1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements the Sparse Conditional Constant Propagation (SCCP) 11 // utility. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SCCPSolver.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/ValueLattice.h" 19 #include "llvm/IR/InstVisitor.h" 20 #include "llvm/Support/Casting.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cassert> 25 #include <utility> 26 #include <vector> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "sccp" 31 32 // The maximum number of range extensions allowed for operations requiring 33 // widening. 34 static const unsigned MaxNumRangeExtensions = 10; 35 36 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. 37 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { 38 return ValueLatticeElement::MergeOptions().setMaxWidenSteps( 39 MaxNumRangeExtensions); 40 } 41 42 namespace { 43 44 // Helper to check if \p LV is either a constant or a constant 45 // range with a single element. This should cover exactly the same cases as the 46 // old ValueLatticeElement::isConstant() and is intended to be used in the 47 // transition to ValueLatticeElement. 48 bool isConstant(const ValueLatticeElement &LV) { 49 return LV.isConstant() || 50 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 51 } 52 53 // Helper to check if \p LV is either overdefined or a constant range with more 54 // than a single element. This should cover exactly the same cases as the old 55 // ValueLatticeElement::isOverdefined() and is intended to be used in the 56 // transition to ValueLatticeElement. 57 bool isOverdefined(const ValueLatticeElement &LV) { 58 return !LV.isUnknownOrUndef() && !isConstant(LV); 59 } 60 61 } // namespace 62 63 namespace llvm { 64 65 /// Helper class for SCCPSolver. This implements the instruction visitor and 66 /// holds all the state. 67 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> { 68 const DataLayout &DL; 69 std::function<const TargetLibraryInfo &(Function &)> GetTLI; 70 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 71 DenseMap<Value *, ValueLatticeElement> 72 ValueState; // The state each value is in. 73 74 /// StructValueState - This maintains ValueState for values that have 75 /// StructType, for example for formal arguments, calls, insertelement, etc. 76 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState; 77 78 /// GlobalValue - If we are tracking any values for the contents of a global 79 /// variable, we keep a mapping from the constant accessor to the element of 80 /// the global, to the currently known value. If the value becomes 81 /// overdefined, it's entry is simply removed from this map. 82 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals; 83 84 /// TrackedRetVals - If we are tracking arguments into and the return 85 /// value out of a function, it will have an entry in this map, indicating 86 /// what the known return value for the function is. 87 MapVector<Function *, ValueLatticeElement> TrackedRetVals; 88 89 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 90 /// that return multiple values. 91 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement> 92 TrackedMultipleRetVals; 93 94 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 95 /// represented here for efficient lookup. 96 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 97 98 /// A list of functions whose return cannot be modified. 99 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions; 100 101 /// TrackingIncomingArguments - This is the set of functions for whose 102 /// arguments we make optimistic assumptions about and try to prove as 103 /// constants. 104 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 105 106 /// The reason for two worklists is that overdefined is the lowest state 107 /// on the lattice, and moving things to overdefined as fast as possible 108 /// makes SCCP converge much faster. 109 /// 110 /// By having a separate worklist, we accomplish this because everything 111 /// possibly overdefined will become overdefined at the soonest possible 112 /// point. 113 SmallVector<Value *, 64> OverdefinedInstWorkList; 114 SmallVector<Value *, 64> InstWorkList; 115 116 // The BasicBlock work list 117 SmallVector<BasicBlock *, 64> BBWorkList; 118 119 /// KnownFeasibleEdges - Entries in this set are edges which have already had 120 /// PHI nodes retriggered. 121 using Edge = std::pair<BasicBlock *, BasicBlock *>; 122 DenseSet<Edge> KnownFeasibleEdges; 123 124 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; 125 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 126 127 LLVMContext &Ctx; 128 129 private: 130 ConstantInt *getConstantInt(const ValueLatticeElement &IV) const { 131 return dyn_cast_or_null<ConstantInt>(getConstant(IV)); 132 } 133 134 // pushToWorkList - Helper for markConstant/markOverdefined 135 void pushToWorkList(ValueLatticeElement &IV, Value *V); 136 137 // Helper to push \p V to the worklist, after updating it to \p IV. Also 138 // prints a debug message with the updated value. 139 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V); 140 141 // markConstant - Make a value be marked as "constant". If the value 142 // is not already a constant, add it to the instruction work list so that 143 // the users of the instruction are updated later. 144 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, 145 bool MayIncludeUndef = false); 146 147 bool markConstant(Value *V, Constant *C) { 148 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 149 return markConstant(ValueState[V], V, C); 150 } 151 152 // markOverdefined - Make a value be marked as "overdefined". If the 153 // value is not already overdefined, add it to the overdefined instruction 154 // work list so that the users of the instruction are updated later. 155 bool markOverdefined(ValueLatticeElement &IV, Value *V); 156 157 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV 158 /// changes. 159 bool mergeInValue(ValueLatticeElement &IV, Value *V, 160 ValueLatticeElement MergeWithV, 161 ValueLatticeElement::MergeOptions Opts = { 162 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}); 163 164 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, 165 ValueLatticeElement::MergeOptions Opts = { 166 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { 167 assert(!V->getType()->isStructTy() && 168 "non-structs should use markConstant"); 169 return mergeInValue(ValueState[V], V, MergeWithV, Opts); 170 } 171 172 /// getValueState - Return the ValueLatticeElement object that corresponds to 173 /// the value. This function handles the case when the value hasn't been seen 174 /// yet by properly seeding constants etc. 175 ValueLatticeElement &getValueState(Value *V) { 176 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 177 178 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); 179 ValueLatticeElement &LV = I.first->second; 180 181 if (!I.second) 182 return LV; // Common case, already in the map. 183 184 if (auto *C = dyn_cast<Constant>(V)) 185 LV.markConstant(C); // Constants are constant 186 187 // All others are unknown by default. 188 return LV; 189 } 190 191 /// getStructValueState - Return the ValueLatticeElement object that 192 /// corresponds to the value/field pair. This function handles the case when 193 /// the value hasn't been seen yet by properly seeding constants etc. 194 ValueLatticeElement &getStructValueState(Value *V, unsigned i) { 195 assert(V->getType()->isStructTy() && "Should use getValueState"); 196 assert(i < cast<StructType>(V->getType())->getNumElements() && 197 "Invalid element #"); 198 199 auto I = StructValueState.insert( 200 std::make_pair(std::make_pair(V, i), ValueLatticeElement())); 201 ValueLatticeElement &LV = I.first->second; 202 203 if (!I.second) 204 return LV; // Common case, already in the map. 205 206 if (auto *C = dyn_cast<Constant>(V)) { 207 Constant *Elt = C->getAggregateElement(i); 208 209 if (!Elt) 210 LV.markOverdefined(); // Unknown sort of constant. 211 else if (isa<UndefValue>(Elt)) 212 ; // Undef values remain unknown. 213 else 214 LV.markConstant(Elt); // Constants are constant. 215 } 216 217 // All others are underdefined by default. 218 return LV; 219 } 220 221 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 222 /// work list if it is not already executable. 223 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 224 225 // getFeasibleSuccessors - Return a vector of booleans to indicate which 226 // successors are reachable from a given terminator instruction. 227 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 228 229 // OperandChangedState - This method is invoked on all of the users of an 230 // instruction that was just changed state somehow. Based on this 231 // information, we need to update the specified user of this instruction. 232 void operandChangedState(Instruction *I) { 233 if (BBExecutable.count(I->getParent())) // Inst is executable? 234 visit(*I); 235 } 236 237 // Add U as additional user of V. 238 void addAdditionalUser(Value *V, User *U) { 239 auto Iter = AdditionalUsers.insert({V, {}}); 240 Iter.first->second.insert(U); 241 } 242 243 // Mark I's users as changed, including AdditionalUsers. 244 void markUsersAsChanged(Value *I) { 245 // Functions include their arguments in the use-list. Changed function 246 // values mean that the result of the function changed. We only need to 247 // update the call sites with the new function result and do not have to 248 // propagate the call arguments. 249 if (isa<Function>(I)) { 250 for (User *U : I->users()) { 251 if (auto *CB = dyn_cast<CallBase>(U)) 252 handleCallResult(*CB); 253 } 254 } else { 255 for (User *U : I->users()) 256 if (auto *UI = dyn_cast<Instruction>(U)) 257 operandChangedState(UI); 258 } 259 260 auto Iter = AdditionalUsers.find(I); 261 if (Iter != AdditionalUsers.end()) { 262 // Copy additional users before notifying them of changes, because new 263 // users may be added, potentially invalidating the iterator. 264 SmallVector<Instruction *, 2> ToNotify; 265 for (User *U : Iter->second) 266 if (auto *UI = dyn_cast<Instruction>(U)) 267 ToNotify.push_back(UI); 268 for (Instruction *UI : ToNotify) 269 operandChangedState(UI); 270 } 271 } 272 void handleCallOverdefined(CallBase &CB); 273 void handleCallResult(CallBase &CB); 274 void handleCallArguments(CallBase &CB); 275 276 private: 277 friend class InstVisitor<SCCPInstVisitor>; 278 279 // visit implementations - Something changed in this instruction. Either an 280 // operand made a transition, or the instruction is newly executable. Change 281 // the value type of I to reflect these changes if appropriate. 282 void visitPHINode(PHINode &I); 283 284 // Terminators 285 286 void visitReturnInst(ReturnInst &I); 287 void visitTerminator(Instruction &TI); 288 289 void visitCastInst(CastInst &I); 290 void visitSelectInst(SelectInst &I); 291 void visitUnaryOperator(Instruction &I); 292 void visitBinaryOperator(Instruction &I); 293 void visitCmpInst(CmpInst &I); 294 void visitExtractValueInst(ExtractValueInst &EVI); 295 void visitInsertValueInst(InsertValueInst &IVI); 296 297 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 298 markOverdefined(&CPI); 299 visitTerminator(CPI); 300 } 301 302 // Instructions that cannot be folded away. 303 304 void visitStoreInst(StoreInst &I); 305 void visitLoadInst(LoadInst &I); 306 void visitGetElementPtrInst(GetElementPtrInst &I); 307 308 void visitInvokeInst(InvokeInst &II) { 309 visitCallBase(II); 310 visitTerminator(II); 311 } 312 313 void visitCallBrInst(CallBrInst &CBI) { 314 visitCallBase(CBI); 315 visitTerminator(CBI); 316 } 317 318 void visitCallBase(CallBase &CB); 319 void visitResumeInst(ResumeInst &I) { /*returns void*/ 320 } 321 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ 322 } 323 void visitFenceInst(FenceInst &I) { /*returns void*/ 324 } 325 326 void visitInstruction(Instruction &I); 327 328 public: 329 void addAnalysis(Function &F, AnalysisResultsForFn A) { 330 AnalysisResults.insert({&F, std::move(A)}); 331 } 332 333 void visitCallInst(CallInst &I) { visitCallBase(I); } 334 335 bool markBlockExecutable(BasicBlock *BB); 336 337 const PredicateBase *getPredicateInfoFor(Instruction *I) { 338 auto A = AnalysisResults.find(I->getParent()->getParent()); 339 if (A == AnalysisResults.end()) 340 return nullptr; 341 return A->second.PredInfo->getPredicateInfoFor(I); 342 } 343 344 DomTreeUpdater getDTU(Function &F) { 345 auto A = AnalysisResults.find(&F); 346 assert(A != AnalysisResults.end() && "Need analysis results for function."); 347 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; 348 } 349 350 SCCPInstVisitor(const DataLayout &DL, 351 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 352 LLVMContext &Ctx) 353 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {} 354 355 void trackValueOfGlobalVariable(GlobalVariable *GV) { 356 // We only track the contents of scalar globals. 357 if (GV->getValueType()->isSingleValueType()) { 358 ValueLatticeElement &IV = TrackedGlobals[GV]; 359 if (!isa<UndefValue>(GV->getInitializer())) 360 IV.markConstant(GV->getInitializer()); 361 } 362 } 363 364 void addTrackedFunction(Function *F) { 365 // Add an entry, F -> undef. 366 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 367 MRVFunctionsTracked.insert(F); 368 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 369 TrackedMultipleRetVals.insert( 370 std::make_pair(std::make_pair(F, i), ValueLatticeElement())); 371 } else if (!F->getReturnType()->isVoidTy()) 372 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); 373 } 374 375 void addToMustPreserveReturnsInFunctions(Function *F) { 376 MustPreserveReturnsInFunctions.insert(F); 377 } 378 379 bool mustPreserveReturn(Function *F) { 380 return MustPreserveReturnsInFunctions.count(F); 381 } 382 383 void addArgumentTrackedFunction(Function *F) { 384 TrackingIncomingArguments.insert(F); 385 } 386 387 bool isArgumentTrackedFunction(Function *F) { 388 return TrackingIncomingArguments.count(F); 389 } 390 391 void solve(); 392 393 bool resolvedUndefsIn(Function &F); 394 395 bool isBlockExecutable(BasicBlock *BB) const { 396 return BBExecutable.count(BB); 397 } 398 399 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; 400 401 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const { 402 std::vector<ValueLatticeElement> StructValues; 403 auto *STy = dyn_cast<StructType>(V->getType()); 404 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 405 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 406 auto I = StructValueState.find(std::make_pair(V, i)); 407 assert(I != StructValueState.end() && "Value not in valuemap!"); 408 StructValues.push_back(I->second); 409 } 410 return StructValues; 411 } 412 413 void removeLatticeValueFor(Value *V) { ValueState.erase(V); } 414 415 const ValueLatticeElement &getLatticeValueFor(Value *V) const { 416 assert(!V->getType()->isStructTy() && 417 "Should use getStructLatticeValueFor"); 418 DenseMap<Value *, ValueLatticeElement>::const_iterator I = 419 ValueState.find(V); 420 assert(I != ValueState.end() && 421 "V not found in ValueState nor Paramstate map!"); 422 return I->second; 423 } 424 425 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() { 426 return TrackedRetVals; 427 } 428 429 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() { 430 return TrackedGlobals; 431 } 432 433 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 434 return MRVFunctionsTracked; 435 } 436 437 void markOverdefined(Value *V) { 438 if (auto *STy = dyn_cast<StructType>(V->getType())) 439 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 440 markOverdefined(getStructValueState(V, i), V); 441 else 442 markOverdefined(ValueState[V], V); 443 } 444 445 bool isStructLatticeConstant(Function *F, StructType *STy); 446 447 Constant *getConstant(const ValueLatticeElement &LV) const; 448 449 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() { 450 return TrackingIncomingArguments; 451 } 452 453 void markArgInFuncSpecialization(Function *F, Argument *A, Constant *C); 454 455 void markFunctionUnreachable(Function *F) { 456 for (auto &BB : *F) 457 BBExecutable.erase(&BB); 458 } 459 }; 460 461 } // namespace llvm 462 463 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) { 464 if (!BBExecutable.insert(BB).second) 465 return false; 466 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 467 BBWorkList.push_back(BB); // Add the block to the work list! 468 return true; 469 } 470 471 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) { 472 if (IV.isOverdefined()) 473 return OverdefinedInstWorkList.push_back(V); 474 InstWorkList.push_back(V); 475 } 476 477 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { 478 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); 479 pushToWorkList(IV, V); 480 } 481 482 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V, 483 Constant *C, bool MayIncludeUndef) { 484 if (!IV.markConstant(C, MayIncludeUndef)) 485 return false; 486 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 487 pushToWorkList(IV, V); 488 return true; 489 } 490 491 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) { 492 if (!IV.markOverdefined()) 493 return false; 494 495 LLVM_DEBUG(dbgs() << "markOverdefined: "; 496 if (auto *F = dyn_cast<Function>(V)) dbgs() 497 << "Function '" << F->getName() << "'\n"; 498 else dbgs() << *V << '\n'); 499 // Only instructions go on the work list 500 pushToWorkList(IV, V); 501 return true; 502 } 503 504 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) { 505 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 506 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 507 assert(It != TrackedMultipleRetVals.end()); 508 ValueLatticeElement LV = It->second; 509 if (!isConstant(LV)) 510 return false; 511 } 512 return true; 513 } 514 515 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const { 516 if (LV.isConstant()) 517 return LV.getConstant(); 518 519 if (LV.isConstantRange()) { 520 const auto &CR = LV.getConstantRange(); 521 if (CR.getSingleElement()) 522 return ConstantInt::get(Ctx, *CR.getSingleElement()); 523 } 524 return nullptr; 525 } 526 527 void SCCPInstVisitor::markArgInFuncSpecialization(Function *F, Argument *A, 528 Constant *C) { 529 assert(F->arg_size() == A->getParent()->arg_size() && 530 "Functions should have the same number of arguments"); 531 532 // Mark the argument constant in the new function. 533 markConstant(A, C); 534 535 // For the remaining arguments in the new function, copy the lattice state 536 // over from the old function. 537 for (Argument *OldArg = F->arg_begin(), *NewArg = A->getParent()->arg_begin(), 538 *End = F->arg_end(); 539 OldArg != End; ++OldArg, ++NewArg) { 540 541 LLVM_DEBUG(dbgs() << "SCCP: Marking argument " 542 << NewArg->getNameOrAsOperand() << "\n"); 543 544 if (NewArg != A && ValueState.count(OldArg)) { 545 // Note: This previously looked like this: 546 // ValueState[NewArg] = ValueState[OldArg]; 547 // This is incorrect because the DenseMap class may resize the underlying 548 // memory when inserting `NewArg`, which will invalidate the reference to 549 // `OldArg`. Instead, we make sure `NewArg` exists before setting it. 550 auto &NewValue = ValueState[NewArg]; 551 NewValue = ValueState[OldArg]; 552 pushToWorkList(NewValue, NewArg); 553 } 554 } 555 } 556 557 void SCCPInstVisitor::visitInstruction(Instruction &I) { 558 // All the instructions we don't do any special handling for just 559 // go to overdefined. 560 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 561 markOverdefined(&I); 562 } 563 564 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V, 565 ValueLatticeElement MergeWithV, 566 ValueLatticeElement::MergeOptions Opts) { 567 if (IV.mergeIn(MergeWithV, Opts)) { 568 pushToWorkList(IV, V); 569 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " 570 << IV << "\n"); 571 return true; 572 } 573 return false; 574 } 575 576 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 577 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 578 return false; // This edge is already known to be executable! 579 580 if (!markBlockExecutable(Dest)) { 581 // If the destination is already executable, we just made an *edge* 582 // feasible that wasn't before. Revisit the PHI nodes in the block 583 // because they have potentially new operands. 584 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 585 << " -> " << Dest->getName() << '\n'); 586 587 for (PHINode &PN : Dest->phis()) 588 visitPHINode(PN); 589 } 590 return true; 591 } 592 593 // getFeasibleSuccessors - Return a vector of booleans to indicate which 594 // successors are reachable from a given terminator instruction. 595 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI, 596 SmallVectorImpl<bool> &Succs) { 597 Succs.resize(TI.getNumSuccessors()); 598 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 599 if (BI->isUnconditional()) { 600 Succs[0] = true; 601 return; 602 } 603 604 ValueLatticeElement BCValue = getValueState(BI->getCondition()); 605 ConstantInt *CI = getConstantInt(BCValue); 606 if (!CI) { 607 // Overdefined condition variables, and branches on unfoldable constant 608 // conditions, mean the branch could go either way. 609 if (!BCValue.isUnknownOrUndef()) 610 Succs[0] = Succs[1] = true; 611 return; 612 } 613 614 // Constant condition variables mean the branch can only go a single way. 615 Succs[CI->isZero()] = true; 616 return; 617 } 618 619 // Unwinding instructions successors are always executable. 620 if (TI.isExceptionalTerminator()) { 621 Succs.assign(TI.getNumSuccessors(), true); 622 return; 623 } 624 625 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 626 if (!SI->getNumCases()) { 627 Succs[0] = true; 628 return; 629 } 630 const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); 631 if (ConstantInt *CI = getConstantInt(SCValue)) { 632 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 633 return; 634 } 635 636 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM 637 // is ready. 638 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { 639 const ConstantRange &Range = SCValue.getConstantRange(); 640 for (const auto &Case : SI->cases()) { 641 const APInt &CaseValue = Case.getCaseValue()->getValue(); 642 if (Range.contains(CaseValue)) 643 Succs[Case.getSuccessorIndex()] = true; 644 } 645 646 // TODO: Determine whether default case is reachable. 647 Succs[SI->case_default()->getSuccessorIndex()] = true; 648 return; 649 } 650 651 // Overdefined or unknown condition? All destinations are executable! 652 if (!SCValue.isUnknownOrUndef()) 653 Succs.assign(TI.getNumSuccessors(), true); 654 return; 655 } 656 657 // In case of indirect branch and its address is a blockaddress, we mark 658 // the target as executable. 659 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 660 // Casts are folded by visitCastInst. 661 ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); 662 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue)); 663 if (!Addr) { // Overdefined or unknown condition? 664 // All destinations are executable! 665 if (!IBRValue.isUnknownOrUndef()) 666 Succs.assign(TI.getNumSuccessors(), true); 667 return; 668 } 669 670 BasicBlock *T = Addr->getBasicBlock(); 671 assert(Addr->getFunction() == T->getParent() && 672 "Block address of a different function ?"); 673 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 674 // This is the target. 675 if (IBR->getDestination(i) == T) { 676 Succs[i] = true; 677 return; 678 } 679 } 680 681 // If we didn't find our destination in the IBR successor list, then we 682 // have undefined behavior. Its ok to assume no successor is executable. 683 return; 684 } 685 686 // In case of callbr, we pessimistically assume that all successors are 687 // feasible. 688 if (isa<CallBrInst>(&TI)) { 689 Succs.assign(TI.getNumSuccessors(), true); 690 return; 691 } 692 693 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 694 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 695 } 696 697 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 698 // block to the 'To' basic block is currently feasible. 699 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 700 // Check if we've called markEdgeExecutable on the edge yet. (We could 701 // be more aggressive and try to consider edges which haven't been marked 702 // yet, but there isn't any need.) 703 return KnownFeasibleEdges.count(Edge(From, To)); 704 } 705 706 // visit Implementations - Something changed in this instruction, either an 707 // operand made a transition, or the instruction is newly executable. Change 708 // the value type of I to reflect these changes if appropriate. This method 709 // makes sure to do the following actions: 710 // 711 // 1. If a phi node merges two constants in, and has conflicting value coming 712 // from different branches, or if the PHI node merges in an overdefined 713 // value, then the PHI node becomes overdefined. 714 // 2. If a phi node merges only constants in, and they all agree on value, the 715 // PHI node becomes a constant value equal to that. 716 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 717 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 718 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 719 // 6. If a conditional branch has a value that is constant, make the selected 720 // destination executable 721 // 7. If a conditional branch has a value that is overdefined, make all 722 // successors executable. 723 void SCCPInstVisitor::visitPHINode(PHINode &PN) { 724 // If this PN returns a struct, just mark the result overdefined. 725 // TODO: We could do a lot better than this if code actually uses this. 726 if (PN.getType()->isStructTy()) 727 return (void)markOverdefined(&PN); 728 729 if (getValueState(&PN).isOverdefined()) 730 return; // Quick exit 731 732 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 733 // and slow us down a lot. Just mark them overdefined. 734 if (PN.getNumIncomingValues() > 64) 735 return (void)markOverdefined(&PN); 736 737 unsigned NumActiveIncoming = 0; 738 739 // Look at all of the executable operands of the PHI node. If any of them 740 // are overdefined, the PHI becomes overdefined as well. If they are all 741 // constant, and they agree with each other, the PHI becomes the identical 742 // constant. If they are constant and don't agree, the PHI is a constant 743 // range. If there are no executable operands, the PHI remains unknown. 744 ValueLatticeElement PhiState = getValueState(&PN); 745 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 746 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 747 continue; 748 749 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); 750 PhiState.mergeIn(IV); 751 NumActiveIncoming++; 752 if (PhiState.isOverdefined()) 753 break; 754 } 755 756 // We allow up to 1 range extension per active incoming value and one 757 // additional extension. Note that we manually adjust the number of range 758 // extensions to match the number of active incoming values. This helps to 759 // limit multiple extensions caused by the same incoming value, if other 760 // incoming values are equal. 761 mergeInValue(&PN, PhiState, 762 ValueLatticeElement::MergeOptions().setMaxWidenSteps( 763 NumActiveIncoming + 1)); 764 ValueLatticeElement &PhiStateRef = getValueState(&PN); 765 PhiStateRef.setNumRangeExtensions( 766 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); 767 } 768 769 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) { 770 if (I.getNumOperands() == 0) 771 return; // ret void 772 773 Function *F = I.getParent()->getParent(); 774 Value *ResultOp = I.getOperand(0); 775 776 // If we are tracking the return value of this function, merge it in. 777 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 778 auto TFRVI = TrackedRetVals.find(F); 779 if (TFRVI != TrackedRetVals.end()) { 780 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 781 return; 782 } 783 } 784 785 // Handle functions that return multiple values. 786 if (!TrackedMultipleRetVals.empty()) { 787 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 788 if (MRVFunctionsTracked.count(F)) 789 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 790 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 791 getStructValueState(ResultOp, i)); 792 } 793 } 794 795 void SCCPInstVisitor::visitTerminator(Instruction &TI) { 796 SmallVector<bool, 16> SuccFeasible; 797 getFeasibleSuccessors(TI, SuccFeasible); 798 799 BasicBlock *BB = TI.getParent(); 800 801 // Mark all feasible successors executable. 802 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 803 if (SuccFeasible[i]) 804 markEdgeExecutable(BB, TI.getSuccessor(i)); 805 } 806 807 void SCCPInstVisitor::visitCastInst(CastInst &I) { 808 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would 809 // discover a concrete value later. 810 if (ValueState[&I].isOverdefined()) 811 return; 812 813 ValueLatticeElement OpSt = getValueState(I.getOperand(0)); 814 if (OpSt.isUnknownOrUndef()) 815 return; 816 817 if (Constant *OpC = getConstant(OpSt)) { 818 // Fold the constant as we build. 819 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL); 820 if (isa<UndefValue>(C)) 821 return; 822 // Propagate constant value 823 markConstant(&I, C); 824 } else if (I.getDestTy()->isIntegerTy()) { 825 auto &LV = getValueState(&I); 826 ConstantRange OpRange = 827 OpSt.isConstantRange() 828 ? OpSt.getConstantRange() 829 : ConstantRange::getFull( 830 I.getOperand(0)->getType()->getScalarSizeInBits()); 831 832 Type *DestTy = I.getDestTy(); 833 // Vectors where all elements have the same known constant range are treated 834 // as a single constant range in the lattice. When bitcasting such vectors, 835 // there is a mis-match between the width of the lattice value (single 836 // constant range) and the original operands (vector). Go to overdefined in 837 // that case. 838 if (I.getOpcode() == Instruction::BitCast && 839 I.getOperand(0)->getType()->isVectorTy() && 840 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) 841 return (void)markOverdefined(&I); 842 843 ConstantRange Res = 844 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); 845 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); 846 } else 847 markOverdefined(&I); 848 } 849 850 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) { 851 // If this returns a struct, mark all elements over defined, we don't track 852 // structs in structs. 853 if (EVI.getType()->isStructTy()) 854 return (void)markOverdefined(&EVI); 855 856 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 857 // discover a concrete value later. 858 if (ValueState[&EVI].isOverdefined()) 859 return (void)markOverdefined(&EVI); 860 861 // If this is extracting from more than one level of struct, we don't know. 862 if (EVI.getNumIndices() != 1) 863 return (void)markOverdefined(&EVI); 864 865 Value *AggVal = EVI.getAggregateOperand(); 866 if (AggVal->getType()->isStructTy()) { 867 unsigned i = *EVI.idx_begin(); 868 ValueLatticeElement EltVal = getStructValueState(AggVal, i); 869 mergeInValue(getValueState(&EVI), &EVI, EltVal); 870 } else { 871 // Otherwise, must be extracting from an array. 872 return (void)markOverdefined(&EVI); 873 } 874 } 875 876 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) { 877 auto *STy = dyn_cast<StructType>(IVI.getType()); 878 if (!STy) 879 return (void)markOverdefined(&IVI); 880 881 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 882 // discover a concrete value later. 883 if (isOverdefined(ValueState[&IVI])) 884 return (void)markOverdefined(&IVI); 885 886 // If this has more than one index, we can't handle it, drive all results to 887 // undef. 888 if (IVI.getNumIndices() != 1) 889 return (void)markOverdefined(&IVI); 890 891 Value *Aggr = IVI.getAggregateOperand(); 892 unsigned Idx = *IVI.idx_begin(); 893 894 // Compute the result based on what we're inserting. 895 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 896 // This passes through all values that aren't the inserted element. 897 if (i != Idx) { 898 ValueLatticeElement EltVal = getStructValueState(Aggr, i); 899 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 900 continue; 901 } 902 903 Value *Val = IVI.getInsertedValueOperand(); 904 if (Val->getType()->isStructTy()) 905 // We don't track structs in structs. 906 markOverdefined(getStructValueState(&IVI, i), &IVI); 907 else { 908 ValueLatticeElement InVal = getValueState(Val); 909 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 910 } 911 } 912 } 913 914 void SCCPInstVisitor::visitSelectInst(SelectInst &I) { 915 // If this select returns a struct, just mark the result overdefined. 916 // TODO: We could do a lot better than this if code actually uses this. 917 if (I.getType()->isStructTy()) 918 return (void)markOverdefined(&I); 919 920 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 921 // discover a concrete value later. 922 if (ValueState[&I].isOverdefined()) 923 return (void)markOverdefined(&I); 924 925 ValueLatticeElement CondValue = getValueState(I.getCondition()); 926 if (CondValue.isUnknownOrUndef()) 927 return; 928 929 if (ConstantInt *CondCB = getConstantInt(CondValue)) { 930 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 931 mergeInValue(&I, getValueState(OpVal)); 932 return; 933 } 934 935 // Otherwise, the condition is overdefined or a constant we can't evaluate. 936 // See if we can produce something better than overdefined based on the T/F 937 // value. 938 ValueLatticeElement TVal = getValueState(I.getTrueValue()); 939 ValueLatticeElement FVal = getValueState(I.getFalseValue()); 940 941 bool Changed = ValueState[&I].mergeIn(TVal); 942 Changed |= ValueState[&I].mergeIn(FVal); 943 if (Changed) 944 pushToWorkListMsg(ValueState[&I], &I); 945 } 946 947 // Handle Unary Operators. 948 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) { 949 ValueLatticeElement V0State = getValueState(I.getOperand(0)); 950 951 ValueLatticeElement &IV = ValueState[&I]; 952 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 953 // discover a concrete value later. 954 if (isOverdefined(IV)) 955 return (void)markOverdefined(&I); 956 957 if (isConstant(V0State)) { 958 Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State)); 959 960 // op Y -> undef. 961 if (isa<UndefValue>(C)) 962 return; 963 return (void)markConstant(IV, &I, C); 964 } 965 966 // If something is undef, wait for it to resolve. 967 if (!isOverdefined(V0State)) 968 return; 969 970 markOverdefined(&I); 971 } 972 973 // Handle Binary Operators. 974 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) { 975 ValueLatticeElement V1State = getValueState(I.getOperand(0)); 976 ValueLatticeElement V2State = getValueState(I.getOperand(1)); 977 978 ValueLatticeElement &IV = ValueState[&I]; 979 if (IV.isOverdefined()) 980 return; 981 982 // If something is undef, wait for it to resolve. 983 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) 984 return; 985 986 if (V1State.isOverdefined() && V2State.isOverdefined()) 987 return (void)markOverdefined(&I); 988 989 // If either of the operands is a constant, try to fold it to a constant. 990 // TODO: Use information from notconstant better. 991 if ((V1State.isConstant() || V2State.isConstant())) { 992 Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0); 993 Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1); 994 Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); 995 auto *C = dyn_cast_or_null<Constant>(R); 996 if (C) { 997 // X op Y -> undef. 998 if (isa<UndefValue>(C)) 999 return; 1000 // Conservatively assume that the result may be based on operands that may 1001 // be undef. Note that we use mergeInValue to combine the constant with 1002 // the existing lattice value for I, as different constants might be found 1003 // after one of the operands go to overdefined, e.g. due to one operand 1004 // being a special floating value. 1005 ValueLatticeElement NewV; 1006 NewV.markConstant(C, /*MayIncludeUndef=*/true); 1007 return (void)mergeInValue(&I, NewV); 1008 } 1009 } 1010 1011 // Only use ranges for binary operators on integers. 1012 if (!I.getType()->isIntegerTy()) 1013 return markOverdefined(&I); 1014 1015 // Try to simplify to a constant range. 1016 ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 1017 ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); 1018 if (V1State.isConstantRange()) 1019 A = V1State.getConstantRange(); 1020 if (V2State.isConstantRange()) 1021 B = V2State.getConstantRange(); 1022 1023 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B); 1024 mergeInValue(&I, ValueLatticeElement::getRange(R)); 1025 1026 // TODO: Currently we do not exploit special values that produce something 1027 // better than overdefined with an overdefined operand for vector or floating 1028 // point types, like and <4 x i32> overdefined, zeroinitializer. 1029 } 1030 1031 // Handle ICmpInst instruction. 1032 void SCCPInstVisitor::visitCmpInst(CmpInst &I) { 1033 // Do not cache this lookup, getValueState calls later in the function might 1034 // invalidate the reference. 1035 if (isOverdefined(ValueState[&I])) 1036 return (void)markOverdefined(&I); 1037 1038 Value *Op1 = I.getOperand(0); 1039 Value *Op2 = I.getOperand(1); 1040 1041 // For parameters, use ParamState which includes constant range info if 1042 // available. 1043 auto V1State = getValueState(Op1); 1044 auto V2State = getValueState(Op2); 1045 1046 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); 1047 if (C) { 1048 if (isa<UndefValue>(C)) 1049 return; 1050 ValueLatticeElement CV; 1051 CV.markConstant(C); 1052 mergeInValue(&I, CV); 1053 return; 1054 } 1055 1056 // If operands are still unknown, wait for it to resolve. 1057 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && 1058 !isConstant(ValueState[&I])) 1059 return; 1060 1061 markOverdefined(&I); 1062 } 1063 1064 // Handle getelementptr instructions. If all operands are constants then we 1065 // can turn this into a getelementptr ConstantExpr. 1066 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 1067 if (isOverdefined(ValueState[&I])) 1068 return (void)markOverdefined(&I); 1069 1070 SmallVector<Constant *, 8> Operands; 1071 Operands.reserve(I.getNumOperands()); 1072 1073 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1074 ValueLatticeElement State = getValueState(I.getOperand(i)); 1075 if (State.isUnknownOrUndef()) 1076 return; // Operands are not resolved yet. 1077 1078 if (isOverdefined(State)) 1079 return (void)markOverdefined(&I); 1080 1081 if (Constant *C = getConstant(State)) { 1082 Operands.push_back(C); 1083 continue; 1084 } 1085 1086 return (void)markOverdefined(&I); 1087 } 1088 1089 Constant *Ptr = Operands[0]; 1090 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1091 Constant *C = 1092 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1093 if (isa<UndefValue>(C)) 1094 return; 1095 markConstant(&I, C); 1096 } 1097 1098 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) { 1099 // If this store is of a struct, ignore it. 1100 if (SI.getOperand(0)->getType()->isStructTy()) 1101 return; 1102 1103 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1104 return; 1105 1106 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1107 auto I = TrackedGlobals.find(GV); 1108 if (I == TrackedGlobals.end()) 1109 return; 1110 1111 // Get the value we are storing into the global, then merge it. 1112 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), 1113 ValueLatticeElement::MergeOptions().setCheckWiden(false)); 1114 if (I->second.isOverdefined()) 1115 TrackedGlobals.erase(I); // No need to keep tracking this! 1116 } 1117 1118 static ValueLatticeElement getValueFromMetadata(const Instruction *I) { 1119 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1120 if (I->getType()->isIntegerTy()) 1121 return ValueLatticeElement::getRange( 1122 getConstantRangeFromMetadata(*Ranges)); 1123 if (I->hasMetadata(LLVMContext::MD_nonnull)) 1124 return ValueLatticeElement::getNot( 1125 ConstantPointerNull::get(cast<PointerType>(I->getType()))); 1126 return ValueLatticeElement::getOverdefined(); 1127 } 1128 1129 // Handle load instructions. If the operand is a constant pointer to a constant 1130 // global, we can replace the load with the loaded constant value! 1131 void SCCPInstVisitor::visitLoadInst(LoadInst &I) { 1132 // If this load is of a struct or the load is volatile, just mark the result 1133 // as overdefined. 1134 if (I.getType()->isStructTy() || I.isVolatile()) 1135 return (void)markOverdefined(&I); 1136 1137 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would 1138 // discover a concrete value later. 1139 if (ValueState[&I].isOverdefined()) 1140 return (void)markOverdefined(&I); 1141 1142 ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); 1143 if (PtrVal.isUnknownOrUndef()) 1144 return; // The pointer is not resolved yet! 1145 1146 ValueLatticeElement &IV = ValueState[&I]; 1147 1148 if (isConstant(PtrVal)) { 1149 Constant *Ptr = getConstant(PtrVal); 1150 1151 // load null is undefined. 1152 if (isa<ConstantPointerNull>(Ptr)) { 1153 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1154 return (void)markOverdefined(IV, &I); 1155 else 1156 return; 1157 } 1158 1159 // Transform load (constant global) into the value loaded. 1160 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1161 if (!TrackedGlobals.empty()) { 1162 // If we are tracking this global, merge in the known value for it. 1163 auto It = TrackedGlobals.find(GV); 1164 if (It != TrackedGlobals.end()) { 1165 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); 1166 return; 1167 } 1168 } 1169 } 1170 1171 // Transform load from a constant into a constant if possible. 1172 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { 1173 if (isa<UndefValue>(C)) 1174 return; 1175 return (void)markConstant(IV, &I, C); 1176 } 1177 } 1178 1179 // Fall back to metadata. 1180 mergeInValue(&I, getValueFromMetadata(&I)); 1181 } 1182 1183 void SCCPInstVisitor::visitCallBase(CallBase &CB) { 1184 handleCallResult(CB); 1185 handleCallArguments(CB); 1186 } 1187 1188 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) { 1189 Function *F = CB.getCalledFunction(); 1190 1191 // Void return and not tracking callee, just bail. 1192 if (CB.getType()->isVoidTy()) 1193 return; 1194 1195 // Always mark struct return as overdefined. 1196 if (CB.getType()->isStructTy()) 1197 return (void)markOverdefined(&CB); 1198 1199 // Otherwise, if we have a single return value case, and if the function is 1200 // a declaration, maybe we can constant fold it. 1201 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { 1202 SmallVector<Constant *, 8> Operands; 1203 for (const Use &A : CB.args()) { 1204 if (A.get()->getType()->isStructTy()) 1205 return markOverdefined(&CB); // Can't handle struct args. 1206 ValueLatticeElement State = getValueState(A); 1207 1208 if (State.isUnknownOrUndef()) 1209 return; // Operands are not resolved yet. 1210 if (isOverdefined(State)) 1211 return (void)markOverdefined(&CB); 1212 assert(isConstant(State) && "Unknown state!"); 1213 Operands.push_back(getConstant(State)); 1214 } 1215 1216 if (isOverdefined(getValueState(&CB))) 1217 return (void)markOverdefined(&CB); 1218 1219 // If we can constant fold this, mark the result of the call as a 1220 // constant. 1221 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) { 1222 // call -> undef. 1223 if (isa<UndefValue>(C)) 1224 return; 1225 return (void)markConstant(&CB, C); 1226 } 1227 } 1228 1229 // Fall back to metadata. 1230 mergeInValue(&CB, getValueFromMetadata(&CB)); 1231 } 1232 1233 void SCCPInstVisitor::handleCallArguments(CallBase &CB) { 1234 Function *F = CB.getCalledFunction(); 1235 // If this is a local function that doesn't have its address taken, mark its 1236 // entry block executable and merge in the actual arguments to the call into 1237 // the formal arguments of the function. 1238 if (!TrackingIncomingArguments.empty() && 1239 TrackingIncomingArguments.count(F)) { 1240 markBlockExecutable(&F->front()); 1241 1242 // Propagate information from this call site into the callee. 1243 auto CAI = CB.arg_begin(); 1244 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 1245 ++AI, ++CAI) { 1246 // If this argument is byval, and if the function is not readonly, there 1247 // will be an implicit copy formed of the input aggregate. 1248 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1249 markOverdefined(&*AI); 1250 continue; 1251 } 1252 1253 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1254 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1255 ValueLatticeElement CallArg = getStructValueState(*CAI, i); 1256 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, 1257 getMaxWidenStepsOpts()); 1258 } 1259 } else 1260 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); 1261 } 1262 } 1263 } 1264 1265 void SCCPInstVisitor::handleCallResult(CallBase &CB) { 1266 Function *F = CB.getCalledFunction(); 1267 1268 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) { 1269 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1270 if (ValueState[&CB].isOverdefined()) 1271 return; 1272 1273 Value *CopyOf = CB.getOperand(0); 1274 ValueLatticeElement CopyOfVal = getValueState(CopyOf); 1275 const auto *PI = getPredicateInfoFor(&CB); 1276 assert(PI && "Missing predicate info for ssa.copy"); 1277 1278 const Optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1279 if (!Constraint) { 1280 mergeInValue(ValueState[&CB], &CB, CopyOfVal); 1281 return; 1282 } 1283 1284 CmpInst::Predicate Pred = Constraint->Predicate; 1285 Value *OtherOp = Constraint->OtherOp; 1286 1287 // Wait until OtherOp is resolved. 1288 if (getValueState(OtherOp).isUnknown()) { 1289 addAdditionalUser(OtherOp, &CB); 1290 return; 1291 } 1292 1293 // TODO: Actually filp MayIncludeUndef for the created range to false, 1294 // once most places in the optimizer respect the branches on 1295 // undef/poison are UB rule. The reason why the new range cannot be 1296 // undef is as follows below: 1297 // The new range is based on a branch condition. That guarantees that 1298 // neither of the compare operands can be undef in the branch targets, 1299 // unless we have conditions that are always true/false (e.g. icmp ule 1300 // i32, %a, i32_max). For the latter overdefined/empty range will be 1301 // inferred, but the branch will get folded accordingly anyways. 1302 bool MayIncludeUndef = !isa<PredicateAssume>(PI); 1303 1304 ValueLatticeElement CondVal = getValueState(OtherOp); 1305 ValueLatticeElement &IV = ValueState[&CB]; 1306 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { 1307 auto ImposedCR = 1308 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); 1309 1310 // Get the range imposed by the condition. 1311 if (CondVal.isConstantRange()) 1312 ImposedCR = ConstantRange::makeAllowedICmpRegion( 1313 Pred, CondVal.getConstantRange()); 1314 1315 // Combine range info for the original value with the new range from the 1316 // condition. 1317 auto CopyOfCR = CopyOfVal.isConstantRange() 1318 ? CopyOfVal.getConstantRange() 1319 : ConstantRange::getFull( 1320 DL.getTypeSizeInBits(CopyOf->getType())); 1321 auto NewCR = ImposedCR.intersectWith(CopyOfCR); 1322 // If the existing information is != x, do not use the information from 1323 // a chained predicate, as the != x information is more likely to be 1324 // helpful in practice. 1325 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) 1326 NewCR = CopyOfCR; 1327 1328 addAdditionalUser(OtherOp, &CB); 1329 mergeInValue(IV, &CB, 1330 ValueLatticeElement::getRange(NewCR, MayIncludeUndef)); 1331 return; 1332 } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) { 1333 // For non-integer values or integer constant expressions, only 1334 // propagate equal constants. 1335 addAdditionalUser(OtherOp, &CB); 1336 mergeInValue(IV, &CB, CondVal); 1337 return; 1338 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() && 1339 !MayIncludeUndef) { 1340 // Propagate inequalities. 1341 addAdditionalUser(OtherOp, &CB); 1342 mergeInValue(IV, &CB, 1343 ValueLatticeElement::getNot(CondVal.getConstant())); 1344 return; 1345 } 1346 1347 return (void)mergeInValue(IV, &CB, CopyOfVal); 1348 } 1349 1350 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { 1351 // Compute result range for intrinsics supported by ConstantRange. 1352 // Do this even if we don't know a range for all operands, as we may 1353 // still know something about the result range, e.g. of abs(x). 1354 SmallVector<ConstantRange, 2> OpRanges; 1355 for (Value *Op : II->args()) { 1356 const ValueLatticeElement &State = getValueState(Op); 1357 if (State.isConstantRange()) 1358 OpRanges.push_back(State.getConstantRange()); 1359 else 1360 OpRanges.push_back( 1361 ConstantRange::getFull(Op->getType()->getScalarSizeInBits())); 1362 } 1363 1364 ConstantRange Result = 1365 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); 1366 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); 1367 } 1368 } 1369 1370 // The common case is that we aren't tracking the callee, either because we 1371 // are not doing interprocedural analysis or the callee is indirect, or is 1372 // external. Handle these cases first. 1373 if (!F || F->isDeclaration()) 1374 return handleCallOverdefined(CB); 1375 1376 // If this is a single/zero retval case, see if we're tracking the function. 1377 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1378 if (!MRVFunctionsTracked.count(F)) 1379 return handleCallOverdefined(CB); // Not tracking this callee. 1380 1381 // If we are tracking this callee, propagate the result of the function 1382 // into this call site. 1383 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1384 mergeInValue(getStructValueState(&CB, i), &CB, 1385 TrackedMultipleRetVals[std::make_pair(F, i)], 1386 getMaxWidenStepsOpts()); 1387 } else { 1388 auto TFRVI = TrackedRetVals.find(F); 1389 if (TFRVI == TrackedRetVals.end()) 1390 return handleCallOverdefined(CB); // Not tracking this callee. 1391 1392 // If so, propagate the return value of the callee into this call result. 1393 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); 1394 } 1395 } 1396 1397 void SCCPInstVisitor::solve() { 1398 // Process the work lists until they are empty! 1399 while (!BBWorkList.empty() || !InstWorkList.empty() || 1400 !OverdefinedInstWorkList.empty()) { 1401 // Process the overdefined instruction's work list first, which drives other 1402 // things to overdefined more quickly. 1403 while (!OverdefinedInstWorkList.empty()) { 1404 Value *I = OverdefinedInstWorkList.pop_back_val(); 1405 1406 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1407 1408 // "I" got into the work list because it either made the transition from 1409 // bottom to constant, or to overdefined. 1410 // 1411 // Anything on this worklist that is overdefined need not be visited 1412 // since all of its users will have already been marked as overdefined 1413 // Update all of the users of this instruction's value. 1414 // 1415 markUsersAsChanged(I); 1416 } 1417 1418 // Process the instruction work list. 1419 while (!InstWorkList.empty()) { 1420 Value *I = InstWorkList.pop_back_val(); 1421 1422 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1423 1424 // "I" got into the work list because it made the transition from undef to 1425 // constant. 1426 // 1427 // Anything on this worklist that is overdefined need not be visited 1428 // since all of its users will have already been marked as overdefined. 1429 // Update all of the users of this instruction's value. 1430 // 1431 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1432 markUsersAsChanged(I); 1433 } 1434 1435 // Process the basic block work list. 1436 while (!BBWorkList.empty()) { 1437 BasicBlock *BB = BBWorkList.pop_back_val(); 1438 1439 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1440 1441 // Notify all instructions in this basic block that they are newly 1442 // executable. 1443 visit(BB); 1444 } 1445 } 1446 } 1447 1448 /// resolvedUndefsIn - While solving the dataflow for a function, we assume 1449 /// that branches on undef values cannot reach any of their successors. 1450 /// However, this is not a safe assumption. After we solve dataflow, this 1451 /// method should be use to handle this. If this returns true, the solver 1452 /// should be rerun. 1453 /// 1454 /// This method handles this by finding an unresolved branch and marking it one 1455 /// of the edges from the block as being feasible, even though the condition 1456 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1457 /// CFG and only slightly pessimizes the analysis results (by marking one, 1458 /// potentially infeasible, edge feasible). This cannot usefully modify the 1459 /// constraints on the condition of the branch, as that would impact other users 1460 /// of the value. 1461 /// 1462 /// This scan also checks for values that use undefs. It conservatively marks 1463 /// them as overdefined. 1464 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) { 1465 bool MadeChange = false; 1466 for (BasicBlock &BB : F) { 1467 if (!BBExecutable.count(&BB)) 1468 continue; 1469 1470 for (Instruction &I : BB) { 1471 // Look for instructions which produce undef values. 1472 if (I.getType()->isVoidTy()) 1473 continue; 1474 1475 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1476 // Only a few things that can be structs matter for undef. 1477 1478 // Tracked calls must never be marked overdefined in resolvedUndefsIn. 1479 if (auto *CB = dyn_cast<CallBase>(&I)) 1480 if (Function *F = CB->getCalledFunction()) 1481 if (MRVFunctionsTracked.count(F)) 1482 continue; 1483 1484 // extractvalue and insertvalue don't need to be marked; they are 1485 // tracked as precisely as their operands. 1486 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1487 continue; 1488 // Send the results of everything else to overdefined. We could be 1489 // more precise than this but it isn't worth bothering. 1490 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1491 ValueLatticeElement &LV = getStructValueState(&I, i); 1492 if (LV.isUnknownOrUndef()) { 1493 markOverdefined(LV, &I); 1494 MadeChange = true; 1495 } 1496 } 1497 continue; 1498 } 1499 1500 ValueLatticeElement &LV = getValueState(&I); 1501 if (!LV.isUnknownOrUndef()) 1502 continue; 1503 1504 // There are two reasons a call can have an undef result 1505 // 1. It could be tracked. 1506 // 2. It could be constant-foldable. 1507 // Because of the way we solve return values, tracked calls must 1508 // never be marked overdefined in resolvedUndefsIn. 1509 if (auto *CB = dyn_cast<CallBase>(&I)) 1510 if (Function *F = CB->getCalledFunction()) 1511 if (TrackedRetVals.count(F)) 1512 continue; 1513 1514 if (isa<LoadInst>(I)) { 1515 // A load here means one of two things: a load of undef from a global, 1516 // a load from an unknown pointer. Either way, having it return undef 1517 // is okay. 1518 continue; 1519 } 1520 1521 markOverdefined(&I); 1522 MadeChange = true; 1523 } 1524 1525 // Check to see if we have a branch or switch on an undefined value. If so 1526 // we force the branch to go one way or the other to make the successor 1527 // values live. It doesn't really matter which way we force it. 1528 Instruction *TI = BB.getTerminator(); 1529 if (auto *BI = dyn_cast<BranchInst>(TI)) { 1530 if (!BI->isConditional()) 1531 continue; 1532 if (!getValueState(BI->getCondition()).isUnknownOrUndef()) 1533 continue; 1534 1535 // If the input to SCCP is actually branch on undef, fix the undef to 1536 // false. 1537 if (isa<UndefValue>(BI->getCondition())) { 1538 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1539 markEdgeExecutable(&BB, TI->getSuccessor(1)); 1540 MadeChange = true; 1541 continue; 1542 } 1543 1544 // Otherwise, it is a branch on a symbolic value which is currently 1545 // considered to be undef. Make sure some edge is executable, so a 1546 // branch on "undef" always flows somewhere. 1547 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1548 BasicBlock *DefaultSuccessor = TI->getSuccessor(1); 1549 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1550 MadeChange = true; 1551 1552 continue; 1553 } 1554 1555 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { 1556 // Indirect branch with no successor ?. Its ok to assume it branches 1557 // to no target. 1558 if (IBR->getNumSuccessors() < 1) 1559 continue; 1560 1561 if (!getValueState(IBR->getAddress()).isUnknownOrUndef()) 1562 continue; 1563 1564 // If the input to SCCP is actually branch on undef, fix the undef to 1565 // the first successor of the indirect branch. 1566 if (isa<UndefValue>(IBR->getAddress())) { 1567 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); 1568 markEdgeExecutable(&BB, IBR->getSuccessor(0)); 1569 MadeChange = true; 1570 continue; 1571 } 1572 1573 // Otherwise, it is a branch on a symbolic value which is currently 1574 // considered to be undef. Make sure some edge is executable, so a 1575 // branch on "undef" always flows somewhere. 1576 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: 1577 // we can assume the branch has undefined behavior instead. 1578 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); 1579 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1580 MadeChange = true; 1581 1582 continue; 1583 } 1584 1585 if (auto *SI = dyn_cast<SwitchInst>(TI)) { 1586 if (!SI->getNumCases() || 1587 !getValueState(SI->getCondition()).isUnknownOrUndef()) 1588 continue; 1589 1590 // If the input to SCCP is actually switch on undef, fix the undef to 1591 // the first constant. 1592 if (isa<UndefValue>(SI->getCondition())) { 1593 SI->setCondition(SI->case_begin()->getCaseValue()); 1594 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); 1595 MadeChange = true; 1596 continue; 1597 } 1598 1599 // Otherwise, it is a branch on a symbolic value which is currently 1600 // considered to be undef. Make sure some edge is executable, so a 1601 // branch on "undef" always flows somewhere. 1602 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1603 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); 1604 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1605 MadeChange = true; 1606 1607 continue; 1608 } 1609 } 1610 1611 return MadeChange; 1612 } 1613 1614 //===----------------------------------------------------------------------===// 1615 // 1616 // SCCPSolver implementations 1617 // 1618 SCCPSolver::SCCPSolver( 1619 const DataLayout &DL, 1620 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 1621 LLVMContext &Ctx) 1622 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {} 1623 1624 SCCPSolver::~SCCPSolver() = default; 1625 1626 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) { 1627 return Visitor->addAnalysis(F, std::move(A)); 1628 } 1629 1630 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) { 1631 return Visitor->markBlockExecutable(BB); 1632 } 1633 1634 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) { 1635 return Visitor->getPredicateInfoFor(I); 1636 } 1637 1638 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); } 1639 1640 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) { 1641 Visitor->trackValueOfGlobalVariable(GV); 1642 } 1643 1644 void SCCPSolver::addTrackedFunction(Function *F) { 1645 Visitor->addTrackedFunction(F); 1646 } 1647 1648 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) { 1649 Visitor->addToMustPreserveReturnsInFunctions(F); 1650 } 1651 1652 bool SCCPSolver::mustPreserveReturn(Function *F) { 1653 return Visitor->mustPreserveReturn(F); 1654 } 1655 1656 void SCCPSolver::addArgumentTrackedFunction(Function *F) { 1657 Visitor->addArgumentTrackedFunction(F); 1658 } 1659 1660 bool SCCPSolver::isArgumentTrackedFunction(Function *F) { 1661 return Visitor->isArgumentTrackedFunction(F); 1662 } 1663 1664 void SCCPSolver::solve() { Visitor->solve(); } 1665 1666 bool SCCPSolver::resolvedUndefsIn(Function &F) { 1667 return Visitor->resolvedUndefsIn(F); 1668 } 1669 1670 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const { 1671 return Visitor->isBlockExecutable(BB); 1672 } 1673 1674 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { 1675 return Visitor->isEdgeFeasible(From, To); 1676 } 1677 1678 std::vector<ValueLatticeElement> 1679 SCCPSolver::getStructLatticeValueFor(Value *V) const { 1680 return Visitor->getStructLatticeValueFor(V); 1681 } 1682 1683 void SCCPSolver::removeLatticeValueFor(Value *V) { 1684 return Visitor->removeLatticeValueFor(V); 1685 } 1686 1687 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const { 1688 return Visitor->getLatticeValueFor(V); 1689 } 1690 1691 const MapVector<Function *, ValueLatticeElement> & 1692 SCCPSolver::getTrackedRetVals() { 1693 return Visitor->getTrackedRetVals(); 1694 } 1695 1696 const DenseMap<GlobalVariable *, ValueLatticeElement> & 1697 SCCPSolver::getTrackedGlobals() { 1698 return Visitor->getTrackedGlobals(); 1699 } 1700 1701 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() { 1702 return Visitor->getMRVFunctionsTracked(); 1703 } 1704 1705 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); } 1706 1707 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) { 1708 return Visitor->isStructLatticeConstant(F, STy); 1709 } 1710 1711 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const { 1712 return Visitor->getConstant(LV); 1713 } 1714 1715 SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() { 1716 return Visitor->getArgumentTrackedFunctions(); 1717 } 1718 1719 void SCCPSolver::markArgInFuncSpecialization(Function *F, Argument *A, 1720 Constant *C) { 1721 Visitor->markArgInFuncSpecialization(F, A, C); 1722 } 1723 1724 void SCCPSolver::markFunctionUnreachable(Function *F) { 1725 Visitor->markFunctionUnreachable(F); 1726 } 1727 1728 void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); } 1729 1730 void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); } 1731