1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // FIXME: If the memory unit is of pointer or integer type, we can permit
66   // assignments to subsections of the memory unit.
67   unsigned AS = AI->getType()->getAddressSpace();
68 
69   // Only allow direct and non-volatile loads and stores...
70   for (const User *U : AI->users()) {
71     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
72       // Note that atomic loads can be transformed; atomic semantics do
73       // not have any meaning for a local alloca.
74       if (LI->isVolatile())
75         return false;
76     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
77       if (SI->getOperand(0) == AI)
78         return false; // Don't allow a store OF the AI, only INTO the AI.
79       // Note that atomic stores can be transformed; atomic semantics do
80       // not have any meaning for a local alloca.
81       if (SI->isVolatile())
82         return false;
83     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
84       if (!II->isLifetimeStartOrEnd())
85         return false;
86     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
87       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
88         return false;
89       if (!onlyUsedByLifetimeMarkers(BCI))
90         return false;
91     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
92       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
93         return false;
94       if (!GEPI->hasAllZeroIndices())
95         return false;
96       if (!onlyUsedByLifetimeMarkers(GEPI))
97         return false;
98     } else {
99       return false;
100     }
101   }
102 
103   return true;
104 }
105 
106 namespace {
107 
108 struct AllocaInfo {
109   SmallVector<BasicBlock *, 32> DefiningBlocks;
110   SmallVector<BasicBlock *, 32> UsingBlocks;
111 
112   StoreInst *OnlyStore;
113   BasicBlock *OnlyBlock;
114   bool OnlyUsedInOneBlock;
115 
116   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;
117 
118   void clear() {
119     DefiningBlocks.clear();
120     UsingBlocks.clear();
121     OnlyStore = nullptr;
122     OnlyBlock = nullptr;
123     OnlyUsedInOneBlock = true;
124     DbgDeclares.clear();
125   }
126 
127   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
128   /// by the rest of the pass to reason about the uses of this alloca.
129   void AnalyzeAlloca(AllocaInst *AI) {
130     clear();
131 
132     // As we scan the uses of the alloca instruction, keep track of stores,
133     // and decide whether all of the loads and stores to the alloca are within
134     // the same basic block.
135     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
136       Instruction *User = cast<Instruction>(*UI++);
137 
138       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
139         // Remember the basic blocks which define new values for the alloca
140         DefiningBlocks.push_back(SI->getParent());
141         OnlyStore = SI;
142       } else {
143         LoadInst *LI = cast<LoadInst>(User);
144         // Otherwise it must be a load instruction, keep track of variable
145         // reads.
146         UsingBlocks.push_back(LI->getParent());
147       }
148 
149       if (OnlyUsedInOneBlock) {
150         if (!OnlyBlock)
151           OnlyBlock = User->getParent();
152         else if (OnlyBlock != User->getParent())
153           OnlyUsedInOneBlock = false;
154       }
155     }
156 
157     DbgDeclares = FindDbgAddrUses(AI);
158   }
159 };
160 
161 /// Data package used by RenamePass().
162 struct RenamePassData {
163   using ValVector = std::vector<Value *>;
164   using LocationVector = std::vector<DebugLoc>;
165 
166   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
167       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
168 
169   BasicBlock *BB;
170   BasicBlock *Pred;
171   ValVector Values;
172   LocationVector Locations;
173 };
174 
175 /// This assigns and keeps a per-bb relative ordering of load/store
176 /// instructions in the block that directly load or store an alloca.
177 ///
178 /// This functionality is important because it avoids scanning large basic
179 /// blocks multiple times when promoting many allocas in the same block.
180 class LargeBlockInfo {
181   /// For each instruction that we track, keep the index of the
182   /// instruction.
183   ///
184   /// The index starts out as the number of the instruction from the start of
185   /// the block.
186   DenseMap<const Instruction *, unsigned> InstNumbers;
187 
188 public:
189 
190   /// This code only looks at accesses to allocas.
191   static bool isInterestingInstruction(const Instruction *I) {
192     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
193            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
194   }
195 
196   /// Get or calculate the index of the specified instruction.
197   unsigned getInstructionIndex(const Instruction *I) {
198     assert(isInterestingInstruction(I) &&
199            "Not a load/store to/from an alloca?");
200 
201     // If we already have this instruction number, return it.
202     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
203     if (It != InstNumbers.end())
204       return It->second;
205 
206     // Scan the whole block to get the instruction.  This accumulates
207     // information for every interesting instruction in the block, in order to
208     // avoid gratuitus rescans.
209     const BasicBlock *BB = I->getParent();
210     unsigned InstNo = 0;
211     for (const Instruction &BBI : *BB)
212       if (isInterestingInstruction(&BBI))
213         InstNumbers[&BBI] = InstNo++;
214     It = InstNumbers.find(I);
215 
216     assert(It != InstNumbers.end() && "Didn't insert instruction?");
217     return It->second;
218   }
219 
220   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
221 
222   void clear() { InstNumbers.clear(); }
223 };
224 
225 struct PromoteMem2Reg {
226   /// The alloca instructions being promoted.
227   std::vector<AllocaInst *> Allocas;
228 
229   DominatorTree &DT;
230   DIBuilder DIB;
231 
232   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
233   AssumptionCache *AC;
234 
235   const SimplifyQuery SQ;
236 
237   /// Reverse mapping of Allocas.
238   DenseMap<AllocaInst *, unsigned> AllocaLookup;
239 
240   /// The PhiNodes we're adding.
241   ///
242   /// That map is used to simplify some Phi nodes as we iterate over it, so
243   /// it should have deterministic iterators.  We could use a MapVector, but
244   /// since we already maintain a map from BasicBlock* to a stable numbering
245   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
246   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
247 
248   /// For each PHI node, keep track of which entry in Allocas it corresponds
249   /// to.
250   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
251 
252   /// If we are updating an AliasSetTracker, then for each alloca that is of
253   /// pointer type, we keep track of what to copyValue to the inserted PHI
254   /// nodes here.
255   std::vector<Value *> PointerAllocaValues;
256 
257   /// For each alloca, we keep track of the dbg.declare intrinsic that
258   /// describes it, if any, so that we can convert it to a dbg.value
259   /// intrinsic if the alloca gets promoted.
260   SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;
261 
262   /// The set of basic blocks the renamer has already visited.
263   SmallPtrSet<BasicBlock *, 16> Visited;
264 
265   /// Contains a stable numbering of basic blocks to avoid non-determinstic
266   /// behavior.
267   DenseMap<BasicBlock *, unsigned> BBNumbers;
268 
269   /// Lazily compute the number of predecessors a block has.
270   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
271 
272 public:
273   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
274                  AssumptionCache *AC)
275       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
276         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
277         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
278                    nullptr, &DT, AC) {}
279 
280   void run();
281 
282 private:
283   void RemoveFromAllocasList(unsigned &AllocaIdx) {
284     Allocas[AllocaIdx] = Allocas.back();
285     Allocas.pop_back();
286     --AllocaIdx;
287   }
288 
289   unsigned getNumPreds(const BasicBlock *BB) {
290     unsigned &NP = BBNumPreds[BB];
291     if (NP == 0)
292       NP = pred_size(BB) + 1;
293     return NP - 1;
294   }
295 
296   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
297                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
298                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
299   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
300                   RenamePassData::ValVector &IncVals,
301                   RenamePassData::LocationVector &IncLocs,
302                   std::vector<RenamePassData> &Worklist);
303   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
304 };
305 
306 } // end anonymous namespace
307 
308 /// Given a LoadInst LI this adds assume(LI != null) after it.
309 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
310   Function *AssumeIntrinsic =
311       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
312   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
313                                        Constant::getNullValue(LI->getType()));
314   LoadNotNull->insertAfter(LI);
315   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
316   CI->insertAfter(LoadNotNull);
317   AC->registerAssumption(CI);
318 }
319 
320 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
321   // Knowing that this alloca is promotable, we know that it's safe to kill all
322   // instructions except for load and store.
323 
324   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
325     Instruction *I = cast<Instruction>(*UI);
326     ++UI;
327     if (isa<LoadInst>(I) || isa<StoreInst>(I))
328       continue;
329 
330     if (!I->getType()->isVoidTy()) {
331       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
332       // Follow the use/def chain to erase them now instead of leaving it for
333       // dead code elimination later.
334       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
335         Instruction *Inst = cast<Instruction>(*UUI);
336         ++UUI;
337         Inst->eraseFromParent();
338       }
339     }
340     I->eraseFromParent();
341   }
342 }
343 
344 /// Rewrite as many loads as possible given a single store.
345 ///
346 /// When there is only a single store, we can use the domtree to trivially
347 /// replace all of the dominated loads with the stored value. Do so, and return
348 /// true if this has successfully promoted the alloca entirely. If this returns
349 /// false there were some loads which were not dominated by the single store
350 /// and thus must be phi-ed with undef. We fall back to the standard alloca
351 /// promotion algorithm in that case.
352 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
353                                      LargeBlockInfo &LBI, const DataLayout &DL,
354                                      DominatorTree &DT, AssumptionCache *AC) {
355   StoreInst *OnlyStore = Info.OnlyStore;
356   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
357   BasicBlock *StoreBB = OnlyStore->getParent();
358   int StoreIndex = -1;
359 
360   // Clear out UsingBlocks.  We will reconstruct it here if needed.
361   Info.UsingBlocks.clear();
362 
363   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
364     Instruction *UserInst = cast<Instruction>(*UI++);
365     if (UserInst == OnlyStore)
366       continue;
367     LoadInst *LI = cast<LoadInst>(UserInst);
368 
369     // Okay, if we have a load from the alloca, we want to replace it with the
370     // only value stored to the alloca.  We can do this if the value is
371     // dominated by the store.  If not, we use the rest of the mem2reg machinery
372     // to insert the phi nodes as needed.
373     if (!StoringGlobalVal) { // Non-instructions are always dominated.
374       if (LI->getParent() == StoreBB) {
375         // If we have a use that is in the same block as the store, compare the
376         // indices of the two instructions to see which one came first.  If the
377         // load came before the store, we can't handle it.
378         if (StoreIndex == -1)
379           StoreIndex = LBI.getInstructionIndex(OnlyStore);
380 
381         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
382           // Can't handle this load, bail out.
383           Info.UsingBlocks.push_back(StoreBB);
384           continue;
385         }
386       } else if (!DT.dominates(StoreBB, LI->getParent())) {
387         // If the load and store are in different blocks, use BB dominance to
388         // check their relationships.  If the store doesn't dom the use, bail
389         // out.
390         Info.UsingBlocks.push_back(LI->getParent());
391         continue;
392       }
393     }
394 
395     // Otherwise, we *can* safely rewrite this load.
396     Value *ReplVal = OnlyStore->getOperand(0);
397     // If the replacement value is the load, this must occur in unreachable
398     // code.
399     if (ReplVal == LI)
400       ReplVal = UndefValue::get(LI->getType());
401 
402     // If the load was marked as nonnull we don't want to lose
403     // that information when we erase this Load. So we preserve
404     // it with an assume.
405     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
406         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
407       addAssumeNonNull(AC, LI);
408 
409     LI->replaceAllUsesWith(ReplVal);
410     LI->eraseFromParent();
411     LBI.deleteValue(LI);
412   }
413 
414   // Finally, after the scan, check to see if the store is all that is left.
415   if (!Info.UsingBlocks.empty())
416     return false; // If not, we'll have to fall back for the remainder.
417 
418   // Record debuginfo for the store and remove the declaration's
419   // debuginfo.
420   for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
421     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
422     ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
423     DII->eraseFromParent();
424   }
425   // Remove the (now dead) store and alloca.
426   Info.OnlyStore->eraseFromParent();
427   LBI.deleteValue(Info.OnlyStore);
428 
429   AI->eraseFromParent();
430   return true;
431 }
432 
433 /// Many allocas are only used within a single basic block.  If this is the
434 /// case, avoid traversing the CFG and inserting a lot of potentially useless
435 /// PHI nodes by just performing a single linear pass over the basic block
436 /// using the Alloca.
437 ///
438 /// If we cannot promote this alloca (because it is read before it is written),
439 /// return false.  This is necessary in cases where, due to control flow, the
440 /// alloca is undefined only on some control flow paths.  e.g. code like
441 /// this is correct in LLVM IR:
442 ///  // A is an alloca with no stores so far
443 ///  for (...) {
444 ///    int t = *A;
445 ///    if (!first_iteration)
446 ///      use(t);
447 ///    *A = 42;
448 ///  }
449 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
450                                      LargeBlockInfo &LBI,
451                                      const DataLayout &DL,
452                                      DominatorTree &DT,
453                                      AssumptionCache *AC) {
454   // The trickiest case to handle is when we have large blocks. Because of this,
455   // this code is optimized assuming that large blocks happen.  This does not
456   // significantly pessimize the small block case.  This uses LargeBlockInfo to
457   // make it efficient to get the index of various operations in the block.
458 
459   // Walk the use-def list of the alloca, getting the locations of all stores.
460   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
461   StoresByIndexTy StoresByIndex;
462 
463   for (User *U : AI->users())
464     if (StoreInst *SI = dyn_cast<StoreInst>(U))
465       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
466 
467   // Sort the stores by their index, making it efficient to do a lookup with a
468   // binary search.
469   llvm::sort(StoresByIndex, less_first());
470 
471   // Walk all of the loads from this alloca, replacing them with the nearest
472   // store above them, if any.
473   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
474     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
475     if (!LI)
476       continue;
477 
478     unsigned LoadIdx = LBI.getInstructionIndex(LI);
479 
480     // Find the nearest store that has a lower index than this load.
481     StoresByIndexTy::iterator I = llvm::lower_bound(
482         StoresByIndex,
483         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
484         less_first());
485     if (I == StoresByIndex.begin()) {
486       if (StoresByIndex.empty())
487         // If there are no stores, the load takes the undef value.
488         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
489       else
490         // There is no store before this load, bail out (load may be affected
491         // by the following stores - see main comment).
492         return false;
493     } else {
494       // Otherwise, there was a store before this load, the load takes its value.
495       // Note, if the load was marked as nonnull we don't want to lose that
496       // information when we erase it. So we preserve it with an assume.
497       Value *ReplVal = std::prev(I)->second->getOperand(0);
498       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
499           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
500         addAssumeNonNull(AC, LI);
501 
502       // If the replacement value is the load, this must occur in unreachable
503       // code.
504       if (ReplVal == LI)
505         ReplVal = UndefValue::get(LI->getType());
506 
507       LI->replaceAllUsesWith(ReplVal);
508     }
509 
510     LI->eraseFromParent();
511     LBI.deleteValue(LI);
512   }
513 
514   // Remove the (now dead) stores and alloca.
515   while (!AI->use_empty()) {
516     StoreInst *SI = cast<StoreInst>(AI->user_back());
517     // Record debuginfo for the store before removing it.
518     for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
519       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
520       ConvertDebugDeclareToDebugValue(DII, SI, DIB);
521     }
522     SI->eraseFromParent();
523     LBI.deleteValue(SI);
524   }
525 
526   AI->eraseFromParent();
527 
528   // The alloca's debuginfo can be removed as well.
529   for (DbgVariableIntrinsic *DII : Info.DbgDeclares)
530     DII->eraseFromParent();
531 
532   ++NumLocalPromoted;
533   return true;
534 }
535 
536 void PromoteMem2Reg::run() {
537   Function &F = *DT.getRoot()->getParent();
538 
539   AllocaDbgDeclares.resize(Allocas.size());
540 
541   AllocaInfo Info;
542   LargeBlockInfo LBI;
543   ForwardIDFCalculator IDF(DT);
544 
545   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
546     AllocaInst *AI = Allocas[AllocaNum];
547 
548     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
549     assert(AI->getParent()->getParent() == &F &&
550            "All allocas should be in the same function, which is same as DF!");
551 
552     removeLifetimeIntrinsicUsers(AI);
553 
554     if (AI->use_empty()) {
555       // If there are no uses of the alloca, just delete it now.
556       AI->eraseFromParent();
557 
558       // Remove the alloca from the Allocas list, since it has been processed
559       RemoveFromAllocasList(AllocaNum);
560       ++NumDeadAlloca;
561       continue;
562     }
563 
564     // Calculate the set of read and write-locations for each alloca.  This is
565     // analogous to finding the 'uses' and 'definitions' of each variable.
566     Info.AnalyzeAlloca(AI);
567 
568     // If there is only a single store to this value, replace any loads of
569     // it that are directly dominated by the definition with the value stored.
570     if (Info.DefiningBlocks.size() == 1) {
571       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
572         // The alloca has been processed, move on.
573         RemoveFromAllocasList(AllocaNum);
574         ++NumSingleStore;
575         continue;
576       }
577     }
578 
579     // If the alloca is only read and written in one basic block, just perform a
580     // linear sweep over the block to eliminate it.
581     if (Info.OnlyUsedInOneBlock &&
582         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
583       // The alloca has been processed, move on.
584       RemoveFromAllocasList(AllocaNum);
585       continue;
586     }
587 
588     // If we haven't computed a numbering for the BB's in the function, do so
589     // now.
590     if (BBNumbers.empty()) {
591       unsigned ID = 0;
592       for (auto &BB : F)
593         BBNumbers[&BB] = ID++;
594     }
595 
596     // Remember the dbg.declare intrinsic describing this alloca, if any.
597     if (!Info.DbgDeclares.empty())
598       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
599 
600     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
601     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
602 
603     // At this point, we're committed to promoting the alloca using IDF's, and
604     // the standard SSA construction algorithm.  Determine which blocks need PHI
605     // nodes and see if we can optimize out some work by avoiding insertion of
606     // dead phi nodes.
607 
608     // Unique the set of defining blocks for efficient lookup.
609     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
610                                             Info.DefiningBlocks.end());
611 
612     // Determine which blocks the value is live in.  These are blocks which lead
613     // to uses.
614     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
615     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
616 
617     // At this point, we're committed to promoting the alloca using IDF's, and
618     // the standard SSA construction algorithm.  Determine which blocks need phi
619     // nodes and see if we can optimize out some work by avoiding insertion of
620     // dead phi nodes.
621     IDF.setLiveInBlocks(LiveInBlocks);
622     IDF.setDefiningBlocks(DefBlocks);
623     SmallVector<BasicBlock *, 32> PHIBlocks;
624     IDF.calculate(PHIBlocks);
625     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
626       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
627     });
628 
629     unsigned CurrentVersion = 0;
630     for (BasicBlock *BB : PHIBlocks)
631       QueuePhiNode(BB, AllocaNum, CurrentVersion);
632   }
633 
634   if (Allocas.empty())
635     return; // All of the allocas must have been trivial!
636 
637   LBI.clear();
638 
639   // Set the incoming values for the basic block to be null values for all of
640   // the alloca's.  We do this in case there is a load of a value that has not
641   // been stored yet.  In this case, it will get this null value.
642   RenamePassData::ValVector Values(Allocas.size());
643   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
644     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
645 
646   // When handling debug info, treat all incoming values as if they have unknown
647   // locations until proven otherwise.
648   RenamePassData::LocationVector Locations(Allocas.size());
649 
650   // Walks all basic blocks in the function performing the SSA rename algorithm
651   // and inserting the phi nodes we marked as necessary
652   std::vector<RenamePassData> RenamePassWorkList;
653   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
654                                   std::move(Locations));
655   do {
656     RenamePassData RPD = std::move(RenamePassWorkList.back());
657     RenamePassWorkList.pop_back();
658     // RenamePass may add new worklist entries.
659     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
660   } while (!RenamePassWorkList.empty());
661 
662   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
663   Visited.clear();
664 
665   // Remove the allocas themselves from the function.
666   for (Instruction *A : Allocas) {
667     // If there are any uses of the alloca instructions left, they must be in
668     // unreachable basic blocks that were not processed by walking the dominator
669     // tree. Just delete the users now.
670     if (!A->use_empty())
671       A->replaceAllUsesWith(UndefValue::get(A->getType()));
672     A->eraseFromParent();
673   }
674 
675   // Remove alloca's dbg.declare instrinsics from the function.
676   for (auto &Declares : AllocaDbgDeclares)
677     for (auto *DII : Declares)
678       DII->eraseFromParent();
679 
680   // Loop over all of the PHI nodes and see if there are any that we can get
681   // rid of because they merge all of the same incoming values.  This can
682   // happen due to undef values coming into the PHI nodes.  This process is
683   // iterative, because eliminating one PHI node can cause others to be removed.
684   bool EliminatedAPHI = true;
685   while (EliminatedAPHI) {
686     EliminatedAPHI = false;
687 
688     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
689     // simplify and RAUW them as we go.  If it was not, we could add uses to
690     // the values we replace with in a non-deterministic order, thus creating
691     // non-deterministic def->use chains.
692     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
693              I = NewPhiNodes.begin(),
694              E = NewPhiNodes.end();
695          I != E;) {
696       PHINode *PN = I->second;
697 
698       // If this PHI node merges one value and/or undefs, get the value.
699       if (Value *V = SimplifyInstruction(PN, SQ)) {
700         PN->replaceAllUsesWith(V);
701         PN->eraseFromParent();
702         NewPhiNodes.erase(I++);
703         EliminatedAPHI = true;
704         continue;
705       }
706       ++I;
707     }
708   }
709 
710   // At this point, the renamer has added entries to PHI nodes for all reachable
711   // code.  Unfortunately, there may be unreachable blocks which the renamer
712   // hasn't traversed.  If this is the case, the PHI nodes may not
713   // have incoming values for all predecessors.  Loop over all PHI nodes we have
714   // created, inserting undef values if they are missing any incoming values.
715   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
716            I = NewPhiNodes.begin(),
717            E = NewPhiNodes.end();
718        I != E; ++I) {
719     // We want to do this once per basic block.  As such, only process a block
720     // when we find the PHI that is the first entry in the block.
721     PHINode *SomePHI = I->second;
722     BasicBlock *BB = SomePHI->getParent();
723     if (&BB->front() != SomePHI)
724       continue;
725 
726     // Only do work here if there the PHI nodes are missing incoming values.  We
727     // know that all PHI nodes that were inserted in a block will have the same
728     // number of incoming values, so we can just check any of them.
729     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
730       continue;
731 
732     // Get the preds for BB.
733     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
734 
735     // Ok, now we know that all of the PHI nodes are missing entries for some
736     // basic blocks.  Start by sorting the incoming predecessors for efficient
737     // access.
738     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
739       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
740     };
741     llvm::sort(Preds, CompareBBNumbers);
742 
743     // Now we loop through all BB's which have entries in SomePHI and remove
744     // them from the Preds list.
745     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
746       // Do a log(n) search of the Preds list for the entry we want.
747       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
748           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
749       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
750              "PHI node has entry for a block which is not a predecessor!");
751 
752       // Remove the entry
753       Preds.erase(EntIt);
754     }
755 
756     // At this point, the blocks left in the preds list must have dummy
757     // entries inserted into every PHI nodes for the block.  Update all the phi
758     // nodes in this block that we are inserting (there could be phis before
759     // mem2reg runs).
760     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
761     BasicBlock::iterator BBI = BB->begin();
762     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
763            SomePHI->getNumIncomingValues() == NumBadPreds) {
764       Value *UndefVal = UndefValue::get(SomePHI->getType());
765       for (BasicBlock *Pred : Preds)
766         SomePHI->addIncoming(UndefVal, Pred);
767     }
768   }
769 
770   NewPhiNodes.clear();
771 }
772 
773 /// Determine which blocks the value is live in.
774 ///
775 /// These are blocks which lead to uses.  Knowing this allows us to avoid
776 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
777 /// inserted phi nodes would be dead).
778 void PromoteMem2Reg::ComputeLiveInBlocks(
779     AllocaInst *AI, AllocaInfo &Info,
780     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
781     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
782   // To determine liveness, we must iterate through the predecessors of blocks
783   // where the def is live.  Blocks are added to the worklist if we need to
784   // check their predecessors.  Start with all the using blocks.
785   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
786                                                     Info.UsingBlocks.end());
787 
788   // If any of the using blocks is also a definition block, check to see if the
789   // definition occurs before or after the use.  If it happens before the use,
790   // the value isn't really live-in.
791   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
792     BasicBlock *BB = LiveInBlockWorklist[i];
793     if (!DefBlocks.count(BB))
794       continue;
795 
796     // Okay, this is a block that both uses and defines the value.  If the first
797     // reference to the alloca is a def (store), then we know it isn't live-in.
798     for (BasicBlock::iterator I = BB->begin();; ++I) {
799       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
800         if (SI->getOperand(1) != AI)
801           continue;
802 
803         // We found a store to the alloca before a load.  The alloca is not
804         // actually live-in here.
805         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
806         LiveInBlockWorklist.pop_back();
807         --i;
808         --e;
809         break;
810       }
811 
812       if (LoadInst *LI = dyn_cast<LoadInst>(I))
813         // Okay, we found a load before a store to the alloca.  It is actually
814         // live into this block.
815         if (LI->getOperand(0) == AI)
816           break;
817     }
818   }
819 
820   // Now that we have a set of blocks where the phi is live-in, recursively add
821   // their predecessors until we find the full region the value is live.
822   while (!LiveInBlockWorklist.empty()) {
823     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
824 
825     // The block really is live in here, insert it into the set.  If already in
826     // the set, then it has already been processed.
827     if (!LiveInBlocks.insert(BB).second)
828       continue;
829 
830     // Since the value is live into BB, it is either defined in a predecessor or
831     // live into it to.  Add the preds to the worklist unless they are a
832     // defining block.
833     for (BasicBlock *P : predecessors(BB)) {
834       // The value is not live into a predecessor if it defines the value.
835       if (DefBlocks.count(P))
836         continue;
837 
838       // Otherwise it is, add to the worklist.
839       LiveInBlockWorklist.push_back(P);
840     }
841   }
842 }
843 
844 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
845 ///
846 /// Returns true if there wasn't already a phi-node for that variable
847 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
848                                   unsigned &Version) {
849   // Look up the basic-block in question.
850   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
851 
852   // If the BB already has a phi node added for the i'th alloca then we're done!
853   if (PN)
854     return false;
855 
856   // Create a PhiNode using the dereferenced type... and add the phi-node to the
857   // BasicBlock.
858   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
859                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
860                        &BB->front());
861   ++NumPHIInsert;
862   PhiToAllocaMap[PN] = AllocaNo;
863   return true;
864 }
865 
866 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
867 /// create a merged location incorporating \p DL, or to set \p DL directly.
868 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
869                                            bool ApplyMergedLoc) {
870   if (ApplyMergedLoc)
871     PN->applyMergedLocation(PN->getDebugLoc(), DL);
872   else
873     PN->setDebugLoc(DL);
874 }
875 
876 /// Recursively traverse the CFG of the function, renaming loads and
877 /// stores to the allocas which we are promoting.
878 ///
879 /// IncomingVals indicates what value each Alloca contains on exit from the
880 /// predecessor block Pred.
881 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
882                                 RenamePassData::ValVector &IncomingVals,
883                                 RenamePassData::LocationVector &IncomingLocs,
884                                 std::vector<RenamePassData> &Worklist) {
885 NextIteration:
886   // If we are inserting any phi nodes into this BB, they will already be in the
887   // block.
888   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
889     // If we have PHI nodes to update, compute the number of edges from Pred to
890     // BB.
891     if (PhiToAllocaMap.count(APN)) {
892       // We want to be able to distinguish between PHI nodes being inserted by
893       // this invocation of mem2reg from those phi nodes that already existed in
894       // the IR before mem2reg was run.  We determine that APN is being inserted
895       // because it is missing incoming edges.  All other PHI nodes being
896       // inserted by this pass of mem2reg will have the same number of incoming
897       // operands so far.  Remember this count.
898       unsigned NewPHINumOperands = APN->getNumOperands();
899 
900       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
901       assert(NumEdges && "Must be at least one edge from Pred to BB!");
902 
903       // Add entries for all the phis.
904       BasicBlock::iterator PNI = BB->begin();
905       do {
906         unsigned AllocaNo = PhiToAllocaMap[APN];
907 
908         // Update the location of the phi node.
909         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
910                                        APN->getNumIncomingValues() > 0);
911 
912         // Add N incoming values to the PHI node.
913         for (unsigned i = 0; i != NumEdges; ++i)
914           APN->addIncoming(IncomingVals[AllocaNo], Pred);
915 
916         // The currently active variable for this block is now the PHI.
917         IncomingVals[AllocaNo] = APN;
918         for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
919           ConvertDebugDeclareToDebugValue(DII, APN, DIB);
920 
921         // Get the next phi node.
922         ++PNI;
923         APN = dyn_cast<PHINode>(PNI);
924         if (!APN)
925           break;
926 
927         // Verify that it is missing entries.  If not, it is not being inserted
928         // by this mem2reg invocation so we want to ignore it.
929       } while (APN->getNumOperands() == NewPHINumOperands);
930     }
931   }
932 
933   // Don't revisit blocks.
934   if (!Visited.insert(BB).second)
935     return;
936 
937   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
938     Instruction *I = &*II++; // get the instruction, increment iterator
939 
940     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
941       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
942       if (!Src)
943         continue;
944 
945       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
946       if (AI == AllocaLookup.end())
947         continue;
948 
949       Value *V = IncomingVals[AI->second];
950 
951       // If the load was marked as nonnull we don't want to lose
952       // that information when we erase this Load. So we preserve
953       // it with an assume.
954       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
955           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
956         addAssumeNonNull(AC, LI);
957 
958       // Anything using the load now uses the current value.
959       LI->replaceAllUsesWith(V);
960       BB->getInstList().erase(LI);
961     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
962       // Delete this instruction and mark the name as the current holder of the
963       // value
964       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
965       if (!Dest)
966         continue;
967 
968       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
969       if (ai == AllocaLookup.end())
970         continue;
971 
972       // what value were we writing?
973       unsigned AllocaNo = ai->second;
974       IncomingVals[AllocaNo] = SI->getOperand(0);
975 
976       // Record debuginfo for the store before removing it.
977       IncomingLocs[AllocaNo] = SI->getDebugLoc();
978       for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
979         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
980       BB->getInstList().erase(SI);
981     }
982   }
983 
984   // 'Recurse' to our successors.
985   succ_iterator I = succ_begin(BB), E = succ_end(BB);
986   if (I == E)
987     return;
988 
989   // Keep track of the successors so we don't visit the same successor twice
990   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
991 
992   // Handle the first successor without using the worklist.
993   VisitedSuccs.insert(*I);
994   Pred = BB;
995   BB = *I;
996   ++I;
997 
998   for (; I != E; ++I)
999     if (VisitedSuccs.insert(*I).second)
1000       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1001 
1002   goto NextIteration;
1003 }
1004 
1005 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1006                            AssumptionCache *AC) {
1007   // If there is nothing to do, bail out...
1008   if (Allocas.empty())
1009     return;
1010 
1011   PromoteMem2Reg(Allocas, DT, AC).run();
1012 }
1013