1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 // The algorithm used here is based on: 17 // 18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes. 19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of 20 // Programming Languages 21 // POPL '95. ACM, New York, NY, 62-73. 22 // 23 // It has been modified to not explicitly use the DJ graph data structure and to 24 // directly compute pruned SSA using per-variable liveness information. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/AliasSetTracker.h" 36 #include "llvm/Analysis/InstructionSimplify.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include <algorithm> 50 #include <queue> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "mem2reg" 54 55 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 56 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 57 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 58 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 59 60 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 61 // FIXME: If the memory unit is of pointer or integer type, we can permit 62 // assignments to subsections of the memory unit. 63 unsigned AS = AI->getType()->getAddressSpace(); 64 65 // Only allow direct and non-volatile loads and stores... 66 for (const User *U : AI->users()) { 67 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 68 // Note that atomic loads can be transformed; atomic semantics do 69 // not have any meaning for a local alloca. 70 if (LI->isVolatile()) 71 return false; 72 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 73 if (SI->getOperand(0) == AI) 74 return false; // Don't allow a store OF the AI, only INTO the AI. 75 // Note that atomic stores can be transformed; atomic semantics do 76 // not have any meaning for a local alloca. 77 if (SI->isVolatile()) 78 return false; 79 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 80 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 81 II->getIntrinsicID() != Intrinsic::lifetime_end) 82 return false; 83 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 84 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 85 return false; 86 if (!onlyUsedByLifetimeMarkers(BCI)) 87 return false; 88 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 89 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 90 return false; 91 if (!GEPI->hasAllZeroIndices()) 92 return false; 93 if (!onlyUsedByLifetimeMarkers(GEPI)) 94 return false; 95 } else { 96 return false; 97 } 98 } 99 100 return true; 101 } 102 103 namespace { 104 105 struct AllocaInfo { 106 SmallVector<BasicBlock *, 32> DefiningBlocks; 107 SmallVector<BasicBlock *, 32> UsingBlocks; 108 109 StoreInst *OnlyStore; 110 BasicBlock *OnlyBlock; 111 bool OnlyUsedInOneBlock; 112 113 Value *AllocaPointerVal; 114 DbgDeclareInst *DbgDeclare; 115 116 void clear() { 117 DefiningBlocks.clear(); 118 UsingBlocks.clear(); 119 OnlyStore = nullptr; 120 OnlyBlock = nullptr; 121 OnlyUsedInOneBlock = true; 122 AllocaPointerVal = nullptr; 123 DbgDeclare = nullptr; 124 } 125 126 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 127 /// by the rest of the pass to reason about the uses of this alloca. 128 void AnalyzeAlloca(AllocaInst *AI) { 129 clear(); 130 131 // As we scan the uses of the alloca instruction, keep track of stores, 132 // and decide whether all of the loads and stores to the alloca are within 133 // the same basic block. 134 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 135 Instruction *User = cast<Instruction>(*UI++); 136 137 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 138 // Remember the basic blocks which define new values for the alloca 139 DefiningBlocks.push_back(SI->getParent()); 140 AllocaPointerVal = SI->getOperand(0); 141 OnlyStore = SI; 142 } else { 143 LoadInst *LI = cast<LoadInst>(User); 144 // Otherwise it must be a load instruction, keep track of variable 145 // reads. 146 UsingBlocks.push_back(LI->getParent()); 147 AllocaPointerVal = LI; 148 } 149 150 if (OnlyUsedInOneBlock) { 151 if (!OnlyBlock) 152 OnlyBlock = User->getParent(); 153 else if (OnlyBlock != User->getParent()) 154 OnlyUsedInOneBlock = false; 155 } 156 } 157 158 DbgDeclare = FindAllocaDbgDeclare(AI); 159 } 160 }; 161 162 // Data package used by RenamePass() 163 class RenamePassData { 164 public: 165 typedef std::vector<Value *> ValVector; 166 167 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} 168 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) 169 : BB(B), Pred(P), Values(V) {} 170 BasicBlock *BB; 171 BasicBlock *Pred; 172 ValVector Values; 173 174 void swap(RenamePassData &RHS) { 175 std::swap(BB, RHS.BB); 176 std::swap(Pred, RHS.Pred); 177 Values.swap(RHS.Values); 178 } 179 }; 180 181 /// \brief This assigns and keeps a per-bb relative ordering of load/store 182 /// instructions in the block that directly load or store an alloca. 183 /// 184 /// This functionality is important because it avoids scanning large basic 185 /// blocks multiple times when promoting many allocas in the same block. 186 class LargeBlockInfo { 187 /// \brief For each instruction that we track, keep the index of the 188 /// instruction. 189 /// 190 /// The index starts out as the number of the instruction from the start of 191 /// the block. 192 DenseMap<const Instruction *, unsigned> InstNumbers; 193 194 public: 195 196 /// This code only looks at accesses to allocas. 197 static bool isInterestingInstruction(const Instruction *I) { 198 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 199 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 200 } 201 202 /// Get or calculate the index of the specified instruction. 203 unsigned getInstructionIndex(const Instruction *I) { 204 assert(isInterestingInstruction(I) && 205 "Not a load/store to/from an alloca?"); 206 207 // If we already have this instruction number, return it. 208 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 209 if (It != InstNumbers.end()) 210 return It->second; 211 212 // Scan the whole block to get the instruction. This accumulates 213 // information for every interesting instruction in the block, in order to 214 // avoid gratuitus rescans. 215 const BasicBlock *BB = I->getParent(); 216 unsigned InstNo = 0; 217 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; 218 ++BBI) 219 if (isInterestingInstruction(BBI)) 220 InstNumbers[BBI] = InstNo++; 221 It = InstNumbers.find(I); 222 223 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 224 return It->second; 225 } 226 227 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 228 229 void clear() { InstNumbers.clear(); } 230 }; 231 232 struct PromoteMem2Reg { 233 /// The alloca instructions being promoted. 234 std::vector<AllocaInst *> Allocas; 235 DominatorTree &DT; 236 DIBuilder DIB; 237 238 /// An AliasSetTracker object to update. If null, don't update it. 239 AliasSetTracker *AST; 240 241 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 242 AssumptionTracker *AT; 243 244 /// Reverse mapping of Allocas. 245 DenseMap<AllocaInst *, unsigned> AllocaLookup; 246 247 /// \brief The PhiNodes we're adding. 248 /// 249 /// That map is used to simplify some Phi nodes as we iterate over it, so 250 /// it should have deterministic iterators. We could use a MapVector, but 251 /// since we already maintain a map from BasicBlock* to a stable numbering 252 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 253 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 254 255 /// For each PHI node, keep track of which entry in Allocas it corresponds 256 /// to. 257 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 258 259 /// If we are updating an AliasSetTracker, then for each alloca that is of 260 /// pointer type, we keep track of what to copyValue to the inserted PHI 261 /// nodes here. 262 std::vector<Value *> PointerAllocaValues; 263 264 /// For each alloca, we keep track of the dbg.declare intrinsic that 265 /// describes it, if any, so that we can convert it to a dbg.value 266 /// intrinsic if the alloca gets promoted. 267 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; 268 269 /// The set of basic blocks the renamer has already visited. 270 /// 271 SmallPtrSet<BasicBlock *, 16> Visited; 272 273 /// Contains a stable numbering of basic blocks to avoid non-determinstic 274 /// behavior. 275 DenseMap<BasicBlock *, unsigned> BBNumbers; 276 277 /// Maps DomTreeNodes to their level in the dominator tree. 278 DenseMap<DomTreeNode *, unsigned> DomLevels; 279 280 /// Lazily compute the number of predecessors a block has. 281 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 282 283 public: 284 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 285 AliasSetTracker *AST, AssumptionTracker *AT) 286 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 287 DIB(*DT.getRoot()->getParent()->getParent()), AST(AST), AT(AT) {} 288 289 void run(); 290 291 private: 292 void RemoveFromAllocasList(unsigned &AllocaIdx) { 293 Allocas[AllocaIdx] = Allocas.back(); 294 Allocas.pop_back(); 295 --AllocaIdx; 296 } 297 298 unsigned getNumPreds(const BasicBlock *BB) { 299 unsigned &NP = BBNumPreds[BB]; 300 if (NP == 0) 301 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 302 return NP - 1; 303 } 304 305 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 306 AllocaInfo &Info); 307 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 308 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 309 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 310 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 311 RenamePassData::ValVector &IncVals, 312 std::vector<RenamePassData> &Worklist); 313 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 314 }; 315 316 } // end of anonymous namespace 317 318 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 319 // Knowing that this alloca is promotable, we know that it's safe to kill all 320 // instructions except for load and store. 321 322 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 323 Instruction *I = cast<Instruction>(*UI); 324 ++UI; 325 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 326 continue; 327 328 if (!I->getType()->isVoidTy()) { 329 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 330 // Follow the use/def chain to erase them now instead of leaving it for 331 // dead code elimination later. 332 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 333 Instruction *Inst = cast<Instruction>(*UUI); 334 ++UUI; 335 Inst->eraseFromParent(); 336 } 337 } 338 I->eraseFromParent(); 339 } 340 } 341 342 /// \brief Rewrite as many loads as possible given a single store. 343 /// 344 /// When there is only a single store, we can use the domtree to trivially 345 /// replace all of the dominated loads with the stored value. Do so, and return 346 /// true if this has successfully promoted the alloca entirely. If this returns 347 /// false there were some loads which were not dominated by the single store 348 /// and thus must be phi-ed with undef. We fall back to the standard alloca 349 /// promotion algorithm in that case. 350 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 351 LargeBlockInfo &LBI, 352 DominatorTree &DT, 353 AliasSetTracker *AST) { 354 StoreInst *OnlyStore = Info.OnlyStore; 355 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 356 BasicBlock *StoreBB = OnlyStore->getParent(); 357 int StoreIndex = -1; 358 359 // Clear out UsingBlocks. We will reconstruct it here if needed. 360 Info.UsingBlocks.clear(); 361 362 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 363 Instruction *UserInst = cast<Instruction>(*UI++); 364 if (!isa<LoadInst>(UserInst)) { 365 assert(UserInst == OnlyStore && "Should only have load/stores"); 366 continue; 367 } 368 LoadInst *LI = cast<LoadInst>(UserInst); 369 370 // Okay, if we have a load from the alloca, we want to replace it with the 371 // only value stored to the alloca. We can do this if the value is 372 // dominated by the store. If not, we use the rest of the mem2reg machinery 373 // to insert the phi nodes as needed. 374 if (!StoringGlobalVal) { // Non-instructions are always dominated. 375 if (LI->getParent() == StoreBB) { 376 // If we have a use that is in the same block as the store, compare the 377 // indices of the two instructions to see which one came first. If the 378 // load came before the store, we can't handle it. 379 if (StoreIndex == -1) 380 StoreIndex = LBI.getInstructionIndex(OnlyStore); 381 382 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 383 // Can't handle this load, bail out. 384 Info.UsingBlocks.push_back(StoreBB); 385 continue; 386 } 387 388 } else if (LI->getParent() != StoreBB && 389 !DT.dominates(StoreBB, LI->getParent())) { 390 // If the load and store are in different blocks, use BB dominance to 391 // check their relationships. If the store doesn't dom the use, bail 392 // out. 393 Info.UsingBlocks.push_back(LI->getParent()); 394 continue; 395 } 396 } 397 398 // Otherwise, we *can* safely rewrite this load. 399 Value *ReplVal = OnlyStore->getOperand(0); 400 // If the replacement value is the load, this must occur in unreachable 401 // code. 402 if (ReplVal == LI) 403 ReplVal = UndefValue::get(LI->getType()); 404 LI->replaceAllUsesWith(ReplVal); 405 if (AST && LI->getType()->isPointerTy()) 406 AST->deleteValue(LI); 407 LI->eraseFromParent(); 408 LBI.deleteValue(LI); 409 } 410 411 // Finally, after the scan, check to see if the store is all that is left. 412 if (!Info.UsingBlocks.empty()) 413 return false; // If not, we'll have to fall back for the remainder. 414 415 // Record debuginfo for the store and remove the declaration's 416 // debuginfo. 417 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 418 DIBuilder DIB(*AI->getParent()->getParent()->getParent()); 419 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); 420 DDI->eraseFromParent(); 421 LBI.deleteValue(DDI); 422 } 423 // Remove the (now dead) store and alloca. 424 Info.OnlyStore->eraseFromParent(); 425 LBI.deleteValue(Info.OnlyStore); 426 427 if (AST) 428 AST->deleteValue(AI); 429 AI->eraseFromParent(); 430 LBI.deleteValue(AI); 431 return true; 432 } 433 434 /// Many allocas are only used within a single basic block. If this is the 435 /// case, avoid traversing the CFG and inserting a lot of potentially useless 436 /// PHI nodes by just performing a single linear pass over the basic block 437 /// using the Alloca. 438 /// 439 /// If we cannot promote this alloca (because it is read before it is written), 440 /// return true. This is necessary in cases where, due to control flow, the 441 /// alloca is potentially undefined on some control flow paths. e.g. code like 442 /// this is potentially correct: 443 /// 444 /// for (...) { if (c) { A = undef; undef = B; } } 445 /// 446 /// ... so long as A is not used before undef is set. 447 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 448 LargeBlockInfo &LBI, 449 AliasSetTracker *AST) { 450 // The trickiest case to handle is when we have large blocks. Because of this, 451 // this code is optimized assuming that large blocks happen. This does not 452 // significantly pessimize the small block case. This uses LargeBlockInfo to 453 // make it efficient to get the index of various operations in the block. 454 455 // Walk the use-def list of the alloca, getting the locations of all stores. 456 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; 457 StoresByIndexTy StoresByIndex; 458 459 for (User *U : AI->users()) 460 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 461 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 462 463 // Sort the stores by their index, making it efficient to do a lookup with a 464 // binary search. 465 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 466 467 // Walk all of the loads from this alloca, replacing them with the nearest 468 // store above them, if any. 469 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 470 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 471 if (!LI) 472 continue; 473 474 unsigned LoadIdx = LBI.getInstructionIndex(LI); 475 476 // Find the nearest store that has a lower index than this load. 477 StoresByIndexTy::iterator I = 478 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 479 std::make_pair(LoadIdx, 480 static_cast<StoreInst *>(nullptr)), 481 less_first()); 482 483 if (I == StoresByIndex.begin()) 484 // If there is no store before this load, the load takes the undef value. 485 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 486 else 487 // Otherwise, there was a store before this load, the load takes its value. 488 LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0)); 489 490 if (AST && LI->getType()->isPointerTy()) 491 AST->deleteValue(LI); 492 LI->eraseFromParent(); 493 LBI.deleteValue(LI); 494 } 495 496 // Remove the (now dead) stores and alloca. 497 while (!AI->use_empty()) { 498 StoreInst *SI = cast<StoreInst>(AI->user_back()); 499 // Record debuginfo for the store before removing it. 500 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 501 DIBuilder DIB(*AI->getParent()->getParent()->getParent()); 502 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 503 } 504 SI->eraseFromParent(); 505 LBI.deleteValue(SI); 506 } 507 508 if (AST) 509 AST->deleteValue(AI); 510 AI->eraseFromParent(); 511 LBI.deleteValue(AI); 512 513 // The alloca's debuginfo can be removed as well. 514 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 515 DDI->eraseFromParent(); 516 LBI.deleteValue(DDI); 517 } 518 519 ++NumLocalPromoted; 520 } 521 522 void PromoteMem2Reg::run() { 523 Function &F = *DT.getRoot()->getParent(); 524 525 if (AST) 526 PointerAllocaValues.resize(Allocas.size()); 527 AllocaDbgDeclares.resize(Allocas.size()); 528 529 AllocaInfo Info; 530 LargeBlockInfo LBI; 531 532 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 533 AllocaInst *AI = Allocas[AllocaNum]; 534 535 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 536 assert(AI->getParent()->getParent() == &F && 537 "All allocas should be in the same function, which is same as DF!"); 538 539 removeLifetimeIntrinsicUsers(AI); 540 541 if (AI->use_empty()) { 542 // If there are no uses of the alloca, just delete it now. 543 if (AST) 544 AST->deleteValue(AI); 545 AI->eraseFromParent(); 546 547 // Remove the alloca from the Allocas list, since it has been processed 548 RemoveFromAllocasList(AllocaNum); 549 ++NumDeadAlloca; 550 continue; 551 } 552 553 // Calculate the set of read and write-locations for each alloca. This is 554 // analogous to finding the 'uses' and 'definitions' of each variable. 555 Info.AnalyzeAlloca(AI); 556 557 // If there is only a single store to this value, replace any loads of 558 // it that are directly dominated by the definition with the value stored. 559 if (Info.DefiningBlocks.size() == 1) { 560 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { 561 // The alloca has been processed, move on. 562 RemoveFromAllocasList(AllocaNum); 563 ++NumSingleStore; 564 continue; 565 } 566 } 567 568 // If the alloca is only read and written in one basic block, just perform a 569 // linear sweep over the block to eliminate it. 570 if (Info.OnlyUsedInOneBlock) { 571 promoteSingleBlockAlloca(AI, Info, LBI, AST); 572 573 // The alloca has been processed, move on. 574 RemoveFromAllocasList(AllocaNum); 575 continue; 576 } 577 578 // If we haven't computed dominator tree levels, do so now. 579 if (DomLevels.empty()) { 580 SmallVector<DomTreeNode *, 32> Worklist; 581 582 DomTreeNode *Root = DT.getRootNode(); 583 DomLevels[Root] = 0; 584 Worklist.push_back(Root); 585 586 while (!Worklist.empty()) { 587 DomTreeNode *Node = Worklist.pop_back_val(); 588 unsigned ChildLevel = DomLevels[Node] + 1; 589 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); 590 CI != CE; ++CI) { 591 DomLevels[*CI] = ChildLevel; 592 Worklist.push_back(*CI); 593 } 594 } 595 } 596 597 // If we haven't computed a numbering for the BB's in the function, do so 598 // now. 599 if (BBNumbers.empty()) { 600 unsigned ID = 0; 601 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 602 BBNumbers[I] = ID++; 603 } 604 605 // If we have an AST to keep updated, remember some pointer value that is 606 // stored into the alloca. 607 if (AST) 608 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 609 610 // Remember the dbg.declare intrinsic describing this alloca, if any. 611 if (Info.DbgDeclare) 612 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; 613 614 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 615 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 616 617 // At this point, we're committed to promoting the alloca using IDF's, and 618 // the standard SSA construction algorithm. Determine which blocks need PHI 619 // nodes and see if we can optimize out some work by avoiding insertion of 620 // dead phi nodes. 621 DetermineInsertionPoint(AI, AllocaNum, Info); 622 } 623 624 if (Allocas.empty()) 625 return; // All of the allocas must have been trivial! 626 627 LBI.clear(); 628 629 // Set the incoming values for the basic block to be null values for all of 630 // the alloca's. We do this in case there is a load of a value that has not 631 // been stored yet. In this case, it will get this null value. 632 // 633 RenamePassData::ValVector Values(Allocas.size()); 634 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 635 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 636 637 // Walks all basic blocks in the function performing the SSA rename algorithm 638 // and inserting the phi nodes we marked as necessary 639 // 640 std::vector<RenamePassData> RenamePassWorkList; 641 RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values)); 642 do { 643 RenamePassData RPD; 644 RPD.swap(RenamePassWorkList.back()); 645 RenamePassWorkList.pop_back(); 646 // RenamePass may add new worklist entries. 647 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 648 } while (!RenamePassWorkList.empty()); 649 650 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 651 Visited.clear(); 652 653 // Remove the allocas themselves from the function. 654 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 655 Instruction *A = Allocas[i]; 656 657 // If there are any uses of the alloca instructions left, they must be in 658 // unreachable basic blocks that were not processed by walking the dominator 659 // tree. Just delete the users now. 660 if (!A->use_empty()) 661 A->replaceAllUsesWith(UndefValue::get(A->getType())); 662 if (AST) 663 AST->deleteValue(A); 664 A->eraseFromParent(); 665 } 666 667 // Remove alloca's dbg.declare instrinsics from the function. 668 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) 669 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) 670 DDI->eraseFromParent(); 671 672 // Loop over all of the PHI nodes and see if there are any that we can get 673 // rid of because they merge all of the same incoming values. This can 674 // happen due to undef values coming into the PHI nodes. This process is 675 // iterative, because eliminating one PHI node can cause others to be removed. 676 bool EliminatedAPHI = true; 677 while (EliminatedAPHI) { 678 EliminatedAPHI = false; 679 680 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 681 // simplify and RAUW them as we go. If it was not, we could add uses to 682 // the values we replace with in a non-deterministic order, thus creating 683 // non-deterministic def->use chains. 684 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 685 I = NewPhiNodes.begin(), 686 E = NewPhiNodes.end(); 687 I != E;) { 688 PHINode *PN = I->second; 689 690 // If this PHI node merges one value and/or undefs, get the value. 691 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AT)) { 692 if (AST && PN->getType()->isPointerTy()) 693 AST->deleteValue(PN); 694 PN->replaceAllUsesWith(V); 695 PN->eraseFromParent(); 696 NewPhiNodes.erase(I++); 697 EliminatedAPHI = true; 698 continue; 699 } 700 ++I; 701 } 702 } 703 704 // At this point, the renamer has added entries to PHI nodes for all reachable 705 // code. Unfortunately, there may be unreachable blocks which the renamer 706 // hasn't traversed. If this is the case, the PHI nodes may not 707 // have incoming values for all predecessors. Loop over all PHI nodes we have 708 // created, inserting undef values if they are missing any incoming values. 709 // 710 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 711 I = NewPhiNodes.begin(), 712 E = NewPhiNodes.end(); 713 I != E; ++I) { 714 // We want to do this once per basic block. As such, only process a block 715 // when we find the PHI that is the first entry in the block. 716 PHINode *SomePHI = I->second; 717 BasicBlock *BB = SomePHI->getParent(); 718 if (&BB->front() != SomePHI) 719 continue; 720 721 // Only do work here if there the PHI nodes are missing incoming values. We 722 // know that all PHI nodes that were inserted in a block will have the same 723 // number of incoming values, so we can just check any of them. 724 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 725 continue; 726 727 // Get the preds for BB. 728 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 729 730 // Ok, now we know that all of the PHI nodes are missing entries for some 731 // basic blocks. Start by sorting the incoming predecessors for efficient 732 // access. 733 std::sort(Preds.begin(), Preds.end()); 734 735 // Now we loop through all BB's which have entries in SomePHI and remove 736 // them from the Preds list. 737 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 738 // Do a log(n) search of the Preds list for the entry we want. 739 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 740 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 741 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 742 "PHI node has entry for a block which is not a predecessor!"); 743 744 // Remove the entry 745 Preds.erase(EntIt); 746 } 747 748 // At this point, the blocks left in the preds list must have dummy 749 // entries inserted into every PHI nodes for the block. Update all the phi 750 // nodes in this block that we are inserting (there could be phis before 751 // mem2reg runs). 752 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 753 BasicBlock::iterator BBI = BB->begin(); 754 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 755 SomePHI->getNumIncomingValues() == NumBadPreds) { 756 Value *UndefVal = UndefValue::get(SomePHI->getType()); 757 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 758 SomePHI->addIncoming(UndefVal, Preds[pred]); 759 } 760 } 761 762 NewPhiNodes.clear(); 763 } 764 765 /// \brief Determine which blocks the value is live in. 766 /// 767 /// These are blocks which lead to uses. Knowing this allows us to avoid 768 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 769 /// inserted phi nodes would be dead). 770 void PromoteMem2Reg::ComputeLiveInBlocks( 771 AllocaInst *AI, AllocaInfo &Info, 772 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 773 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 774 775 // To determine liveness, we must iterate through the predecessors of blocks 776 // where the def is live. Blocks are added to the worklist if we need to 777 // check their predecessors. Start with all the using blocks. 778 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 779 Info.UsingBlocks.end()); 780 781 // If any of the using blocks is also a definition block, check to see if the 782 // definition occurs before or after the use. If it happens before the use, 783 // the value isn't really live-in. 784 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 785 BasicBlock *BB = LiveInBlockWorklist[i]; 786 if (!DefBlocks.count(BB)) 787 continue; 788 789 // Okay, this is a block that both uses and defines the value. If the first 790 // reference to the alloca is a def (store), then we know it isn't live-in. 791 for (BasicBlock::iterator I = BB->begin();; ++I) { 792 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 793 if (SI->getOperand(1) != AI) 794 continue; 795 796 // We found a store to the alloca before a load. The alloca is not 797 // actually live-in here. 798 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 799 LiveInBlockWorklist.pop_back(); 800 --i, --e; 801 break; 802 } 803 804 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 805 if (LI->getOperand(0) != AI) 806 continue; 807 808 // Okay, we found a load before a store to the alloca. It is actually 809 // live into this block. 810 break; 811 } 812 } 813 } 814 815 // Now that we have a set of blocks where the phi is live-in, recursively add 816 // their predecessors until we find the full region the value is live. 817 while (!LiveInBlockWorklist.empty()) { 818 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 819 820 // The block really is live in here, insert it into the set. If already in 821 // the set, then it has already been processed. 822 if (!LiveInBlocks.insert(BB)) 823 continue; 824 825 // Since the value is live into BB, it is either defined in a predecessor or 826 // live into it to. Add the preds to the worklist unless they are a 827 // defining block. 828 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 829 BasicBlock *P = *PI; 830 831 // The value is not live into a predecessor if it defines the value. 832 if (DefBlocks.count(P)) 833 continue; 834 835 // Otherwise it is, add to the worklist. 836 LiveInBlockWorklist.push_back(P); 837 } 838 } 839 } 840 841 /// At this point, we're committed to promoting the alloca using IDF's, and the 842 /// standard SSA construction algorithm. Determine which blocks need phi nodes 843 /// and see if we can optimize out some work by avoiding insertion of dead phi 844 /// nodes. 845 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 846 AllocaInfo &Info) { 847 // Unique the set of defining blocks for efficient lookup. 848 SmallPtrSet<BasicBlock *, 32> DefBlocks; 849 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 850 851 // Determine which blocks the value is live in. These are blocks which lead 852 // to uses. 853 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 854 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 855 856 // Use a priority queue keyed on dominator tree level so that inserted nodes 857 // are handled from the bottom of the dominator tree upwards. 858 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair; 859 typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, 860 less_second> IDFPriorityQueue; 861 IDFPriorityQueue PQ; 862 863 for (BasicBlock *BB : DefBlocks) { 864 if (DomTreeNode *Node = DT.getNode(BB)) 865 PQ.push(std::make_pair(Node, DomLevels[Node])); 866 } 867 868 SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks; 869 SmallPtrSet<DomTreeNode *, 32> Visited; 870 SmallVector<DomTreeNode *, 32> Worklist; 871 while (!PQ.empty()) { 872 DomTreeNodePair RootPair = PQ.top(); 873 PQ.pop(); 874 DomTreeNode *Root = RootPair.first; 875 unsigned RootLevel = RootPair.second; 876 877 // Walk all dominator tree children of Root, inspecting their CFG edges with 878 // targets elsewhere on the dominator tree. Only targets whose level is at 879 // most Root's level are added to the iterated dominance frontier of the 880 // definition set. 881 882 Worklist.clear(); 883 Worklist.push_back(Root); 884 885 while (!Worklist.empty()) { 886 DomTreeNode *Node = Worklist.pop_back_val(); 887 BasicBlock *BB = Node->getBlock(); 888 889 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; 890 ++SI) { 891 DomTreeNode *SuccNode = DT.getNode(*SI); 892 893 // Quickly skip all CFG edges that are also dominator tree edges instead 894 // of catching them below. 895 if (SuccNode->getIDom() == Node) 896 continue; 897 898 unsigned SuccLevel = DomLevels[SuccNode]; 899 if (SuccLevel > RootLevel) 900 continue; 901 902 if (!Visited.insert(SuccNode)) 903 continue; 904 905 BasicBlock *SuccBB = SuccNode->getBlock(); 906 if (!LiveInBlocks.count(SuccBB)) 907 continue; 908 909 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB)); 910 if (!DefBlocks.count(SuccBB)) 911 PQ.push(std::make_pair(SuccNode, SuccLevel)); 912 } 913 914 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; 915 ++CI) { 916 if (!Visited.count(*CI)) 917 Worklist.push_back(*CI); 918 } 919 } 920 } 921 922 if (DFBlocks.size() > 1) 923 std::sort(DFBlocks.begin(), DFBlocks.end()); 924 925 unsigned CurrentVersion = 0; 926 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) 927 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion); 928 } 929 930 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 931 /// 932 /// Returns true if there wasn't already a phi-node for that variable 933 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 934 unsigned &Version) { 935 // Look up the basic-block in question. 936 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 937 938 // If the BB already has a phi node added for the i'th alloca then we're done! 939 if (PN) 940 return false; 941 942 // Create a PhiNode using the dereferenced type... and add the phi-node to the 943 // BasicBlock. 944 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 945 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 946 BB->begin()); 947 ++NumPHIInsert; 948 PhiToAllocaMap[PN] = AllocaNo; 949 950 if (AST && PN->getType()->isPointerTy()) 951 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 952 953 return true; 954 } 955 956 /// \brief Recursively traverse the CFG of the function, renaming loads and 957 /// stores to the allocas which we are promoting. 958 /// 959 /// IncomingVals indicates what value each Alloca contains on exit from the 960 /// predecessor block Pred. 961 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 962 RenamePassData::ValVector &IncomingVals, 963 std::vector<RenamePassData> &Worklist) { 964 NextIteration: 965 // If we are inserting any phi nodes into this BB, they will already be in the 966 // block. 967 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 968 // If we have PHI nodes to update, compute the number of edges from Pred to 969 // BB. 970 if (PhiToAllocaMap.count(APN)) { 971 // We want to be able to distinguish between PHI nodes being inserted by 972 // this invocation of mem2reg from those phi nodes that already existed in 973 // the IR before mem2reg was run. We determine that APN is being inserted 974 // because it is missing incoming edges. All other PHI nodes being 975 // inserted by this pass of mem2reg will have the same number of incoming 976 // operands so far. Remember this count. 977 unsigned NewPHINumOperands = APN->getNumOperands(); 978 979 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 980 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 981 982 // Add entries for all the phis. 983 BasicBlock::iterator PNI = BB->begin(); 984 do { 985 unsigned AllocaNo = PhiToAllocaMap[APN]; 986 987 // Add N incoming values to the PHI node. 988 for (unsigned i = 0; i != NumEdges; ++i) 989 APN->addIncoming(IncomingVals[AllocaNo], Pred); 990 991 // The currently active variable for this block is now the PHI. 992 IncomingVals[AllocaNo] = APN; 993 994 // Get the next phi node. 995 ++PNI; 996 APN = dyn_cast<PHINode>(PNI); 997 if (!APN) 998 break; 999 1000 // Verify that it is missing entries. If not, it is not being inserted 1001 // by this mem2reg invocation so we want to ignore it. 1002 } while (APN->getNumOperands() == NewPHINumOperands); 1003 } 1004 } 1005 1006 // Don't revisit blocks. 1007 if (!Visited.insert(BB)) 1008 return; 1009 1010 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 1011 Instruction *I = II++; // get the instruction, increment iterator 1012 1013 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1014 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1015 if (!Src) 1016 continue; 1017 1018 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1019 if (AI == AllocaLookup.end()) 1020 continue; 1021 1022 Value *V = IncomingVals[AI->second]; 1023 1024 // Anything using the load now uses the current value. 1025 LI->replaceAllUsesWith(V); 1026 if (AST && LI->getType()->isPointerTy()) 1027 AST->deleteValue(LI); 1028 BB->getInstList().erase(LI); 1029 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1030 // Delete this instruction and mark the name as the current holder of the 1031 // value 1032 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1033 if (!Dest) 1034 continue; 1035 1036 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1037 if (ai == AllocaLookup.end()) 1038 continue; 1039 1040 // what value were we writing? 1041 IncomingVals[ai->second] = SI->getOperand(0); 1042 // Record debuginfo for the store before removing it. 1043 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) 1044 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1045 BB->getInstList().erase(SI); 1046 } 1047 } 1048 1049 // 'Recurse' to our successors. 1050 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1051 if (I == E) 1052 return; 1053 1054 // Keep track of the successors so we don't visit the same successor twice 1055 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1056 1057 // Handle the first successor without using the worklist. 1058 VisitedSuccs.insert(*I); 1059 Pred = BB; 1060 BB = *I; 1061 ++I; 1062 1063 for (; I != E; ++I) 1064 if (VisitedSuccs.insert(*I)) 1065 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); 1066 1067 goto NextIteration; 1068 } 1069 1070 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1071 AliasSetTracker *AST, AssumptionTracker *AT) { 1072 // If there is nothing to do, bail out... 1073 if (Allocas.empty()) 1074 return; 1075 1076 PromoteMem2Reg(Allocas, DT, AST, AT).run(); 1077 } 1078