1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/TinyPtrVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DIBuilder.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "mem2reg" 59 60 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 61 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 62 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 63 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 64 65 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 66 // FIXME: If the memory unit is of pointer or integer type, we can permit 67 // assignments to subsections of the memory unit. 68 unsigned AS = AI->getType()->getAddressSpace(); 69 70 // Only allow direct and non-volatile loads and stores... 71 for (const User *U : AI->users()) { 72 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 73 // Note that atomic loads can be transformed; atomic semantics do 74 // not have any meaning for a local alloca. 75 if (LI->isVolatile()) 76 return false; 77 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 78 if (SI->getOperand(0) == AI) 79 return false; // Don't allow a store OF the AI, only INTO the AI. 80 // Note that atomic stores can be transformed; atomic semantics do 81 // not have any meaning for a local alloca. 82 if (SI->isVolatile()) 83 return false; 84 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 85 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 86 II->getIntrinsicID() != Intrinsic::lifetime_end) 87 return false; 88 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 89 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 90 return false; 91 if (!onlyUsedByLifetimeMarkers(BCI)) 92 return false; 93 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 94 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 95 return false; 96 if (!GEPI->hasAllZeroIndices()) 97 return false; 98 if (!onlyUsedByLifetimeMarkers(GEPI)) 99 return false; 100 } else { 101 return false; 102 } 103 } 104 105 return true; 106 } 107 108 namespace { 109 110 struct AllocaInfo { 111 SmallVector<BasicBlock *, 32> DefiningBlocks; 112 SmallVector<BasicBlock *, 32> UsingBlocks; 113 114 StoreInst *OnlyStore; 115 BasicBlock *OnlyBlock; 116 bool OnlyUsedInOneBlock; 117 118 Value *AllocaPointerVal; 119 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; 120 121 void clear() { 122 DefiningBlocks.clear(); 123 UsingBlocks.clear(); 124 OnlyStore = nullptr; 125 OnlyBlock = nullptr; 126 OnlyUsedInOneBlock = true; 127 AllocaPointerVal = nullptr; 128 DbgDeclares.clear(); 129 } 130 131 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 132 /// by the rest of the pass to reason about the uses of this alloca. 133 void AnalyzeAlloca(AllocaInst *AI) { 134 clear(); 135 136 // As we scan the uses of the alloca instruction, keep track of stores, 137 // and decide whether all of the loads and stores to the alloca are within 138 // the same basic block. 139 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 140 Instruction *User = cast<Instruction>(*UI++); 141 142 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 143 // Remember the basic blocks which define new values for the alloca 144 DefiningBlocks.push_back(SI->getParent()); 145 AllocaPointerVal = SI->getOperand(0); 146 OnlyStore = SI; 147 } else { 148 LoadInst *LI = cast<LoadInst>(User); 149 // Otherwise it must be a load instruction, keep track of variable 150 // reads. 151 UsingBlocks.push_back(LI->getParent()); 152 AllocaPointerVal = LI; 153 } 154 155 if (OnlyUsedInOneBlock) { 156 if (!OnlyBlock) 157 OnlyBlock = User->getParent(); 158 else if (OnlyBlock != User->getParent()) 159 OnlyUsedInOneBlock = false; 160 } 161 } 162 163 DbgDeclares = FindDbgAddrUses(AI); 164 } 165 }; 166 167 /// Data package used by RenamePass(). 168 struct RenamePassData { 169 using ValVector = std::vector<Value *>; 170 using LocationVector = std::vector<DebugLoc>; 171 172 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 173 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 174 175 BasicBlock *BB; 176 BasicBlock *Pred; 177 ValVector Values; 178 LocationVector Locations; 179 }; 180 181 /// This assigns and keeps a per-bb relative ordering of load/store 182 /// instructions in the block that directly load or store an alloca. 183 /// 184 /// This functionality is important because it avoids scanning large basic 185 /// blocks multiple times when promoting many allocas in the same block. 186 class LargeBlockInfo { 187 /// For each instruction that we track, keep the index of the 188 /// instruction. 189 /// 190 /// The index starts out as the number of the instruction from the start of 191 /// the block. 192 DenseMap<const Instruction *, unsigned> InstNumbers; 193 194 public: 195 196 /// This code only looks at accesses to allocas. 197 static bool isInterestingInstruction(const Instruction *I) { 198 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 199 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 200 } 201 202 /// Get or calculate the index of the specified instruction. 203 unsigned getInstructionIndex(const Instruction *I) { 204 assert(isInterestingInstruction(I) && 205 "Not a load/store to/from an alloca?"); 206 207 // If we already have this instruction number, return it. 208 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 209 if (It != InstNumbers.end()) 210 return It->second; 211 212 // Scan the whole block to get the instruction. This accumulates 213 // information for every interesting instruction in the block, in order to 214 // avoid gratuitus rescans. 215 const BasicBlock *BB = I->getParent(); 216 unsigned InstNo = 0; 217 for (const Instruction &BBI : *BB) 218 if (isInterestingInstruction(&BBI)) 219 InstNumbers[&BBI] = InstNo++; 220 It = InstNumbers.find(I); 221 222 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 223 return It->second; 224 } 225 226 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 227 228 void clear() { InstNumbers.clear(); } 229 }; 230 231 struct PromoteMem2Reg { 232 /// The alloca instructions being promoted. 233 std::vector<AllocaInst *> Allocas; 234 235 DominatorTree &DT; 236 DIBuilder DIB; 237 238 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 239 AssumptionCache *AC; 240 241 const SimplifyQuery SQ; 242 243 /// Reverse mapping of Allocas. 244 DenseMap<AllocaInst *, unsigned> AllocaLookup; 245 246 /// The PhiNodes we're adding. 247 /// 248 /// That map is used to simplify some Phi nodes as we iterate over it, so 249 /// it should have deterministic iterators. We could use a MapVector, but 250 /// since we already maintain a map from BasicBlock* to a stable numbering 251 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 252 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 253 254 /// For each PHI node, keep track of which entry in Allocas it corresponds 255 /// to. 256 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 257 258 /// If we are updating an AliasSetTracker, then for each alloca that is of 259 /// pointer type, we keep track of what to copyValue to the inserted PHI 260 /// nodes here. 261 std::vector<Value *> PointerAllocaValues; 262 263 /// For each alloca, we keep track of the dbg.declare intrinsic that 264 /// describes it, if any, so that we can convert it to a dbg.value 265 /// intrinsic if the alloca gets promoted. 266 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; 267 268 /// The set of basic blocks the renamer has already visited. 269 SmallPtrSet<BasicBlock *, 16> Visited; 270 271 /// Contains a stable numbering of basic blocks to avoid non-determinstic 272 /// behavior. 273 DenseMap<BasicBlock *, unsigned> BBNumbers; 274 275 /// Lazily compute the number of predecessors a block has. 276 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 277 278 public: 279 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 280 AssumptionCache *AC) 281 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 282 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 283 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 284 nullptr, &DT, AC) {} 285 286 void run(); 287 288 private: 289 void RemoveFromAllocasList(unsigned &AllocaIdx) { 290 Allocas[AllocaIdx] = Allocas.back(); 291 Allocas.pop_back(); 292 --AllocaIdx; 293 } 294 295 unsigned getNumPreds(const BasicBlock *BB) { 296 unsigned &NP = BBNumPreds[BB]; 297 if (NP == 0) 298 NP = pred_size(BB) + 1; 299 return NP - 1; 300 } 301 302 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 303 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 304 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 305 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 306 RenamePassData::ValVector &IncVals, 307 RenamePassData::LocationVector &IncLocs, 308 std::vector<RenamePassData> &Worklist); 309 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 310 }; 311 312 } // end anonymous namespace 313 314 /// Given a LoadInst LI this adds assume(LI != null) after it. 315 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 316 Function *AssumeIntrinsic = 317 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 318 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 319 Constant::getNullValue(LI->getType())); 320 LoadNotNull->insertAfter(LI); 321 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 322 CI->insertAfter(LoadNotNull); 323 AC->registerAssumption(CI); 324 } 325 326 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 327 // Knowing that this alloca is promotable, we know that it's safe to kill all 328 // instructions except for load and store. 329 330 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 331 Instruction *I = cast<Instruction>(*UI); 332 ++UI; 333 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 334 continue; 335 336 if (!I->getType()->isVoidTy()) { 337 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 338 // Follow the use/def chain to erase them now instead of leaving it for 339 // dead code elimination later. 340 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 341 Instruction *Inst = cast<Instruction>(*UUI); 342 ++UUI; 343 Inst->eraseFromParent(); 344 } 345 } 346 I->eraseFromParent(); 347 } 348 } 349 350 /// Rewrite as many loads as possible given a single store. 351 /// 352 /// When there is only a single store, we can use the domtree to trivially 353 /// replace all of the dominated loads with the stored value. Do so, and return 354 /// true if this has successfully promoted the alloca entirely. If this returns 355 /// false there were some loads which were not dominated by the single store 356 /// and thus must be phi-ed with undef. We fall back to the standard alloca 357 /// promotion algorithm in that case. 358 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 359 LargeBlockInfo &LBI, const DataLayout &DL, 360 DominatorTree &DT, AssumptionCache *AC) { 361 StoreInst *OnlyStore = Info.OnlyStore; 362 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 363 BasicBlock *StoreBB = OnlyStore->getParent(); 364 int StoreIndex = -1; 365 366 // Clear out UsingBlocks. We will reconstruct it here if needed. 367 Info.UsingBlocks.clear(); 368 369 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 370 Instruction *UserInst = cast<Instruction>(*UI++); 371 if (!isa<LoadInst>(UserInst)) { 372 assert(UserInst == OnlyStore && "Should only have load/stores"); 373 continue; 374 } 375 LoadInst *LI = cast<LoadInst>(UserInst); 376 377 // Okay, if we have a load from the alloca, we want to replace it with the 378 // only value stored to the alloca. We can do this if the value is 379 // dominated by the store. If not, we use the rest of the mem2reg machinery 380 // to insert the phi nodes as needed. 381 if (!StoringGlobalVal) { // Non-instructions are always dominated. 382 if (LI->getParent() == StoreBB) { 383 // If we have a use that is in the same block as the store, compare the 384 // indices of the two instructions to see which one came first. If the 385 // load came before the store, we can't handle it. 386 if (StoreIndex == -1) 387 StoreIndex = LBI.getInstructionIndex(OnlyStore); 388 389 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 390 // Can't handle this load, bail out. 391 Info.UsingBlocks.push_back(StoreBB); 392 continue; 393 } 394 } else if (LI->getParent() != StoreBB && 395 !DT.dominates(StoreBB, LI->getParent())) { 396 // If the load and store are in different blocks, use BB dominance to 397 // check their relationships. If the store doesn't dom the use, bail 398 // out. 399 Info.UsingBlocks.push_back(LI->getParent()); 400 continue; 401 } 402 } 403 404 // Otherwise, we *can* safely rewrite this load. 405 Value *ReplVal = OnlyStore->getOperand(0); 406 // If the replacement value is the load, this must occur in unreachable 407 // code. 408 if (ReplVal == LI) 409 ReplVal = UndefValue::get(LI->getType()); 410 411 // If the load was marked as nonnull we don't want to lose 412 // that information when we erase this Load. So we preserve 413 // it with an assume. 414 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 415 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 416 addAssumeNonNull(AC, LI); 417 418 LI->replaceAllUsesWith(ReplVal); 419 LI->eraseFromParent(); 420 LBI.deleteValue(LI); 421 } 422 423 // Finally, after the scan, check to see if the store is all that is left. 424 if (!Info.UsingBlocks.empty()) 425 return false; // If not, we'll have to fall back for the remainder. 426 427 // Record debuginfo for the store and remove the declaration's 428 // debuginfo. 429 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 430 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 431 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 432 DII->eraseFromParent(); 433 LBI.deleteValue(DII); 434 } 435 // Remove the (now dead) store and alloca. 436 Info.OnlyStore->eraseFromParent(); 437 LBI.deleteValue(Info.OnlyStore); 438 439 AI->eraseFromParent(); 440 LBI.deleteValue(AI); 441 return true; 442 } 443 444 /// Many allocas are only used within a single basic block. If this is the 445 /// case, avoid traversing the CFG and inserting a lot of potentially useless 446 /// PHI nodes by just performing a single linear pass over the basic block 447 /// using the Alloca. 448 /// 449 /// If we cannot promote this alloca (because it is read before it is written), 450 /// return false. This is necessary in cases where, due to control flow, the 451 /// alloca is undefined only on some control flow paths. e.g. code like 452 /// this is correct in LLVM IR: 453 /// // A is an alloca with no stores so far 454 /// for (...) { 455 /// int t = *A; 456 /// if (!first_iteration) 457 /// use(t); 458 /// *A = 42; 459 /// } 460 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 461 LargeBlockInfo &LBI, 462 const DataLayout &DL, 463 DominatorTree &DT, 464 AssumptionCache *AC) { 465 // The trickiest case to handle is when we have large blocks. Because of this, 466 // this code is optimized assuming that large blocks happen. This does not 467 // significantly pessimize the small block case. This uses LargeBlockInfo to 468 // make it efficient to get the index of various operations in the block. 469 470 // Walk the use-def list of the alloca, getting the locations of all stores. 471 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 472 StoresByIndexTy StoresByIndex; 473 474 for (User *U : AI->users()) 475 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 476 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 477 478 // Sort the stores by their index, making it efficient to do a lookup with a 479 // binary search. 480 llvm::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 481 482 // Walk all of the loads from this alloca, replacing them with the nearest 483 // store above them, if any. 484 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 485 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 486 if (!LI) 487 continue; 488 489 unsigned LoadIdx = LBI.getInstructionIndex(LI); 490 491 // Find the nearest store that has a lower index than this load. 492 StoresByIndexTy::iterator I = 493 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 494 std::make_pair(LoadIdx, 495 static_cast<StoreInst *>(nullptr)), 496 less_first()); 497 if (I == StoresByIndex.begin()) { 498 if (StoresByIndex.empty()) 499 // If there are no stores, the load takes the undef value. 500 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 501 else 502 // There is no store before this load, bail out (load may be affected 503 // by the following stores - see main comment). 504 return false; 505 } else { 506 // Otherwise, there was a store before this load, the load takes its value. 507 // Note, if the load was marked as nonnull we don't want to lose that 508 // information when we erase it. So we preserve it with an assume. 509 Value *ReplVal = std::prev(I)->second->getOperand(0); 510 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 511 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 512 addAssumeNonNull(AC, LI); 513 514 // If the replacement value is the load, this must occur in unreachable 515 // code. 516 if (ReplVal == LI) 517 ReplVal = UndefValue::get(LI->getType()); 518 519 LI->replaceAllUsesWith(ReplVal); 520 } 521 522 LI->eraseFromParent(); 523 LBI.deleteValue(LI); 524 } 525 526 // Remove the (now dead) stores and alloca. 527 while (!AI->use_empty()) { 528 StoreInst *SI = cast<StoreInst>(AI->user_back()); 529 // Record debuginfo for the store before removing it. 530 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 531 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 532 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 533 } 534 SI->eraseFromParent(); 535 LBI.deleteValue(SI); 536 } 537 538 AI->eraseFromParent(); 539 LBI.deleteValue(AI); 540 541 // The alloca's debuginfo can be removed as well. 542 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 543 DII->eraseFromParent(); 544 LBI.deleteValue(DII); 545 } 546 547 ++NumLocalPromoted; 548 return true; 549 } 550 551 void PromoteMem2Reg::run() { 552 Function &F = *DT.getRoot()->getParent(); 553 554 AllocaDbgDeclares.resize(Allocas.size()); 555 556 AllocaInfo Info; 557 LargeBlockInfo LBI; 558 ForwardIDFCalculator IDF(DT); 559 560 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 561 AllocaInst *AI = Allocas[AllocaNum]; 562 563 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 564 assert(AI->getParent()->getParent() == &F && 565 "All allocas should be in the same function, which is same as DF!"); 566 567 removeLifetimeIntrinsicUsers(AI); 568 569 if (AI->use_empty()) { 570 // If there are no uses of the alloca, just delete it now. 571 AI->eraseFromParent(); 572 573 // Remove the alloca from the Allocas list, since it has been processed 574 RemoveFromAllocasList(AllocaNum); 575 ++NumDeadAlloca; 576 continue; 577 } 578 579 // Calculate the set of read and write-locations for each alloca. This is 580 // analogous to finding the 'uses' and 'definitions' of each variable. 581 Info.AnalyzeAlloca(AI); 582 583 // If there is only a single store to this value, replace any loads of 584 // it that are directly dominated by the definition with the value stored. 585 if (Info.DefiningBlocks.size() == 1) { 586 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 587 // The alloca has been processed, move on. 588 RemoveFromAllocasList(AllocaNum); 589 ++NumSingleStore; 590 continue; 591 } 592 } 593 594 // If the alloca is only read and written in one basic block, just perform a 595 // linear sweep over the block to eliminate it. 596 if (Info.OnlyUsedInOneBlock && 597 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 598 // The alloca has been processed, move on. 599 RemoveFromAllocasList(AllocaNum); 600 continue; 601 } 602 603 // If we haven't computed a numbering for the BB's in the function, do so 604 // now. 605 if (BBNumbers.empty()) { 606 unsigned ID = 0; 607 for (auto &BB : F) 608 BBNumbers[&BB] = ID++; 609 } 610 611 // Remember the dbg.declare intrinsic describing this alloca, if any. 612 if (!Info.DbgDeclares.empty()) 613 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 614 615 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 616 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 617 618 // At this point, we're committed to promoting the alloca using IDF's, and 619 // the standard SSA construction algorithm. Determine which blocks need PHI 620 // nodes and see if we can optimize out some work by avoiding insertion of 621 // dead phi nodes. 622 623 // Unique the set of defining blocks for efficient lookup. 624 SmallPtrSet<BasicBlock *, 32> DefBlocks; 625 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 626 627 // Determine which blocks the value is live in. These are blocks which lead 628 // to uses. 629 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 630 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 631 632 // At this point, we're committed to promoting the alloca using IDF's, and 633 // the standard SSA construction algorithm. Determine which blocks need phi 634 // nodes and see if we can optimize out some work by avoiding insertion of 635 // dead phi nodes. 636 IDF.setLiveInBlocks(LiveInBlocks); 637 IDF.setDefiningBlocks(DefBlocks); 638 SmallVector<BasicBlock *, 32> PHIBlocks; 639 IDF.calculate(PHIBlocks); 640 if (PHIBlocks.size() > 1) 641 llvm::sort(PHIBlocks.begin(), PHIBlocks.end(), 642 [this](BasicBlock *A, BasicBlock *B) { 643 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 644 }); 645 646 unsigned CurrentVersion = 0; 647 for (BasicBlock *BB : PHIBlocks) 648 QueuePhiNode(BB, AllocaNum, CurrentVersion); 649 } 650 651 if (Allocas.empty()) 652 return; // All of the allocas must have been trivial! 653 654 LBI.clear(); 655 656 // Set the incoming values for the basic block to be null values for all of 657 // the alloca's. We do this in case there is a load of a value that has not 658 // been stored yet. In this case, it will get this null value. 659 RenamePassData::ValVector Values(Allocas.size()); 660 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 661 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 662 663 // When handling debug info, treat all incoming values as if they have unknown 664 // locations until proven otherwise. 665 RenamePassData::LocationVector Locations(Allocas.size()); 666 667 // Walks all basic blocks in the function performing the SSA rename algorithm 668 // and inserting the phi nodes we marked as necessary 669 std::vector<RenamePassData> RenamePassWorkList; 670 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 671 std::move(Locations)); 672 do { 673 RenamePassData RPD = std::move(RenamePassWorkList.back()); 674 RenamePassWorkList.pop_back(); 675 // RenamePass may add new worklist entries. 676 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 677 } while (!RenamePassWorkList.empty()); 678 679 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 680 Visited.clear(); 681 682 // Remove the allocas themselves from the function. 683 for (Instruction *A : Allocas) { 684 // If there are any uses of the alloca instructions left, they must be in 685 // unreachable basic blocks that were not processed by walking the dominator 686 // tree. Just delete the users now. 687 if (!A->use_empty()) 688 A->replaceAllUsesWith(UndefValue::get(A->getType())); 689 A->eraseFromParent(); 690 } 691 692 // Remove alloca's dbg.declare instrinsics from the function. 693 for (auto &Declares : AllocaDbgDeclares) 694 for (auto *DII : Declares) 695 DII->eraseFromParent(); 696 697 // Loop over all of the PHI nodes and see if there are any that we can get 698 // rid of because they merge all of the same incoming values. This can 699 // happen due to undef values coming into the PHI nodes. This process is 700 // iterative, because eliminating one PHI node can cause others to be removed. 701 bool EliminatedAPHI = true; 702 while (EliminatedAPHI) { 703 EliminatedAPHI = false; 704 705 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 706 // simplify and RAUW them as we go. If it was not, we could add uses to 707 // the values we replace with in a non-deterministic order, thus creating 708 // non-deterministic def->use chains. 709 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 710 I = NewPhiNodes.begin(), 711 E = NewPhiNodes.end(); 712 I != E;) { 713 PHINode *PN = I->second; 714 715 // If this PHI node merges one value and/or undefs, get the value. 716 if (Value *V = SimplifyInstruction(PN, SQ)) { 717 PN->replaceAllUsesWith(V); 718 PN->eraseFromParent(); 719 NewPhiNodes.erase(I++); 720 EliminatedAPHI = true; 721 continue; 722 } 723 ++I; 724 } 725 } 726 727 // At this point, the renamer has added entries to PHI nodes for all reachable 728 // code. Unfortunately, there may be unreachable blocks which the renamer 729 // hasn't traversed. If this is the case, the PHI nodes may not 730 // have incoming values for all predecessors. Loop over all PHI nodes we have 731 // created, inserting undef values if they are missing any incoming values. 732 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 733 I = NewPhiNodes.begin(), 734 E = NewPhiNodes.end(); 735 I != E; ++I) { 736 // We want to do this once per basic block. As such, only process a block 737 // when we find the PHI that is the first entry in the block. 738 PHINode *SomePHI = I->second; 739 BasicBlock *BB = SomePHI->getParent(); 740 if (&BB->front() != SomePHI) 741 continue; 742 743 // Only do work here if there the PHI nodes are missing incoming values. We 744 // know that all PHI nodes that were inserted in a block will have the same 745 // number of incoming values, so we can just check any of them. 746 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 747 continue; 748 749 // Get the preds for BB. 750 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 751 752 // Ok, now we know that all of the PHI nodes are missing entries for some 753 // basic blocks. Start by sorting the incoming predecessors for efficient 754 // access. 755 llvm::sort(Preds.begin(), Preds.end()); 756 757 // Now we loop through all BB's which have entries in SomePHI and remove 758 // them from the Preds list. 759 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 760 // Do a log(n) search of the Preds list for the entry we want. 761 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 762 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 763 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 764 "PHI node has entry for a block which is not a predecessor!"); 765 766 // Remove the entry 767 Preds.erase(EntIt); 768 } 769 770 // At this point, the blocks left in the preds list must have dummy 771 // entries inserted into every PHI nodes for the block. Update all the phi 772 // nodes in this block that we are inserting (there could be phis before 773 // mem2reg runs). 774 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 775 BasicBlock::iterator BBI = BB->begin(); 776 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 777 SomePHI->getNumIncomingValues() == NumBadPreds) { 778 Value *UndefVal = UndefValue::get(SomePHI->getType()); 779 for (BasicBlock *Pred : Preds) 780 SomePHI->addIncoming(UndefVal, Pred); 781 } 782 } 783 784 NewPhiNodes.clear(); 785 } 786 787 /// Determine which blocks the value is live in. 788 /// 789 /// These are blocks which lead to uses. Knowing this allows us to avoid 790 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 791 /// inserted phi nodes would be dead). 792 void PromoteMem2Reg::ComputeLiveInBlocks( 793 AllocaInst *AI, AllocaInfo &Info, 794 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 795 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 796 // To determine liveness, we must iterate through the predecessors of blocks 797 // where the def is live. Blocks are added to the worklist if we need to 798 // check their predecessors. Start with all the using blocks. 799 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 800 Info.UsingBlocks.end()); 801 802 // If any of the using blocks is also a definition block, check to see if the 803 // definition occurs before or after the use. If it happens before the use, 804 // the value isn't really live-in. 805 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 806 BasicBlock *BB = LiveInBlockWorklist[i]; 807 if (!DefBlocks.count(BB)) 808 continue; 809 810 // Okay, this is a block that both uses and defines the value. If the first 811 // reference to the alloca is a def (store), then we know it isn't live-in. 812 for (BasicBlock::iterator I = BB->begin();; ++I) { 813 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 814 if (SI->getOperand(1) != AI) 815 continue; 816 817 // We found a store to the alloca before a load. The alloca is not 818 // actually live-in here. 819 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 820 LiveInBlockWorklist.pop_back(); 821 --i; 822 --e; 823 break; 824 } 825 826 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 827 if (LI->getOperand(0) != AI) 828 continue; 829 830 // Okay, we found a load before a store to the alloca. It is actually 831 // live into this block. 832 break; 833 } 834 } 835 } 836 837 // Now that we have a set of blocks where the phi is live-in, recursively add 838 // their predecessors until we find the full region the value is live. 839 while (!LiveInBlockWorklist.empty()) { 840 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 841 842 // The block really is live in here, insert it into the set. If already in 843 // the set, then it has already been processed. 844 if (!LiveInBlocks.insert(BB).second) 845 continue; 846 847 // Since the value is live into BB, it is either defined in a predecessor or 848 // live into it to. Add the preds to the worklist unless they are a 849 // defining block. 850 for (BasicBlock *P : predecessors(BB)) { 851 // The value is not live into a predecessor if it defines the value. 852 if (DefBlocks.count(P)) 853 continue; 854 855 // Otherwise it is, add to the worklist. 856 LiveInBlockWorklist.push_back(P); 857 } 858 } 859 } 860 861 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 862 /// 863 /// Returns true if there wasn't already a phi-node for that variable 864 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 865 unsigned &Version) { 866 // Look up the basic-block in question. 867 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 868 869 // If the BB already has a phi node added for the i'th alloca then we're done! 870 if (PN) 871 return false; 872 873 // Create a PhiNode using the dereferenced type... and add the phi-node to the 874 // BasicBlock. 875 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 876 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 877 &BB->front()); 878 ++NumPHIInsert; 879 PhiToAllocaMap[PN] = AllocaNo; 880 return true; 881 } 882 883 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 884 /// create a merged location incorporating \p DL, or to set \p DL directly. 885 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 886 bool ApplyMergedLoc) { 887 if (ApplyMergedLoc) 888 PN->applyMergedLocation(PN->getDebugLoc(), DL); 889 else 890 PN->setDebugLoc(DL); 891 } 892 893 /// Recursively traverse the CFG of the function, renaming loads and 894 /// stores to the allocas which we are promoting. 895 /// 896 /// IncomingVals indicates what value each Alloca contains on exit from the 897 /// predecessor block Pred. 898 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 899 RenamePassData::ValVector &IncomingVals, 900 RenamePassData::LocationVector &IncomingLocs, 901 std::vector<RenamePassData> &Worklist) { 902 NextIteration: 903 // If we are inserting any phi nodes into this BB, they will already be in the 904 // block. 905 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 906 // If we have PHI nodes to update, compute the number of edges from Pred to 907 // BB. 908 if (PhiToAllocaMap.count(APN)) { 909 // We want to be able to distinguish between PHI nodes being inserted by 910 // this invocation of mem2reg from those phi nodes that already existed in 911 // the IR before mem2reg was run. We determine that APN is being inserted 912 // because it is missing incoming edges. All other PHI nodes being 913 // inserted by this pass of mem2reg will have the same number of incoming 914 // operands so far. Remember this count. 915 unsigned NewPHINumOperands = APN->getNumOperands(); 916 917 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 918 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 919 920 // Add entries for all the phis. 921 BasicBlock::iterator PNI = BB->begin(); 922 do { 923 unsigned AllocaNo = PhiToAllocaMap[APN]; 924 925 // Update the location of the phi node. 926 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 927 APN->getNumIncomingValues() > 0); 928 929 // Add N incoming values to the PHI node. 930 for (unsigned i = 0; i != NumEdges; ++i) 931 APN->addIncoming(IncomingVals[AllocaNo], Pred); 932 933 // The currently active variable for this block is now the PHI. 934 IncomingVals[AllocaNo] = APN; 935 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 936 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 937 938 // Get the next phi node. 939 ++PNI; 940 APN = dyn_cast<PHINode>(PNI); 941 if (!APN) 942 break; 943 944 // Verify that it is missing entries. If not, it is not being inserted 945 // by this mem2reg invocation so we want to ignore it. 946 } while (APN->getNumOperands() == NewPHINumOperands); 947 } 948 } 949 950 // Don't revisit blocks. 951 if (!Visited.insert(BB).second) 952 return; 953 954 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 955 Instruction *I = &*II++; // get the instruction, increment iterator 956 957 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 958 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 959 if (!Src) 960 continue; 961 962 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 963 if (AI == AllocaLookup.end()) 964 continue; 965 966 Value *V = IncomingVals[AI->second]; 967 968 // If the load was marked as nonnull we don't want to lose 969 // that information when we erase this Load. So we preserve 970 // it with an assume. 971 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 972 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 973 addAssumeNonNull(AC, LI); 974 975 // Anything using the load now uses the current value. 976 LI->replaceAllUsesWith(V); 977 BB->getInstList().erase(LI); 978 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 979 // Delete this instruction and mark the name as the current holder of the 980 // value 981 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 982 if (!Dest) 983 continue; 984 985 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 986 if (ai == AllocaLookup.end()) 987 continue; 988 989 // what value were we writing? 990 unsigned AllocaNo = ai->second; 991 IncomingVals[AllocaNo] = SI->getOperand(0); 992 993 // Record debuginfo for the store before removing it. 994 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 995 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) 996 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 997 BB->getInstList().erase(SI); 998 } 999 } 1000 1001 // 'Recurse' to our successors. 1002 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1003 if (I == E) 1004 return; 1005 1006 // Keep track of the successors so we don't visit the same successor twice 1007 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1008 1009 // Handle the first successor without using the worklist. 1010 VisitedSuccs.insert(*I); 1011 Pred = BB; 1012 BB = *I; 1013 ++I; 1014 1015 for (; I != E; ++I) 1016 if (VisitedSuccs.insert(*I).second) 1017 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1018 1019 goto NextIteration; 1020 } 1021 1022 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1023 AssumptionCache *AC) { 1024 // If there is nothing to do, bail out... 1025 if (Allocas.empty()) 1026 return; 1027 1028 PromoteMem2Reg(Allocas, DT, AC).run(); 1029 } 1030