1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/TinyPtrVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // FIXME: If the memory unit is of pointer or integer type, we can permit 66 // assignments to subsections of the memory unit. 67 unsigned AS = AI->getType()->getAddressSpace(); 68 69 // Only allow direct and non-volatile loads and stores... 70 for (const User *U : AI->users()) { 71 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 72 // Note that atomic loads can be transformed; atomic semantics do 73 // not have any meaning for a local alloca. 74 if (LI->isVolatile()) 75 return false; 76 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 77 if (SI->getOperand(0) == AI) 78 return false; // Don't allow a store OF the AI, only INTO the AI. 79 // Note that atomic stores can be transformed; atomic semantics do 80 // not have any meaning for a local alloca. 81 if (SI->isVolatile()) 82 return false; 83 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 84 if (!II->isLifetimeStartOrEnd()) 85 return false; 86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 87 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 88 return false; 89 if (!onlyUsedByLifetimeMarkers(BCI)) 90 return false; 91 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 92 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 93 return false; 94 if (!GEPI->hasAllZeroIndices()) 95 return false; 96 if (!onlyUsedByLifetimeMarkers(GEPI)) 97 return false; 98 } else { 99 return false; 100 } 101 } 102 103 return true; 104 } 105 106 namespace { 107 108 struct AllocaInfo { 109 SmallVector<BasicBlock *, 32> DefiningBlocks; 110 SmallVector<BasicBlock *, 32> UsingBlocks; 111 112 StoreInst *OnlyStore; 113 BasicBlock *OnlyBlock; 114 bool OnlyUsedInOneBlock; 115 116 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; 117 118 void clear() { 119 DefiningBlocks.clear(); 120 UsingBlocks.clear(); 121 OnlyStore = nullptr; 122 OnlyBlock = nullptr; 123 OnlyUsedInOneBlock = true; 124 DbgDeclares.clear(); 125 } 126 127 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 128 /// by the rest of the pass to reason about the uses of this alloca. 129 void AnalyzeAlloca(AllocaInst *AI) { 130 clear(); 131 132 // As we scan the uses of the alloca instruction, keep track of stores, 133 // and decide whether all of the loads and stores to the alloca are within 134 // the same basic block. 135 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 136 Instruction *User = cast<Instruction>(*UI++); 137 138 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 139 // Remember the basic blocks which define new values for the alloca 140 DefiningBlocks.push_back(SI->getParent()); 141 OnlyStore = SI; 142 } else { 143 LoadInst *LI = cast<LoadInst>(User); 144 // Otherwise it must be a load instruction, keep track of variable 145 // reads. 146 UsingBlocks.push_back(LI->getParent()); 147 } 148 149 if (OnlyUsedInOneBlock) { 150 if (!OnlyBlock) 151 OnlyBlock = User->getParent(); 152 else if (OnlyBlock != User->getParent()) 153 OnlyUsedInOneBlock = false; 154 } 155 } 156 157 DbgDeclares = FindDbgAddrUses(AI); 158 } 159 }; 160 161 /// Data package used by RenamePass(). 162 struct RenamePassData { 163 using ValVector = std::vector<Value *>; 164 using LocationVector = std::vector<DebugLoc>; 165 166 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 167 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 168 169 BasicBlock *BB; 170 BasicBlock *Pred; 171 ValVector Values; 172 LocationVector Locations; 173 }; 174 175 /// This assigns and keeps a per-bb relative ordering of load/store 176 /// instructions in the block that directly load or store an alloca. 177 /// 178 /// This functionality is important because it avoids scanning large basic 179 /// blocks multiple times when promoting many allocas in the same block. 180 class LargeBlockInfo { 181 /// For each instruction that we track, keep the index of the 182 /// instruction. 183 /// 184 /// The index starts out as the number of the instruction from the start of 185 /// the block. 186 DenseMap<const Instruction *, unsigned> InstNumbers; 187 188 public: 189 190 /// This code only looks at accesses to allocas. 191 static bool isInterestingInstruction(const Instruction *I) { 192 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 193 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 194 } 195 196 /// Get or calculate the index of the specified instruction. 197 unsigned getInstructionIndex(const Instruction *I) { 198 assert(isInterestingInstruction(I) && 199 "Not a load/store to/from an alloca?"); 200 201 // If we already have this instruction number, return it. 202 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 203 if (It != InstNumbers.end()) 204 return It->second; 205 206 // Scan the whole block to get the instruction. This accumulates 207 // information for every interesting instruction in the block, in order to 208 // avoid gratuitus rescans. 209 const BasicBlock *BB = I->getParent(); 210 unsigned InstNo = 0; 211 for (const Instruction &BBI : *BB) 212 if (isInterestingInstruction(&BBI)) 213 InstNumbers[&BBI] = InstNo++; 214 It = InstNumbers.find(I); 215 216 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 217 return It->second; 218 } 219 220 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 221 222 void clear() { InstNumbers.clear(); } 223 }; 224 225 struct PromoteMem2Reg { 226 /// The alloca instructions being promoted. 227 std::vector<AllocaInst *> Allocas; 228 229 DominatorTree &DT; 230 DIBuilder DIB; 231 232 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 233 AssumptionCache *AC; 234 235 const SimplifyQuery SQ; 236 237 /// Reverse mapping of Allocas. 238 DenseMap<AllocaInst *, unsigned> AllocaLookup; 239 240 /// The PhiNodes we're adding. 241 /// 242 /// That map is used to simplify some Phi nodes as we iterate over it, so 243 /// it should have deterministic iterators. We could use a MapVector, but 244 /// since we already maintain a map from BasicBlock* to a stable numbering 245 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 246 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 247 248 /// For each PHI node, keep track of which entry in Allocas it corresponds 249 /// to. 250 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 251 252 /// If we are updating an AliasSetTracker, then for each alloca that is of 253 /// pointer type, we keep track of what to copyValue to the inserted PHI 254 /// nodes here. 255 std::vector<Value *> PointerAllocaValues; 256 257 /// For each alloca, we keep track of the dbg.declare intrinsic that 258 /// describes it, if any, so that we can convert it to a dbg.value 259 /// intrinsic if the alloca gets promoted. 260 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; 261 262 /// The set of basic blocks the renamer has already visited. 263 SmallPtrSet<BasicBlock *, 16> Visited; 264 265 /// Contains a stable numbering of basic blocks to avoid non-determinstic 266 /// behavior. 267 DenseMap<BasicBlock *, unsigned> BBNumbers; 268 269 /// Lazily compute the number of predecessors a block has. 270 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 271 272 public: 273 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 274 AssumptionCache *AC) 275 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 276 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 277 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 278 nullptr, &DT, AC) {} 279 280 void run(); 281 282 private: 283 void RemoveFromAllocasList(unsigned &AllocaIdx) { 284 Allocas[AllocaIdx] = Allocas.back(); 285 Allocas.pop_back(); 286 --AllocaIdx; 287 } 288 289 unsigned getNumPreds(const BasicBlock *BB) { 290 unsigned &NP = BBNumPreds[BB]; 291 if (NP == 0) 292 NP = pred_size(BB) + 1; 293 return NP - 1; 294 } 295 296 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 297 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 298 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 299 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 300 RenamePassData::ValVector &IncVals, 301 RenamePassData::LocationVector &IncLocs, 302 std::vector<RenamePassData> &Worklist); 303 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 304 }; 305 306 } // end anonymous namespace 307 308 /// Given a LoadInst LI this adds assume(LI != null) after it. 309 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 310 Function *AssumeIntrinsic = 311 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 312 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 313 Constant::getNullValue(LI->getType())); 314 LoadNotNull->insertAfter(LI); 315 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 316 CI->insertAfter(LoadNotNull); 317 AC->registerAssumption(CI); 318 } 319 320 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 321 // Knowing that this alloca is promotable, we know that it's safe to kill all 322 // instructions except for load and store. 323 324 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 325 Instruction *I = cast<Instruction>(*UI); 326 ++UI; 327 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 328 continue; 329 330 if (!I->getType()->isVoidTy()) { 331 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 332 // Follow the use/def chain to erase them now instead of leaving it for 333 // dead code elimination later. 334 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 335 Instruction *Inst = cast<Instruction>(*UUI); 336 ++UUI; 337 Inst->eraseFromParent(); 338 } 339 } 340 I->eraseFromParent(); 341 } 342 } 343 344 /// Rewrite as many loads as possible given a single store. 345 /// 346 /// When there is only a single store, we can use the domtree to trivially 347 /// replace all of the dominated loads with the stored value. Do so, and return 348 /// true if this has successfully promoted the alloca entirely. If this returns 349 /// false there were some loads which were not dominated by the single store 350 /// and thus must be phi-ed with undef. We fall back to the standard alloca 351 /// promotion algorithm in that case. 352 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 353 LargeBlockInfo &LBI, const DataLayout &DL, 354 DominatorTree &DT, AssumptionCache *AC) { 355 StoreInst *OnlyStore = Info.OnlyStore; 356 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 357 BasicBlock *StoreBB = OnlyStore->getParent(); 358 int StoreIndex = -1; 359 360 // Clear out UsingBlocks. We will reconstruct it here if needed. 361 Info.UsingBlocks.clear(); 362 363 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 364 Instruction *UserInst = cast<Instruction>(*UI++); 365 if (UserInst == OnlyStore) 366 continue; 367 LoadInst *LI = cast<LoadInst>(UserInst); 368 369 // Okay, if we have a load from the alloca, we want to replace it with the 370 // only value stored to the alloca. We can do this if the value is 371 // dominated by the store. If not, we use the rest of the mem2reg machinery 372 // to insert the phi nodes as needed. 373 if (!StoringGlobalVal) { // Non-instructions are always dominated. 374 if (LI->getParent() == StoreBB) { 375 // If we have a use that is in the same block as the store, compare the 376 // indices of the two instructions to see which one came first. If the 377 // load came before the store, we can't handle it. 378 if (StoreIndex == -1) 379 StoreIndex = LBI.getInstructionIndex(OnlyStore); 380 381 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 382 // Can't handle this load, bail out. 383 Info.UsingBlocks.push_back(StoreBB); 384 continue; 385 } 386 } else if (!DT.dominates(StoreBB, LI->getParent())) { 387 // If the load and store are in different blocks, use BB dominance to 388 // check their relationships. If the store doesn't dom the use, bail 389 // out. 390 Info.UsingBlocks.push_back(LI->getParent()); 391 continue; 392 } 393 } 394 395 // Otherwise, we *can* safely rewrite this load. 396 Value *ReplVal = OnlyStore->getOperand(0); 397 // If the replacement value is the load, this must occur in unreachable 398 // code. 399 if (ReplVal == LI) 400 ReplVal = UndefValue::get(LI->getType()); 401 402 // If the load was marked as nonnull we don't want to lose 403 // that information when we erase this Load. So we preserve 404 // it with an assume. 405 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 406 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 407 addAssumeNonNull(AC, LI); 408 409 LI->replaceAllUsesWith(ReplVal); 410 LI->eraseFromParent(); 411 LBI.deleteValue(LI); 412 } 413 414 // Finally, after the scan, check to see if the store is all that is left. 415 if (!Info.UsingBlocks.empty()) 416 return false; // If not, we'll have to fall back for the remainder. 417 418 // Record debuginfo for the store and remove the declaration's 419 // debuginfo. 420 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 421 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 422 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 423 DII->eraseFromParent(); 424 } 425 // Remove the (now dead) store and alloca. 426 Info.OnlyStore->eraseFromParent(); 427 LBI.deleteValue(Info.OnlyStore); 428 429 AI->eraseFromParent(); 430 return true; 431 } 432 433 /// Many allocas are only used within a single basic block. If this is the 434 /// case, avoid traversing the CFG and inserting a lot of potentially useless 435 /// PHI nodes by just performing a single linear pass over the basic block 436 /// using the Alloca. 437 /// 438 /// If we cannot promote this alloca (because it is read before it is written), 439 /// return false. This is necessary in cases where, due to control flow, the 440 /// alloca is undefined only on some control flow paths. e.g. code like 441 /// this is correct in LLVM IR: 442 /// // A is an alloca with no stores so far 443 /// for (...) { 444 /// int t = *A; 445 /// if (!first_iteration) 446 /// use(t); 447 /// *A = 42; 448 /// } 449 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 450 LargeBlockInfo &LBI, 451 const DataLayout &DL, 452 DominatorTree &DT, 453 AssumptionCache *AC) { 454 // The trickiest case to handle is when we have large blocks. Because of this, 455 // this code is optimized assuming that large blocks happen. This does not 456 // significantly pessimize the small block case. This uses LargeBlockInfo to 457 // make it efficient to get the index of various operations in the block. 458 459 // Walk the use-def list of the alloca, getting the locations of all stores. 460 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 461 StoresByIndexTy StoresByIndex; 462 463 for (User *U : AI->users()) 464 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 465 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 466 467 // Sort the stores by their index, making it efficient to do a lookup with a 468 // binary search. 469 llvm::sort(StoresByIndex, less_first()); 470 471 // Walk all of the loads from this alloca, replacing them with the nearest 472 // store above them, if any. 473 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 474 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 475 if (!LI) 476 continue; 477 478 unsigned LoadIdx = LBI.getInstructionIndex(LI); 479 480 // Find the nearest store that has a lower index than this load. 481 StoresByIndexTy::iterator I = llvm::lower_bound( 482 StoresByIndex, 483 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 484 less_first()); 485 if (I == StoresByIndex.begin()) { 486 if (StoresByIndex.empty()) 487 // If there are no stores, the load takes the undef value. 488 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 489 else 490 // There is no store before this load, bail out (load may be affected 491 // by the following stores - see main comment). 492 return false; 493 } else { 494 // Otherwise, there was a store before this load, the load takes its value. 495 // Note, if the load was marked as nonnull we don't want to lose that 496 // information when we erase it. So we preserve it with an assume. 497 Value *ReplVal = std::prev(I)->second->getOperand(0); 498 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 499 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 500 addAssumeNonNull(AC, LI); 501 502 // If the replacement value is the load, this must occur in unreachable 503 // code. 504 if (ReplVal == LI) 505 ReplVal = UndefValue::get(LI->getType()); 506 507 LI->replaceAllUsesWith(ReplVal); 508 } 509 510 LI->eraseFromParent(); 511 LBI.deleteValue(LI); 512 } 513 514 // Remove the (now dead) stores and alloca. 515 while (!AI->use_empty()) { 516 StoreInst *SI = cast<StoreInst>(AI->user_back()); 517 // Record debuginfo for the store before removing it. 518 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 519 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 520 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 521 } 522 SI->eraseFromParent(); 523 LBI.deleteValue(SI); 524 } 525 526 AI->eraseFromParent(); 527 528 // The alloca's debuginfo can be removed as well. 529 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) 530 DII->eraseFromParent(); 531 532 ++NumLocalPromoted; 533 return true; 534 } 535 536 void PromoteMem2Reg::run() { 537 Function &F = *DT.getRoot()->getParent(); 538 539 AllocaDbgDeclares.resize(Allocas.size()); 540 541 AllocaInfo Info; 542 LargeBlockInfo LBI; 543 ForwardIDFCalculator IDF(DT); 544 545 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 546 AllocaInst *AI = Allocas[AllocaNum]; 547 548 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 549 assert(AI->getParent()->getParent() == &F && 550 "All allocas should be in the same function, which is same as DF!"); 551 552 removeLifetimeIntrinsicUsers(AI); 553 554 if (AI->use_empty()) { 555 // If there are no uses of the alloca, just delete it now. 556 AI->eraseFromParent(); 557 558 // Remove the alloca from the Allocas list, since it has been processed 559 RemoveFromAllocasList(AllocaNum); 560 ++NumDeadAlloca; 561 continue; 562 } 563 564 // Calculate the set of read and write-locations for each alloca. This is 565 // analogous to finding the 'uses' and 'definitions' of each variable. 566 Info.AnalyzeAlloca(AI); 567 568 // If there is only a single store to this value, replace any loads of 569 // it that are directly dominated by the definition with the value stored. 570 if (Info.DefiningBlocks.size() == 1) { 571 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 572 // The alloca has been processed, move on. 573 RemoveFromAllocasList(AllocaNum); 574 ++NumSingleStore; 575 continue; 576 } 577 } 578 579 // If the alloca is only read and written in one basic block, just perform a 580 // linear sweep over the block to eliminate it. 581 if (Info.OnlyUsedInOneBlock && 582 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 583 // The alloca has been processed, move on. 584 RemoveFromAllocasList(AllocaNum); 585 continue; 586 } 587 588 // If we haven't computed a numbering for the BB's in the function, do so 589 // now. 590 if (BBNumbers.empty()) { 591 unsigned ID = 0; 592 for (auto &BB : F) 593 BBNumbers[&BB] = ID++; 594 } 595 596 // Remember the dbg.declare intrinsic describing this alloca, if any. 597 if (!Info.DbgDeclares.empty()) 598 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 599 600 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 601 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 602 603 // At this point, we're committed to promoting the alloca using IDF's, and 604 // the standard SSA construction algorithm. Determine which blocks need PHI 605 // nodes and see if we can optimize out some work by avoiding insertion of 606 // dead phi nodes. 607 608 // Unique the set of defining blocks for efficient lookup. 609 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 610 Info.DefiningBlocks.end()); 611 612 // Determine which blocks the value is live in. These are blocks which lead 613 // to uses. 614 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 615 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 616 617 // At this point, we're committed to promoting the alloca using IDF's, and 618 // the standard SSA construction algorithm. Determine which blocks need phi 619 // nodes and see if we can optimize out some work by avoiding insertion of 620 // dead phi nodes. 621 IDF.setLiveInBlocks(LiveInBlocks); 622 IDF.setDefiningBlocks(DefBlocks); 623 SmallVector<BasicBlock *, 32> PHIBlocks; 624 IDF.calculate(PHIBlocks); 625 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 626 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 627 }); 628 629 unsigned CurrentVersion = 0; 630 for (BasicBlock *BB : PHIBlocks) 631 QueuePhiNode(BB, AllocaNum, CurrentVersion); 632 } 633 634 if (Allocas.empty()) 635 return; // All of the allocas must have been trivial! 636 637 LBI.clear(); 638 639 // Set the incoming values for the basic block to be null values for all of 640 // the alloca's. We do this in case there is a load of a value that has not 641 // been stored yet. In this case, it will get this null value. 642 RenamePassData::ValVector Values(Allocas.size()); 643 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 644 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 645 646 // When handling debug info, treat all incoming values as if they have unknown 647 // locations until proven otherwise. 648 RenamePassData::LocationVector Locations(Allocas.size()); 649 650 // Walks all basic blocks in the function performing the SSA rename algorithm 651 // and inserting the phi nodes we marked as necessary 652 std::vector<RenamePassData> RenamePassWorkList; 653 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 654 std::move(Locations)); 655 do { 656 RenamePassData RPD = std::move(RenamePassWorkList.back()); 657 RenamePassWorkList.pop_back(); 658 // RenamePass may add new worklist entries. 659 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 660 } while (!RenamePassWorkList.empty()); 661 662 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 663 Visited.clear(); 664 665 // Remove the allocas themselves from the function. 666 for (Instruction *A : Allocas) { 667 // If there are any uses of the alloca instructions left, they must be in 668 // unreachable basic blocks that were not processed by walking the dominator 669 // tree. Just delete the users now. 670 if (!A->use_empty()) 671 A->replaceAllUsesWith(UndefValue::get(A->getType())); 672 A->eraseFromParent(); 673 } 674 675 // Remove alloca's dbg.declare instrinsics from the function. 676 for (auto &Declares : AllocaDbgDeclares) 677 for (auto *DII : Declares) 678 DII->eraseFromParent(); 679 680 // Loop over all of the PHI nodes and see if there are any that we can get 681 // rid of because they merge all of the same incoming values. This can 682 // happen due to undef values coming into the PHI nodes. This process is 683 // iterative, because eliminating one PHI node can cause others to be removed. 684 bool EliminatedAPHI = true; 685 while (EliminatedAPHI) { 686 EliminatedAPHI = false; 687 688 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 689 // simplify and RAUW them as we go. If it was not, we could add uses to 690 // the values we replace with in a non-deterministic order, thus creating 691 // non-deterministic def->use chains. 692 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 693 I = NewPhiNodes.begin(), 694 E = NewPhiNodes.end(); 695 I != E;) { 696 PHINode *PN = I->second; 697 698 // If this PHI node merges one value and/or undefs, get the value. 699 if (Value *V = SimplifyInstruction(PN, SQ)) { 700 PN->replaceAllUsesWith(V); 701 PN->eraseFromParent(); 702 NewPhiNodes.erase(I++); 703 EliminatedAPHI = true; 704 continue; 705 } 706 ++I; 707 } 708 } 709 710 // At this point, the renamer has added entries to PHI nodes for all reachable 711 // code. Unfortunately, there may be unreachable blocks which the renamer 712 // hasn't traversed. If this is the case, the PHI nodes may not 713 // have incoming values for all predecessors. Loop over all PHI nodes we have 714 // created, inserting undef values if they are missing any incoming values. 715 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 716 I = NewPhiNodes.begin(), 717 E = NewPhiNodes.end(); 718 I != E; ++I) { 719 // We want to do this once per basic block. As such, only process a block 720 // when we find the PHI that is the first entry in the block. 721 PHINode *SomePHI = I->second; 722 BasicBlock *BB = SomePHI->getParent(); 723 if (&BB->front() != SomePHI) 724 continue; 725 726 // Only do work here if there the PHI nodes are missing incoming values. We 727 // know that all PHI nodes that were inserted in a block will have the same 728 // number of incoming values, so we can just check any of them. 729 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 730 continue; 731 732 // Get the preds for BB. 733 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 734 735 // Ok, now we know that all of the PHI nodes are missing entries for some 736 // basic blocks. Start by sorting the incoming predecessors for efficient 737 // access. 738 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 739 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 740 }; 741 llvm::sort(Preds, CompareBBNumbers); 742 743 // Now we loop through all BB's which have entries in SomePHI and remove 744 // them from the Preds list. 745 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 746 // Do a log(n) search of the Preds list for the entry we want. 747 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 748 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 749 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 750 "PHI node has entry for a block which is not a predecessor!"); 751 752 // Remove the entry 753 Preds.erase(EntIt); 754 } 755 756 // At this point, the blocks left in the preds list must have dummy 757 // entries inserted into every PHI nodes for the block. Update all the phi 758 // nodes in this block that we are inserting (there could be phis before 759 // mem2reg runs). 760 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 761 BasicBlock::iterator BBI = BB->begin(); 762 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 763 SomePHI->getNumIncomingValues() == NumBadPreds) { 764 Value *UndefVal = UndefValue::get(SomePHI->getType()); 765 for (BasicBlock *Pred : Preds) 766 SomePHI->addIncoming(UndefVal, Pred); 767 } 768 } 769 770 NewPhiNodes.clear(); 771 } 772 773 /// Determine which blocks the value is live in. 774 /// 775 /// These are blocks which lead to uses. Knowing this allows us to avoid 776 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 777 /// inserted phi nodes would be dead). 778 void PromoteMem2Reg::ComputeLiveInBlocks( 779 AllocaInst *AI, AllocaInfo &Info, 780 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 781 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 782 // To determine liveness, we must iterate through the predecessors of blocks 783 // where the def is live. Blocks are added to the worklist if we need to 784 // check their predecessors. Start with all the using blocks. 785 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 786 Info.UsingBlocks.end()); 787 788 // If any of the using blocks is also a definition block, check to see if the 789 // definition occurs before or after the use. If it happens before the use, 790 // the value isn't really live-in. 791 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 792 BasicBlock *BB = LiveInBlockWorklist[i]; 793 if (!DefBlocks.count(BB)) 794 continue; 795 796 // Okay, this is a block that both uses and defines the value. If the first 797 // reference to the alloca is a def (store), then we know it isn't live-in. 798 for (BasicBlock::iterator I = BB->begin();; ++I) { 799 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 800 if (SI->getOperand(1) != AI) 801 continue; 802 803 // We found a store to the alloca before a load. The alloca is not 804 // actually live-in here. 805 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 806 LiveInBlockWorklist.pop_back(); 807 --i; 808 --e; 809 break; 810 } 811 812 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 813 // Okay, we found a load before a store to the alloca. It is actually 814 // live into this block. 815 if (LI->getOperand(0) == AI) 816 break; 817 } 818 } 819 820 // Now that we have a set of blocks where the phi is live-in, recursively add 821 // their predecessors until we find the full region the value is live. 822 while (!LiveInBlockWorklist.empty()) { 823 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 824 825 // The block really is live in here, insert it into the set. If already in 826 // the set, then it has already been processed. 827 if (!LiveInBlocks.insert(BB).second) 828 continue; 829 830 // Since the value is live into BB, it is either defined in a predecessor or 831 // live into it to. Add the preds to the worklist unless they are a 832 // defining block. 833 for (BasicBlock *P : predecessors(BB)) { 834 // The value is not live into a predecessor if it defines the value. 835 if (DefBlocks.count(P)) 836 continue; 837 838 // Otherwise it is, add to the worklist. 839 LiveInBlockWorklist.push_back(P); 840 } 841 } 842 } 843 844 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 845 /// 846 /// Returns true if there wasn't already a phi-node for that variable 847 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 848 unsigned &Version) { 849 // Look up the basic-block in question. 850 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 851 852 // If the BB already has a phi node added for the i'th alloca then we're done! 853 if (PN) 854 return false; 855 856 // Create a PhiNode using the dereferenced type... and add the phi-node to the 857 // BasicBlock. 858 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 859 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 860 &BB->front()); 861 ++NumPHIInsert; 862 PhiToAllocaMap[PN] = AllocaNo; 863 return true; 864 } 865 866 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 867 /// create a merged location incorporating \p DL, or to set \p DL directly. 868 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 869 bool ApplyMergedLoc) { 870 if (ApplyMergedLoc) 871 PN->applyMergedLocation(PN->getDebugLoc(), DL); 872 else 873 PN->setDebugLoc(DL); 874 } 875 876 /// Recursively traverse the CFG of the function, renaming loads and 877 /// stores to the allocas which we are promoting. 878 /// 879 /// IncomingVals indicates what value each Alloca contains on exit from the 880 /// predecessor block Pred. 881 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 882 RenamePassData::ValVector &IncomingVals, 883 RenamePassData::LocationVector &IncomingLocs, 884 std::vector<RenamePassData> &Worklist) { 885 NextIteration: 886 // If we are inserting any phi nodes into this BB, they will already be in the 887 // block. 888 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 889 // If we have PHI nodes to update, compute the number of edges from Pred to 890 // BB. 891 if (PhiToAllocaMap.count(APN)) { 892 // We want to be able to distinguish between PHI nodes being inserted by 893 // this invocation of mem2reg from those phi nodes that already existed in 894 // the IR before mem2reg was run. We determine that APN is being inserted 895 // because it is missing incoming edges. All other PHI nodes being 896 // inserted by this pass of mem2reg will have the same number of incoming 897 // operands so far. Remember this count. 898 unsigned NewPHINumOperands = APN->getNumOperands(); 899 900 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 901 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 902 903 // Add entries for all the phis. 904 BasicBlock::iterator PNI = BB->begin(); 905 do { 906 unsigned AllocaNo = PhiToAllocaMap[APN]; 907 908 // Update the location of the phi node. 909 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 910 APN->getNumIncomingValues() > 0); 911 912 // Add N incoming values to the PHI node. 913 for (unsigned i = 0; i != NumEdges; ++i) 914 APN->addIncoming(IncomingVals[AllocaNo], Pred); 915 916 // The currently active variable for this block is now the PHI. 917 IncomingVals[AllocaNo] = APN; 918 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 919 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 920 921 // Get the next phi node. 922 ++PNI; 923 APN = dyn_cast<PHINode>(PNI); 924 if (!APN) 925 break; 926 927 // Verify that it is missing entries. If not, it is not being inserted 928 // by this mem2reg invocation so we want to ignore it. 929 } while (APN->getNumOperands() == NewPHINumOperands); 930 } 931 } 932 933 // Don't revisit blocks. 934 if (!Visited.insert(BB).second) 935 return; 936 937 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 938 Instruction *I = &*II++; // get the instruction, increment iterator 939 940 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 941 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 942 if (!Src) 943 continue; 944 945 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 946 if (AI == AllocaLookup.end()) 947 continue; 948 949 Value *V = IncomingVals[AI->second]; 950 951 // If the load was marked as nonnull we don't want to lose 952 // that information when we erase this Load. So we preserve 953 // it with an assume. 954 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 955 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 956 addAssumeNonNull(AC, LI); 957 958 // Anything using the load now uses the current value. 959 LI->replaceAllUsesWith(V); 960 BB->getInstList().erase(LI); 961 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 962 // Delete this instruction and mark the name as the current holder of the 963 // value 964 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 965 if (!Dest) 966 continue; 967 968 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 969 if (ai == AllocaLookup.end()) 970 continue; 971 972 // what value were we writing? 973 unsigned AllocaNo = ai->second; 974 IncomingVals[AllocaNo] = SI->getOperand(0); 975 976 // Record debuginfo for the store before removing it. 977 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 978 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) 979 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 980 BB->getInstList().erase(SI); 981 } 982 } 983 984 // 'Recurse' to our successors. 985 succ_iterator I = succ_begin(BB), E = succ_end(BB); 986 if (I == E) 987 return; 988 989 // Keep track of the successors so we don't visit the same successor twice 990 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 991 992 // Handle the first successor without using the worklist. 993 VisitedSuccs.insert(*I); 994 Pred = BB; 995 BB = *I; 996 ++I; 997 998 for (; I != E; ++I) 999 if (VisitedSuccs.insert(*I).second) 1000 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1001 1002 goto NextIteration; 1003 } 1004 1005 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1006 AssumptionCache *AC) { 1007 // If there is nothing to do, bail out... 1008 if (Allocas.empty()) 1009 return; 1010 1011 PromoteMem2Reg(Allocas, DT, AC).run(); 1012 } 1013