(TVal); 895 Changed |= ValueState[&I].mergeIn(FVal); 896 if (Changed) 897 pushToWorkListMsg(ValueState[&I], &I); 898 } 899 900 // Handle Unary Operators. 901 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { 902 ValueLatticeElement V0State = getValueState(I.getOperand(0)); 903 904 ValueLatticeElement &IV = ValueState[&I]; 905 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 906 // discover a concrete value later. 907 if (isOverdefined(IV)) 908 return (void)markOverdefined(&I); 909 910 if (isConstant(V0State)) { 911 Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State)); 912 913 // op Y -> undef. 914 if (isa<UndefValue>(C)) 915 return; 916 return (void)markConstant(IV, &I, C); 917 } 918 919 // If something is undef, wait for it to resolve. 920 if (!isOverdefined(V0State)) 921 return; 922 923 markOverdefined(&I); 924 } 925 926 // Handle Binary Operators. 927 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { 928 ValueLatticeElement V1State = getValueState(I.getOperand(0)); 929 ValueLatticeElement V2State = getValueState(I.getOperand(1)); 930 931 ValueLatticeElement &IV = ValueState[&I]; 932 if (IV.isOverdefined()) 933 return; 934 935 // If something is undef, wait for it to resolve. 936 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) 937 return; 938 939 if (V1State.isOverdefined() && V2State.isOverdefined()) 940 return (void)markOverdefined(&I); 941 942 // If either of the operands is a constant, try to fold it to a constant. 943 // TODO: Use information from notconstant better. 944 if ((V1State.isConstant() || V2State.isConstant())) { 945 Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0); 946 Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1); 947 Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); 948 auto *C = dyn_cast_or_null<Constant>(R); 949 if (C) { 950 // X op Y -> undef. 951 if (isa<UndefValue>(C)) 952 return; 953 // Conservatively assume that the result may be based on operands that may 954 // be undef. Note that we use mergeInValue to combine the constant with 955 // the existing lattice value for I, as different constants might be found 956 // after one of the operands go to overdefined, e.g. due to one operand 957 // being a special floating value. 958 ValueLatticeElement NewV; 959 NewV.markConstant(C, /*MayIncludeUndef=*/true); 960 return (void)mergeInValue(&I, NewV); 961 } 962 } 963 964 // Only use ranges for binary operators on integers. 965 if (!I.getType()->isIntegerTy()) 966 return markOverdefined(&I); 967 968 // Try to simplify to a constant range. 969 ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 970 ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 971 if (V1State.isConstantRange()) 972 A = V1State.getConstantRange(); 973 if (V2State.isConstantRange()) 974 B = V2State.getConstantRange(); 975 976 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B); 977 mergeInValue(&I, ValueLatticeElement::getRange(R)); 978 979 // TODO: Currently we do not exploit special values that produce something 980 // better than overdefined with an overdefined operand for vector or floating 981 // point types, like and <4 x i32> overdefined, zeroinitializer. 982 } 983 984 // Handle ICmpInst instruction. 985 void SCCPInstVisitor::visitCmpInst(CmpInst &I) { 986 // Do not cache this lookup, getValueState calls later in the function might 987 // invalidate the reference. 988 if (isOverdefined(ValueState[&I])) 989 return (void)markOverdefined(&I); 990 991 Value *Op1 = I.getOperand(0); 992 Value *Op2 = I.getOperand(1); 993 994 // For parameters, use ParamState which includes constant range info if 995 // available. 996 auto V1State = getValueState(Op1); 997 auto V2State = getValueState(Op2); 998 999 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); 1000 if (C) { 1001 if (isa<UndefValue>(C)) 1002 return; 1003 ValueLatticeElement CV; 1004 CV.markConstant(C); 1005 mergeInValue(&I, CV); 1006 return; 1007 } 1008 1009 // If operands are still unknown, wait for it to resolve. 1010 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && 1011 !isConstant(ValueState[&I])) 1012 return; 1013 1014 markOverdefined(&I); 1015 } 1016 1017 // Handle getelementptr instructions. If all operands are constants then we 1018 // can turn this into a getelementptr ConstantExpr. 1019 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 1020 if (isOverdefined(ValueState[&I])) 1021 return (void)markOverdefined(&I); 1022 1023 SmallVector<Constant *, 8> Operands; 1024 Operands.reserve(I.getNumOperands()); 1025 1026 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1027 ValueLatticeElement State = getValueState(I.getOperand(i)); 1028 if (State.isUnknownOrUndef()) 1029 return; // Operands are not resolved yet. 1030 1031 if (isOverdefined(State)) 1032 return (void)markOverdefined(&I); 1033 1034 if (Constant *C = getConstant(State)) { 1035 Operands.push_back(C); 1036 continue; 1037 } 1038 1039 return (void)markOverdefined(&I); 1040 } 1041 1042 Constant *Ptr = Operands[0]; 1043 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1044 Constant *C = 1045 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1046 if (isa<UndefValue>(C)) 1047 return; 1048 markConstant(&I, C); 1049 } 1050 1051 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { 1052 // If this store is of a struct, ignore it. 1053 if (SI.getOperand(0)->getType()->isStructTy()) 1054 return; 1055 1056 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1057 return; 1058 1059 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1060 auto I = TrackedGlobals.find(GV); 1061 if (I == TrackedGlobals.end()) 1062 return; 1063 1064 // Get the value we are storing into the global, then merge it. 1065 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), 1066 ValueLatticeElement::MergeOptions().setCheckWiden(false)); 1067 if (I->second.isOverdefined()) 1068 TrackedGlobals.erase(I); // No need to keep tracking this! 1069 } 1070 1071 static ValueLatticeElement getValueFromMetadata(const Instruction *I) { 1072 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1073 if (I->getType()->isIntegerTy()) 1074 return ValueLatticeElement::getRange( 1075 getConstantRangeFromMetadata(*Ranges)); 1076 if (I->hasMetadata(LLVMContext::MD_nonnull)) 1077 return ValueLatticeElement::getNot( 1078 ConstantPointerNull::get(cast<PointerType>(I->getType()))); 1079 return ValueLatticeElement::getOverdefined(); 1080 } 1081 1082 // Handle load instructions. If the operand is a constant pointer to a constant 1083 // global, we can replace the load with the loaded constant value! 1084 void SCCPInstVisitor::visitLoadInst(LoadInst &I) { 1085 // If this load is of a struct or the load is volatile, just mark the result 1086 // as overdefined. 1087 if (I.getType()->isStructTy() || I.isVolatile()) 1088 return (void)markOverdefined(&I); 1089 1090 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1091 // discover a concrete value later. 1092 if (ValueState[&I].isOverdefined()) 1093 return (void)markOverdefined(&I); 1094 1095 ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); 1096 if (PtrVal.isUnknownOrUndef()) 1097 return; // The pointer is not resolved yet! 1098 1099 ValueLatticeElement &IV = ValueState[&I]; 1100 1101 if (isConstant(PtrVal)) { 1102 Constant *Ptr = getConstant(PtrVal); 1103 1104 // load null is undefined. 1105 if (isa<ConstantPointerNull>(Ptr)) { 1106 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1107 return (void)markOverdefined(IV, &I); 1108 else 1109 return; 1110 } 1111 1112 // Transform load (constant global) into the value loaded. 1113 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1114 if (!TrackedGlobals.empty()) { 1115 // If we are tracking this global, merge in the known value for it. 1116 auto It = TrackedGlobals.find(GV); 1117 if (It != TrackedGlobals.end()) { 1118 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); 1119 return; 1120 } 1121 } 1122 } 1123 1124 // Transform load from a constant into a constant if possible. 1125 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { 1126 if (isa<UndefValue>(C)) 1127 return; 1128 return (void)markConstant(IV, &I, C); 1129 } 1130 } 1131 1132 // Fall back to metadata. 1133 mergeInValue(&I, getValueFromMetadata(&I)); 1134 } 1135 1136 void SCCPInstVisitor::visitCallBase(CallBase &CB) { 1137 handleCallResult(CB); 1138 handleCallArguments(CB); 1139 } 1140 1141 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { 1142 Function *F = CB.getCalledFunction(); 1143 1144 // Void return and not tracking callee, just bail. 1145 if (CB.getType()->isVoidTy()) 1146 return; 1147 1148 // Always mark struct return as overdefined. 1149 if (CB.getType()->isStructTy()) 1150 return (void)markOverdefined(&CB); 1151 1152 // Otherwise, if we have a single return value case, and if the function is 1153 // a declaration, maybe we can constant fold it. 1154 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { 1155 SmallVector<Constant *, 8> Operands; 1156 for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) { 1157 if (AI->get()->getType()->isStructTy()) 1158 return markOverdefined(&CB); // Can't handle struct args. 1159 ValueLatticeElement State = getValueState(*AI); 1160 1161 if (State.isUnknownOrUndef()) 1162 return; // Operands are not resolved yet. 1163 if (isOverdefined(State)) 1164 return (void)markOverdefined(&CB); 1165 assert(isConstant(State) && "Unknown state!"); 1166 Operands.push_back(getConstant(State)); 1167 } 1168 1169 if (isOverdefined(getValueState(&CB))) 1170 return (void)markOverdefined(&CB); 1171 1172 // If we can constant fold this, mark the result of the call as a 1173 // constant. 1174 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) { 1175 // call -> undef. 1176 if (isa<UndefValue>(C)) 1177 return; 1178 return (void)markConstant(&CB, C); 1179 } 1180 } 1181 1182 // Fall back to metadata. 1183 mergeInValue(&CB, getValueFromMetadata(&CB)); 1184 } 1185 1186 void SCCPInstVisitor::handleCallArguments(CallBase &CB) { 1187 Function *F = CB.getCalledFunction(); 1188 // If this is a local function that doesn't have its address taken, mark its 1189 // entry block executable and merge in the actual arguments to the call into 1190 // the formal arguments of the function. 1191 if (!TrackingIncomingArguments.empty() && 1192 TrackingIncomingArguments.count(F)) { 1193 MarkBlockExecutable(&F->front()); 1194 1195 // Propagate information from this call site into the callee. 1196 auto CAI = CB.arg_begin(); 1197 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1198 ++AI, ++CAI) { 1199 // If this argument is byval, and if the function is not readonly, there 1200 // will be an implicit copy formed of the input aggregate. 1201 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1202 markOverdefined(&*AI); 1203 continue; 1204 } 1205 1206 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1207 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1208 ValueLatticeElement CallArg = getStructValueState(*CAI, i); 1209 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, 1210 getMaxWidenStepsOpts()); 1211 } 1212 } else 1213 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); 1214 } 1215 } 1216 } 1217 1218 void SCCPInstVisitor::handleCallResult(CallBase &CB) { 1219 Function *F = CB.getCalledFunction(); 1220 1221 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) { 1222 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1223 if (ValueState[&CB].isOverdefined()) 1224 return; 1225 1226 Value *CopyOf = CB.getOperand(0); 1227 ValueLatticeElement CopyOfVal = getValueState(CopyOf); 1228 auto *PI = getPredicateInfoFor(&CB); 1229 assert(PI && "Missing predicate info for ssa.copy"); 1230 1231 const Optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1232 if (!Constraint) { 1233 mergeInValue(ValueState[&CB], &CB, CopyOfVal); 1234 return; 1235 } 1236 1237 CmpInst::Predicate Pred = Constraint->Predicate; 1238 Value *OtherOp = Constraint->OtherOp; 1239 1240 // Wait until OtherOp is resolved. 1241 if (getValueState(OtherOp).isUnknown()) { 1242 addAdditionalUser(OtherOp, &CB); 1243 return; 1244 } 1245 1246 // TODO: Actually filp MayIncludeUndef for the created range to false, 1247 // once most places in the optimizer respect the branches on 1248 // undef/poison are UB rule. The reason why the new range cannot be 1249 // undef is as follows below: 1250 // The new range is based on a branch condition. That guarantees that 1251 // neither of the compare operands can be undef in the branch targets, 1252 // unless we have conditions that are always true/false (e.g. icmp ule 1253 // i32, %a, i32_max). For the latter overdefined/empty range will be 1254 // inferred, but the branch will get folded accordingly anyways. 1255 bool MayIncludeUndef = !isa<PredicateAssume>(PI); 1256 1257 ValueLatticeElement CondVal = getValueState(OtherOp); 1258 ValueLatticeElement &IV = ValueState[&CB]; 1259 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { 1260 auto ImposedCR = 1261 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); 1262 1263 // Get the range imposed by the condition. 1264 if (CondVal.isConstantRange()) 1265 ImposedCR = ConstantRange::makeAllowedICmpRegion( 1266 Pred, CondVal.getConstantRange()); 1267 1268 // Combine range info for the original value with the new range from the 1269 // condition. 1270 auto CopyOfCR = CopyOfVal.isConstantRange() 1271 ? CopyOfVal.getConstantRange() 1272 : ConstantRange::getFull( 1273 DL.getTypeSizeInBits(CopyOf->getType())); 1274 auto NewCR = ImposedCR.intersectWith(CopyOfCR); 1275 // If the existing information is != x, do not use the information from 1276 // a chained predicate, as the != x information is more likely to be 1277 // helpful in practice. 1278 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) 1279 NewCR = CopyOfCR; 1280 1281 addAdditionalUser(OtherOp, &CB); 1282 mergeInValue(IV, &CB, 1283 ValueLatticeElement::getRange(NewCR, MayIncludeUndef)); 1284 return; 1285 } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) { 1286 // For non-integer values or integer constant expressions, only 1287 // propagate equal constants. 1288 addAdditionalUser(OtherOp, &CB); 1289 mergeInValue(IV, &CB, CondVal); 1290 return; 1291 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() && 1292 !MayIncludeUndef) { 1293 // Propagate inequalities. 1294 addAdditionalUser(OtherOp, &CB); 1295 mergeInValue(IV, &CB, 1296 ValueLatticeElement::getNot(CondVal.getConstant())); 1297 return; 1298 } 1299 1300 return (void)mergeInValue(IV, &CB, CopyOfVal); 1301 } 1302 1303 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1304 // Compute result range for intrinsics supported by ConstantRange. 1305 // Do this even if we don't know a range for all operands, as we may 1306 // still know something about the result range, e.g. of abs(x). 1307 SmallVector<ConstantRange, 2> OpRanges; 1308 for (Value *Op : II->args()) { 1309 const ValueLatticeElement &State = getValueState(Op); 1310 if (State.isConstantRange()) 1311 OpRanges.push_back(State.getConstantRange()); 1312 else 1313 OpRanges.push_back( 1314 ConstantRange::getFull(Op->getType()->getScalarSizeInBits())); 1315 } 1316 1317 ConstantRange Result = 1318 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); 1319 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); 1320 } 1321 } 1322 1323 // The common case is that we aren't tracking the callee, either because we 1324 // are not doing interprocedural analysis or the callee is indirect, or is 1325 // external. Handle these cases first. 1326 if (!F || F->isDeclaration()) 1327 return handleCallOverdefined(CB); 1328 1329 // If this is a single/zero retval case, see if we're tracking the function. 1330 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1331 if (!MRVFunctionsTracked.count(F)) 1332 return handleCallOverdefined(CB); // Not tracking this callee. 1333 1334 // If we are tracking this callee, propagate the result of the function 1335 // into this call site. 1336 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1337 mergeInValue(getStructValueState(&CB, i), &CB, 1338 TrackedMultipleRetVals[std::make_pair(F, i)], 1339 getMaxWidenStepsOpts()); 1340 } else { 1341 auto TFRVI = TrackedRetVals.find(F); 1342 if (TFRVI == TrackedRetVals.end()) 1343 return handleCallOverdefined(CB); // Not tracking this callee. 1344 1345 // If so, propagate the return value of the callee into this call result. 1346 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); 1347 } 1348 } 1349 1350 void SCCPInstVisitor::Solve() { 1351 // Process the work lists until they are empty! 1352 while (!BBWorkList.empty() || !InstWorkList.empty() || 1353 !OverdefinedInstWorkList.empty()) { 1354 // Process the overdefined instruction's work list first, which drives other 1355 // things to overdefined more quickly. 1356 while (!OverdefinedInstWorkList.empty()) { 1357 Value *I = OverdefinedInstWorkList.pop_back_val(); 1358 1359 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1360 1361 // "I" got into the work list because it either made the transition from 1362 // bottom to constant, or to overdefined. 1363 // 1364 // Anything on this worklist that is overdefined need not be visited 1365 // since all of its users will have already been marked as overdefined 1366 // Update all of the users of this instruction's value. 1367 // 1368 markUsersAsChanged(I); 1369 } 1370 1371 // Process the instruction work list. 1372 while (!InstWorkList.empty()) { 1373 Value *I = InstWorkList.pop_back_val(); 1374 1375 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1376 1377 // "I" got into the work list because it made the transition from undef to 1378 // constant. 1379 // 1380 // Anything on this worklist that is overdefined need not be visited 1381 // since all of its users will have already been marked as overdefined. 1382 // Update all of the users of this instruction's value. 1383 // 1384 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1385 markUsersAsChanged(I); 1386 } 1387 1388 // Process the basic block work list. 1389 while (!BBWorkList.empty()) { 1390 BasicBlock *BB = BBWorkList.pop_back_val(); 1391 1392 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1393 1394 // Notify all instructions in this basic block that they are newly 1395 // executable. 1396 visit(BB); 1397 } 1398 } 1399 } 1400 1401 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1402 /// that branches on undef values cannot reach any of their successors. 1403 /// However, this is not a safe assumption. After we solve dataflow, this 1404 /// method should be use to handle this. If this returns true, the solver 1405 /// should be rerun. 1406 /// 1407 /// This method handles this by finding an unresolved branch and marking it one 1408 /// of the edges from the block as being feasible, even though the condition 1409 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1410 /// CFG and only slightly pessimizes the analysis results (by marking one, 1411 /// potentially infeasible, edge feasible). This cannot usefully modify the 1412 /// constraints on the condition of the branch, as that would impact other users 1413 /// of the value. 1414 /// 1415 /// This scan also checks for values that use undefs. It conservatively marks 1416 /// them as overdefined. 1417 bool SCCPInstVisitor::ResolvedUndefsIn(Function &F) { 1418 bool MadeChange = false; 1419 for (BasicBlock &BB : F) { 1420 if (!BBExecutable.count(&BB)) 1421 continue; 1422 1423 for (Instruction &I : BB) { 1424 // Look for instructions which produce undef values. 1425 if (I.getType()->isVoidTy()) 1426 continue; 1427 1428 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1429 // Only a few things that can be structs matter for undef. 1430 1431 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1432 if (auto *CB = dyn_cast<CallBase>(&I)) 1433 if (Function *F = CB->getCalledFunction()) 1434 if (MRVFunctionsTracked.count(F)) 1435 continue; 1436 1437 // extractvalue and insertvalue don't need to be marked; they are 1438 // tracked as precisely as their operands. 1439 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1440 continue; 1441 // Send the results of everything else to overdefined. We could be 1442 // more precise than this but it isn't worth bothering. 1443 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1444 ValueLatticeElement &LV = getStructValueState(&I, i); 1445 if (LV.isUnknownOrUndef()) { 1446 markOverdefined(LV, &I); 1447 MadeChange = true; 1448 } 1449 } 1450 continue; 1451 } 1452 1453 ValueLatticeElement &LV = getValueState(&I); 1454 if (!LV.isUnknownOrUndef()) 1455 continue; 1456 1457 // There are two reasons a call can have an undef result 1458 // 1. It could be tracked. 1459 // 2. It could be constant-foldable. 1460 // Because of the way we solve return values, tracked calls must 1461 // never be marked overdefined in ResolvedUndefsIn. 1462 if (auto *CB = dyn_cast<CallBase>(&I)) 1463 if (Function *F = CB->getCalledFunction()) 1464 if (TrackedRetVals.count(F)) 1465 continue; 1466 1467 if (isa<LoadInst>(I)) { 1468 // A load here means one of two things: a load of undef from a global, 1469 // a load from an unknown pointer. Either way, having it return undef 1470 // is okay. 1471 continue; 1472 } 1473 1474 markOverdefined(&I); 1475 MadeChange = true; 1476 } 1477 1478 // Check to see if we have a branch or switch on an undefined value. If so 1479 // we force the branch to go one way or the other to make the successor 1480 // values live. It doesn't really matter which way we force it. 1481 Instruction *TI = BB.getTerminator(); 1482 if (auto *BI = dyn_cast<BranchInst>(TI)) { 1483 if (!BI->isConditional()) 1484 continue; 1485 if (!getValueState(BI->getCondition()).isUnknownOrUndef()) 1486 continue; 1487 1488 // If the input to SCCP is actually branch on undef, fix the undef to 1489 // false. 1490 if (isa<UndefValue>(BI->getCondition())) { 1491 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1492 markEdgeExecutable(&BB, TI->getSuccessor(1)); 1493 MadeChange = true; 1494 continue; 1495 } 1496 1497 // Otherwise, it is a branch on a symbolic value which is currently 1498 // considered to be undef. Make sure some edge is executable, so a 1499 // branch on "undef" always flows somewhere. 1500 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1501 BasicBlock *DefaultSuccessor = TI->getSuccessor(1); 1502 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1503 MadeChange = true; 1504 1505 continue; 1506 } 1507 1508 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { 1509 // Indirect branch with no successor ?. Its ok to assume it branches 1510 // to no target. 1511 if (IBR->getNumSuccessors() < 1) 1512 continue; 1513 1514 if (!getValueState(IBR->getAddress()).isUnknownOrUndef()) 1515 continue; 1516 1517 // If the input to SCCP is actually branch on undef, fix the undef to 1518 // the first successor of the indirect branch. 1519 if (isa<UndefValue>(IBR->getAddress())) { 1520 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); 1521 markEdgeExecutable(&BB, IBR->getSuccessor(0)); 1522 MadeChange = true; 1523 continue; 1524 } 1525 1526 // Otherwise, it is a branch on a symbolic value which is currently 1527 // considered to be undef. Make sure some edge is executable, so a 1528 // branch on "undef" always flows somewhere. 1529 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: 1530 // we can assume the branch has undefined behavior instead. 1531 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); 1532 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1533 MadeChange = true; 1534 1535 continue; 1536 } 1537 1538 if (auto *SI = dyn_cast<SwitchInst>(TI)) { 1539 if (!SI->getNumCases() || 1540 !getValueState(SI->getCondition()).isUnknownOrUndef()) 1541 continue; 1542 1543 // If the input to SCCP is actually switch on undef, fix the undef to 1544 // the first constant. 1545 if (isa<UndefValue>(SI->getCondition())) { 1546 SI->setCondition(SI->case_begin()->getCaseValue()); 1547 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); 1548 MadeChange = true; 1549 continue; 1550 } 1551 1552 // Otherwise, it is a branch on a symbolic value which is currently 1553 // considered to be undef. Make sure some edge is executable, so a 1554 // branch on "undef" always flows somewhere. 1555 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1556 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); 1557 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1558 MadeChange = true; 1559 1560 continue; 1561 } 1562 } 1563 1564 return MadeChange; 1565 } 1566 1567 //===----------------------------------------------------------------------===// 1568 // 1569 // SCCPSolver implementations 1570 // 1571 SCCPSolver::SCCPSolver( 1572 const DataLayout &DL, 1573 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 1574 LLVMContext &Ctx) 1575 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} 1576 1577 SCCPSolver::~SCCPSolver() { } 1578 1579 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) { 1580 return Visitor->addAnalysis(F, std::move(A)); 1581 } 1582 1583 bool SCCPSolver::MarkBlockExecutable(BasicBlock *BB) { 1584 return Visitor->MarkBlockExecutable(BB); 1585 } 1586 1587 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { 1588 return Visitor->getPredicateInfoFor(I); 1589 } 1590 1591 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); } 1592 1593 void SCCPSolver::TrackValueOfGlobalVariable(GlobalVariable *GV) { 1594 Visitor->TrackValueOfGlobalVariable(GV); 1595 } 1596 1597 void SCCPSolver::AddTrackedFunction(Function *F) { 1598 Visitor->AddTrackedFunction(F); 1599 } 1600 1601 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { 1602 Visitor->addToMustPreserveReturnsInFunctions(F); 1603 } 1604 1605 bool SCCPSolver::mustPreserveReturn(Function *F) { 1606 return Visitor->mustPreserveReturn(F); 1607 } 1608 1609 void SCCPSolver::AddArgumentTrackedFunction(Function *F) { 1610 Visitor->AddArgumentTrackedFunction(F); 1611 } 1612 1613 bool SCCPSolver::isArgumentTrackedFunction(Function *F) { 1614 return Visitor->isArgumentTrackedFunction(F); 1615 } 1616 1617 void SCCPSolver::Solve() { Visitor->Solve(); } 1618 1619 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1620 return Visitor->ResolvedUndefsIn(F); 1621 } 1622 1623 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { 1624 return Visitor->isBlockExecutable(BB); 1625 } 1626 1627 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 1628 return Visitor->isEdgeFeasible(From, To); 1629 } 1630 1631 std::vector<ValueLatticeElement> 1632 SCCPSolver::getStructLatticeValueFor(Value *V) const { 1633 return Visitor->getStructLatticeValueFor(V); 1634 } 1635 1636 void SCCPSolver::removeLatticeValueFor(Value *V) { 1637 return Visitor->removeLatticeValueFor(V); 1638 } 1639 1640 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { 1641 return Visitor->getLatticeValueFor(V); 1642 } 1643 1644 const MapVector<Function *, ValueLatticeElement> & 1645 SCCPSolver::getTrackedRetVals() { 1646 return Visitor->getTrackedRetVals(); 1647 } 1648 1649 const DenseMap<GlobalVariable *, ValueLatticeElement> & 1650 SCCPSolver::getTrackedGlobals() { 1651 return Visitor->getTrackedGlobals(); 1652 } 1653 1654 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() { 1655 return Visitor->getMRVFunctionsTracked(); 1656 } 1657 1658 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } 1659 1660 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { 1661 return Visitor->isStructLatticeConstant(F, STy); 1662 } 1663 1664 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const { 1665 return Visitor->getConstant(LV); 1666 } 1667