1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 // The algorithm used here is based on: 17 // 18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes. 19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of 20 // Programming Languages 21 // POPL '95. ACM, New York, NY, 62-73. 22 // 23 // It has been modified to not explicitly use the DJ graph data structure and to 24 // directly compute pruned SSA using per-variable liveness information. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/AliasSetTracker.h" 36 #include "llvm/Analysis/InstructionSimplify.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DIBuilder.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include <algorithm> 50 #include <queue> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "mem2reg" 54 55 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 56 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 57 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 58 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 59 60 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 61 // FIXME: If the memory unit is of pointer or integer type, we can permit 62 // assignments to subsections of the memory unit. 63 unsigned AS = AI->getType()->getAddressSpace(); 64 65 // Only allow direct and non-volatile loads and stores... 66 for (const User *U : AI->users()) { 67 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 68 // Note that atomic loads can be transformed; atomic semantics do 69 // not have any meaning for a local alloca. 70 if (LI->isVolatile()) 71 return false; 72 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 73 if (SI->getOperand(0) == AI) 74 return false; // Don't allow a store OF the AI, only INTO the AI. 75 // Note that atomic stores can be transformed; atomic semantics do 76 // not have any meaning for a local alloca. 77 if (SI->isVolatile()) 78 return false; 79 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 80 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 81 II->getIntrinsicID() != Intrinsic::lifetime_end) 82 return false; 83 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 84 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 85 return false; 86 if (!onlyUsedByLifetimeMarkers(BCI)) 87 return false; 88 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 89 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 90 return false; 91 if (!GEPI->hasAllZeroIndices()) 92 return false; 93 if (!onlyUsedByLifetimeMarkers(GEPI)) 94 return false; 95 } else { 96 return false; 97 } 98 } 99 100 return true; 101 } 102 103 namespace { 104 105 struct AllocaInfo { 106 SmallVector<BasicBlock *, 32> DefiningBlocks; 107 SmallVector<BasicBlock *, 32> UsingBlocks; 108 109 StoreInst *OnlyStore; 110 BasicBlock *OnlyBlock; 111 bool OnlyUsedInOneBlock; 112 113 Value *AllocaPointerVal; 114 DbgDeclareInst *DbgDeclare; 115 116 void clear() { 117 DefiningBlocks.clear(); 118 UsingBlocks.clear(); 119 OnlyStore = nullptr; 120 OnlyBlock = nullptr; 121 OnlyUsedInOneBlock = true; 122 AllocaPointerVal = nullptr; 123 DbgDeclare = nullptr; 124 } 125 126 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 127 /// by the rest of the pass to reason about the uses of this alloca. 128 void AnalyzeAlloca(AllocaInst *AI) { 129 clear(); 130 131 // As we scan the uses of the alloca instruction, keep track of stores, 132 // and decide whether all of the loads and stores to the alloca are within 133 // the same basic block. 134 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 135 Instruction *User = cast<Instruction>(*UI++); 136 137 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 138 // Remember the basic blocks which define new values for the alloca 139 DefiningBlocks.push_back(SI->getParent()); 140 AllocaPointerVal = SI->getOperand(0); 141 OnlyStore = SI; 142 } else { 143 LoadInst *LI = cast<LoadInst>(User); 144 // Otherwise it must be a load instruction, keep track of variable 145 // reads. 146 UsingBlocks.push_back(LI->getParent()); 147 AllocaPointerVal = LI; 148 } 149 150 if (OnlyUsedInOneBlock) { 151 if (!OnlyBlock) 152 OnlyBlock = User->getParent(); 153 else if (OnlyBlock != User->getParent()) 154 OnlyUsedInOneBlock = false; 155 } 156 } 157 158 DbgDeclare = FindAllocaDbgDeclare(AI); 159 } 160 }; 161 162 // Data package used by RenamePass() 163 class RenamePassData { 164 public: 165 typedef std::vector<Value *> ValVector; 166 167 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} 168 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) 169 : BB(B), Pred(P), Values(V) {} 170 BasicBlock *BB; 171 BasicBlock *Pred; 172 ValVector Values; 173 174 void swap(RenamePassData &RHS) { 175 std::swap(BB, RHS.BB); 176 std::swap(Pred, RHS.Pred); 177 Values.swap(RHS.Values); 178 } 179 }; 180 181 /// \brief This assigns and keeps a per-bb relative ordering of load/store 182 /// instructions in the block that directly load or store an alloca. 183 /// 184 /// This functionality is important because it avoids scanning large basic 185 /// blocks multiple times when promoting many allocas in the same block. 186 class LargeBlockInfo { 187 /// \brief For each instruction that we track, keep the index of the 188 /// instruction. 189 /// 190 /// The index starts out as the number of the instruction from the start of 191 /// the block. 192 DenseMap<const Instruction *, unsigned> InstNumbers; 193 194 public: 195 196 /// This code only looks at accesses to allocas. 197 static bool isInterestingInstruction(const Instruction *I) { 198 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 199 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 200 } 201 202 /// Get or calculate the index of the specified instruction. 203 unsigned getInstructionIndex(const Instruction *I) { 204 assert(isInterestingInstruction(I) && 205 "Not a load/store to/from an alloca?"); 206 207 // If we already have this instruction number, return it. 208 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 209 if (It != InstNumbers.end()) 210 return It->second; 211 212 // Scan the whole block to get the instruction. This accumulates 213 // information for every interesting instruction in the block, in order to 214 // avoid gratuitus rescans. 215 const BasicBlock *BB = I->getParent(); 216 unsigned InstNo = 0; 217 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; 218 ++BBI) 219 if (isInterestingInstruction(BBI)) 220 InstNumbers[BBI] = InstNo++; 221 It = InstNumbers.find(I); 222 223 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 224 return It->second; 225 } 226 227 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 228 229 void clear() { InstNumbers.clear(); } 230 }; 231 232 struct PromoteMem2Reg { 233 /// The alloca instructions being promoted. 234 std::vector<AllocaInst *> Allocas; 235 DominatorTree &DT; 236 DIBuilder DIB; 237 238 /// An AliasSetTracker object to update. If null, don't update it. 239 AliasSetTracker *AST; 240 241 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 242 AssumptionCache *AC; 243 244 /// Reverse mapping of Allocas. 245 DenseMap<AllocaInst *, unsigned> AllocaLookup; 246 247 /// \brief The PhiNodes we're adding. 248 /// 249 /// That map is used to simplify some Phi nodes as we iterate over it, so 250 /// it should have deterministic iterators. We could use a MapVector, but 251 /// since we already maintain a map from BasicBlock* to a stable numbering 252 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 253 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 254 255 /// For each PHI node, keep track of which entry in Allocas it corresponds 256 /// to. 257 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 258 259 /// If we are updating an AliasSetTracker, then for each alloca that is of 260 /// pointer type, we keep track of what to copyValue to the inserted PHI 261 /// nodes here. 262 std::vector<Value *> PointerAllocaValues; 263 264 /// For each alloca, we keep track of the dbg.declare intrinsic that 265 /// describes it, if any, so that we can convert it to a dbg.value 266 /// intrinsic if the alloca gets promoted. 267 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; 268 269 /// The set of basic blocks the renamer has already visited. 270 /// 271 SmallPtrSet<BasicBlock *, 16> Visited; 272 273 /// Contains a stable numbering of basic blocks to avoid non-determinstic 274 /// behavior. 275 DenseMap<BasicBlock *, unsigned> BBNumbers; 276 277 /// Maps DomTreeNodes to their level in the dominator tree. 278 DenseMap<DomTreeNode *, unsigned> DomLevels; 279 280 /// Lazily compute the number of predecessors a block has. 281 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 282 283 public: 284 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 285 AliasSetTracker *AST, AssumptionCache *AC) 286 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 287 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 288 AST(AST), AC(AC) {} 289 290 void run(); 291 292 private: 293 void RemoveFromAllocasList(unsigned &AllocaIdx) { 294 Allocas[AllocaIdx] = Allocas.back(); 295 Allocas.pop_back(); 296 --AllocaIdx; 297 } 298 299 unsigned getNumPreds(const BasicBlock *BB) { 300 unsigned &NP = BBNumPreds[BB]; 301 if (NP == 0) 302 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 303 return NP - 1; 304 } 305 306 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 307 AllocaInfo &Info); 308 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 309 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 310 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 311 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 312 RenamePassData::ValVector &IncVals, 313 std::vector<RenamePassData> &Worklist); 314 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 315 }; 316 317 } // end of anonymous namespace 318 319 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 320 // Knowing that this alloca is promotable, we know that it's safe to kill all 321 // instructions except for load and store. 322 323 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 324 Instruction *I = cast<Instruction>(*UI); 325 ++UI; 326 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 327 continue; 328 329 if (!I->getType()->isVoidTy()) { 330 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 331 // Follow the use/def chain to erase them now instead of leaving it for 332 // dead code elimination later. 333 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 334 Instruction *Inst = cast<Instruction>(*UUI); 335 ++UUI; 336 Inst->eraseFromParent(); 337 } 338 } 339 I->eraseFromParent(); 340 } 341 } 342 343 /// \brief Rewrite as many loads as possible given a single store. 344 /// 345 /// When there is only a single store, we can use the domtree to trivially 346 /// replace all of the dominated loads with the stored value. Do so, and return 347 /// true if this has successfully promoted the alloca entirely. If this returns 348 /// false there were some loads which were not dominated by the single store 349 /// and thus must be phi-ed with undef. We fall back to the standard alloca 350 /// promotion algorithm in that case. 351 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 352 LargeBlockInfo &LBI, 353 DominatorTree &DT, 354 AliasSetTracker *AST) { 355 StoreInst *OnlyStore = Info.OnlyStore; 356 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 357 BasicBlock *StoreBB = OnlyStore->getParent(); 358 int StoreIndex = -1; 359 360 // Clear out UsingBlocks. We will reconstruct it here if needed. 361 Info.UsingBlocks.clear(); 362 363 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 364 Instruction *UserInst = cast<Instruction>(*UI++); 365 if (!isa<LoadInst>(UserInst)) { 366 assert(UserInst == OnlyStore && "Should only have load/stores"); 367 continue; 368 } 369 LoadInst *LI = cast<LoadInst>(UserInst); 370 371 // Okay, if we have a load from the alloca, we want to replace it with the 372 // only value stored to the alloca. We can do this if the value is 373 // dominated by the store. If not, we use the rest of the mem2reg machinery 374 // to insert the phi nodes as needed. 375 if (!StoringGlobalVal) { // Non-instructions are always dominated. 376 if (LI->getParent() == StoreBB) { 377 // If we have a use that is in the same block as the store, compare the 378 // indices of the two instructions to see which one came first. If the 379 // load came before the store, we can't handle it. 380 if (StoreIndex == -1) 381 StoreIndex = LBI.getInstructionIndex(OnlyStore); 382 383 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 384 // Can't handle this load, bail out. 385 Info.UsingBlocks.push_back(StoreBB); 386 continue; 387 } 388 389 } else if (LI->getParent() != StoreBB && 390 !DT.dominates(StoreBB, LI->getParent())) { 391 // If the load and store are in different blocks, use BB dominance to 392 // check their relationships. If the store doesn't dom the use, bail 393 // out. 394 Info.UsingBlocks.push_back(LI->getParent()); 395 continue; 396 } 397 } 398 399 // Otherwise, we *can* safely rewrite this load. 400 Value *ReplVal = OnlyStore->getOperand(0); 401 // If the replacement value is the load, this must occur in unreachable 402 // code. 403 if (ReplVal == LI) 404 ReplVal = UndefValue::get(LI->getType()); 405 LI->replaceAllUsesWith(ReplVal); 406 if (AST && LI->getType()->isPointerTy()) 407 AST->deleteValue(LI); 408 LI->eraseFromParent(); 409 LBI.deleteValue(LI); 410 } 411 412 // Finally, after the scan, check to see if the store is all that is left. 413 if (!Info.UsingBlocks.empty()) 414 return false; // If not, we'll have to fall back for the remainder. 415 416 // Record debuginfo for the store and remove the declaration's 417 // debuginfo. 418 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 419 DIBuilder DIB(*AI->getParent()->getParent()->getParent(), 420 /*AllowUnresolved*/ false); 421 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); 422 DDI->eraseFromParent(); 423 LBI.deleteValue(DDI); 424 } 425 // Remove the (now dead) store and alloca. 426 Info.OnlyStore->eraseFromParent(); 427 LBI.deleteValue(Info.OnlyStore); 428 429 if (AST) 430 AST->deleteValue(AI); 431 AI->eraseFromParent(); 432 LBI.deleteValue(AI); 433 return true; 434 } 435 436 /// Many allocas are only used within a single basic block. If this is the 437 /// case, avoid traversing the CFG and inserting a lot of potentially useless 438 /// PHI nodes by just performing a single linear pass over the basic block 439 /// using the Alloca. 440 /// 441 /// If we cannot promote this alloca (because it is read before it is written), 442 /// return true. This is necessary in cases where, due to control flow, the 443 /// alloca is potentially undefined on some control flow paths. e.g. code like 444 /// this is potentially correct: 445 /// 446 /// for (...) { if (c) { A = undef; undef = B; } } 447 /// 448 /// ... so long as A is not used before undef is set. 449 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 450 LargeBlockInfo &LBI, 451 AliasSetTracker *AST) { 452 // The trickiest case to handle is when we have large blocks. Because of this, 453 // this code is optimized assuming that large blocks happen. This does not 454 // significantly pessimize the small block case. This uses LargeBlockInfo to 455 // make it efficient to get the index of various operations in the block. 456 457 // Walk the use-def list of the alloca, getting the locations of all stores. 458 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; 459 StoresByIndexTy StoresByIndex; 460 461 for (User *U : AI->users()) 462 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 463 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 464 465 // Sort the stores by their index, making it efficient to do a lookup with a 466 // binary search. 467 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 468 469 // Walk all of the loads from this alloca, replacing them with the nearest 470 // store above them, if any. 471 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 472 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 473 if (!LI) 474 continue; 475 476 unsigned LoadIdx = LBI.getInstructionIndex(LI); 477 478 // Find the nearest store that has a lower index than this load. 479 StoresByIndexTy::iterator I = 480 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 481 std::make_pair(LoadIdx, 482 static_cast<StoreInst *>(nullptr)), 483 less_first()); 484 485 if (I == StoresByIndex.begin()) 486 // If there is no store before this load, the load takes the undef value. 487 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 488 else 489 // Otherwise, there was a store before this load, the load takes its value. 490 LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0)); 491 492 if (AST && LI->getType()->isPointerTy()) 493 AST->deleteValue(LI); 494 LI->eraseFromParent(); 495 LBI.deleteValue(LI); 496 } 497 498 // Remove the (now dead) stores and alloca. 499 while (!AI->use_empty()) { 500 StoreInst *SI = cast<StoreInst>(AI->user_back()); 501 // Record debuginfo for the store before removing it. 502 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 503 DIBuilder DIB(*AI->getParent()->getParent()->getParent(), 504 /*AllowUnresolved*/ false); 505 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 506 } 507 SI->eraseFromParent(); 508 LBI.deleteValue(SI); 509 } 510 511 if (AST) 512 AST->deleteValue(AI); 513 AI->eraseFromParent(); 514 LBI.deleteValue(AI); 515 516 // The alloca's debuginfo can be removed as well. 517 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 518 DDI->eraseFromParent(); 519 LBI.deleteValue(DDI); 520 } 521 522 ++NumLocalPromoted; 523 } 524 525 void PromoteMem2Reg::run() { 526 Function &F = *DT.getRoot()->getParent(); 527 528 if (AST) 529 PointerAllocaValues.resize(Allocas.size()); 530 AllocaDbgDeclares.resize(Allocas.size()); 531 532 AllocaInfo Info; 533 LargeBlockInfo LBI; 534 535 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 536 AllocaInst *AI = Allocas[AllocaNum]; 537 538 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 539 assert(AI->getParent()->getParent() == &F && 540 "All allocas should be in the same function, which is same as DF!"); 541 542 removeLifetimeIntrinsicUsers(AI); 543 544 if (AI->use_empty()) { 545 // If there are no uses of the alloca, just delete it now. 546 if (AST) 547 AST->deleteValue(AI); 548 AI->eraseFromParent(); 549 550 // Remove the alloca from the Allocas list, since it has been processed 551 RemoveFromAllocasList(AllocaNum); 552 ++NumDeadAlloca; 553 continue; 554 } 555 556 // Calculate the set of read and write-locations for each alloca. This is 557 // analogous to finding the 'uses' and 'definitions' of each variable. 558 Info.AnalyzeAlloca(AI); 559 560 // If there is only a single store to this value, replace any loads of 561 // it that are directly dominated by the definition with the value stored. 562 if (Info.DefiningBlocks.size() == 1) { 563 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { 564 // The alloca has been processed, move on. 565 RemoveFromAllocasList(AllocaNum); 566 ++NumSingleStore; 567 continue; 568 } 569 } 570 571 // If the alloca is only read and written in one basic block, just perform a 572 // linear sweep over the block to eliminate it. 573 if (Info.OnlyUsedInOneBlock) { 574 promoteSingleBlockAlloca(AI, Info, LBI, AST); 575 576 // The alloca has been processed, move on. 577 RemoveFromAllocasList(AllocaNum); 578 continue; 579 } 580 581 // If we haven't computed dominator tree levels, do so now. 582 if (DomLevels.empty()) { 583 SmallVector<DomTreeNode *, 32> Worklist; 584 585 DomTreeNode *Root = DT.getRootNode(); 586 DomLevels[Root] = 0; 587 Worklist.push_back(Root); 588 589 while (!Worklist.empty()) { 590 DomTreeNode *Node = Worklist.pop_back_val(); 591 unsigned ChildLevel = DomLevels[Node] + 1; 592 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); 593 CI != CE; ++CI) { 594 DomLevels[*CI] = ChildLevel; 595 Worklist.push_back(*CI); 596 } 597 } 598 } 599 600 // If we haven't computed a numbering for the BB's in the function, do so 601 // now. 602 if (BBNumbers.empty()) { 603 unsigned ID = 0; 604 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 605 BBNumbers[I] = ID++; 606 } 607 608 // If we have an AST to keep updated, remember some pointer value that is 609 // stored into the alloca. 610 if (AST) 611 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 612 613 // Remember the dbg.declare intrinsic describing this alloca, if any. 614 if (Info.DbgDeclare) 615 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; 616 617 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 618 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 619 620 // At this point, we're committed to promoting the alloca using IDF's, and 621 // the standard SSA construction algorithm. Determine which blocks need PHI 622 // nodes and see if we can optimize out some work by avoiding insertion of 623 // dead phi nodes. 624 DetermineInsertionPoint(AI, AllocaNum, Info); 625 } 626 627 if (Allocas.empty()) 628 return; // All of the allocas must have been trivial! 629 630 LBI.clear(); 631 632 // Set the incoming values for the basic block to be null values for all of 633 // the alloca's. We do this in case there is a load of a value that has not 634 // been stored yet. In this case, it will get this null value. 635 // 636 RenamePassData::ValVector Values(Allocas.size()); 637 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 638 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 639 640 // Walks all basic blocks in the function performing the SSA rename algorithm 641 // and inserting the phi nodes we marked as necessary 642 // 643 std::vector<RenamePassData> RenamePassWorkList; 644 RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values)); 645 do { 646 RenamePassData RPD; 647 RPD.swap(RenamePassWorkList.back()); 648 RenamePassWorkList.pop_back(); 649 // RenamePass may add new worklist entries. 650 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 651 } while (!RenamePassWorkList.empty()); 652 653 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 654 Visited.clear(); 655 656 // Remove the allocas themselves from the function. 657 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 658 Instruction *A = Allocas[i]; 659 660 // If there are any uses of the alloca instructions left, they must be in 661 // unreachable basic blocks that were not processed by walking the dominator 662 // tree. Just delete the users now. 663 if (!A->use_empty()) 664 A->replaceAllUsesWith(UndefValue::get(A->getType())); 665 if (AST) 666 AST->deleteValue(A); 667 A->eraseFromParent(); 668 } 669 670 // Remove alloca's dbg.declare instrinsics from the function. 671 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) 672 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) 673 DDI->eraseFromParent(); 674 675 // Loop over all of the PHI nodes and see if there are any that we can get 676 // rid of because they merge all of the same incoming values. This can 677 // happen due to undef values coming into the PHI nodes. This process is 678 // iterative, because eliminating one PHI node can cause others to be removed. 679 bool EliminatedAPHI = true; 680 while (EliminatedAPHI) { 681 EliminatedAPHI = false; 682 683 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 684 // simplify and RAUW them as we go. If it was not, we could add uses to 685 // the values we replace with in a non-deterministic order, thus creating 686 // non-deterministic def->use chains. 687 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 688 I = NewPhiNodes.begin(), 689 E = NewPhiNodes.end(); 690 I != E;) { 691 PHINode *PN = I->second; 692 693 // If this PHI node merges one value and/or undefs, get the value. 694 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT, AC)) { 695 if (AST && PN->getType()->isPointerTy()) 696 AST->deleteValue(PN); 697 PN->replaceAllUsesWith(V); 698 PN->eraseFromParent(); 699 NewPhiNodes.erase(I++); 700 EliminatedAPHI = true; 701 continue; 702 } 703 ++I; 704 } 705 } 706 707 // At this point, the renamer has added entries to PHI nodes for all reachable 708 // code. Unfortunately, there may be unreachable blocks which the renamer 709 // hasn't traversed. If this is the case, the PHI nodes may not 710 // have incoming values for all predecessors. Loop over all PHI nodes we have 711 // created, inserting undef values if they are missing any incoming values. 712 // 713 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 714 I = NewPhiNodes.begin(), 715 E = NewPhiNodes.end(); 716 I != E; ++I) { 717 // We want to do this once per basic block. As such, only process a block 718 // when we find the PHI that is the first entry in the block. 719 PHINode *SomePHI = I->second; 720 BasicBlock *BB = SomePHI->getParent(); 721 if (&BB->front() != SomePHI) 722 continue; 723 724 // Only do work here if there the PHI nodes are missing incoming values. We 725 // know that all PHI nodes that were inserted in a block will have the same 726 // number of incoming values, so we can just check any of them. 727 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 728 continue; 729 730 // Get the preds for BB. 731 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 732 733 // Ok, now we know that all of the PHI nodes are missing entries for some 734 // basic blocks. Start by sorting the incoming predecessors for efficient 735 // access. 736 std::sort(Preds.begin(), Preds.end()); 737 738 // Now we loop through all BB's which have entries in SomePHI and remove 739 // them from the Preds list. 740 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 741 // Do a log(n) search of the Preds list for the entry we want. 742 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 743 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 744 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 745 "PHI node has entry for a block which is not a predecessor!"); 746 747 // Remove the entry 748 Preds.erase(EntIt); 749 } 750 751 // At this point, the blocks left in the preds list must have dummy 752 // entries inserted into every PHI nodes for the block. Update all the phi 753 // nodes in this block that we are inserting (there could be phis before 754 // mem2reg runs). 755 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 756 BasicBlock::iterator BBI = BB->begin(); 757 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 758 SomePHI->getNumIncomingValues() == NumBadPreds) { 759 Value *UndefVal = UndefValue::get(SomePHI->getType()); 760 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 761 SomePHI->addIncoming(UndefVal, Preds[pred]); 762 } 763 } 764 765 NewPhiNodes.clear(); 766 } 767 768 /// \brief Determine which blocks the value is live in. 769 /// 770 /// These are blocks which lead to uses. Knowing this allows us to avoid 771 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 772 /// inserted phi nodes would be dead). 773 void PromoteMem2Reg::ComputeLiveInBlocks( 774 AllocaInst *AI, AllocaInfo &Info, 775 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 776 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 777 778 // To determine liveness, we must iterate through the predecessors of blocks 779 // where the def is live. Blocks are added to the worklist if we need to 780 // check their predecessors. Start with all the using blocks. 781 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 782 Info.UsingBlocks.end()); 783 784 // If any of the using blocks is also a definition block, check to see if the 785 // definition occurs before or after the use. If it happens before the use, 786 // the value isn't really live-in. 787 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 788 BasicBlock *BB = LiveInBlockWorklist[i]; 789 if (!DefBlocks.count(BB)) 790 continue; 791 792 // Okay, this is a block that both uses and defines the value. If the first 793 // reference to the alloca is a def (store), then we know it isn't live-in. 794 for (BasicBlock::iterator I = BB->begin();; ++I) { 795 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 796 if (SI->getOperand(1) != AI) 797 continue; 798 799 // We found a store to the alloca before a load. The alloca is not 800 // actually live-in here. 801 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 802 LiveInBlockWorklist.pop_back(); 803 --i, --e; 804 break; 805 } 806 807 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 808 if (LI->getOperand(0) != AI) 809 continue; 810 811 // Okay, we found a load before a store to the alloca. It is actually 812 // live into this block. 813 break; 814 } 815 } 816 } 817 818 // Now that we have a set of blocks where the phi is live-in, recursively add 819 // their predecessors until we find the full region the value is live. 820 while (!LiveInBlockWorklist.empty()) { 821 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 822 823 // The block really is live in here, insert it into the set. If already in 824 // the set, then it has already been processed. 825 if (!LiveInBlocks.insert(BB).second) 826 continue; 827 828 // Since the value is live into BB, it is either defined in a predecessor or 829 // live into it to. Add the preds to the worklist unless they are a 830 // defining block. 831 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 832 BasicBlock *P = *PI; 833 834 // The value is not live into a predecessor if it defines the value. 835 if (DefBlocks.count(P)) 836 continue; 837 838 // Otherwise it is, add to the worklist. 839 LiveInBlockWorklist.push_back(P); 840 } 841 } 842 } 843 844 /// At this point, we're committed to promoting the alloca using IDF's, and the 845 /// standard SSA construction algorithm. Determine which blocks need phi nodes 846 /// and see if we can optimize out some work by avoiding insertion of dead phi 847 /// nodes. 848 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 849 AllocaInfo &Info) { 850 // Unique the set of defining blocks for efficient lookup. 851 SmallPtrSet<BasicBlock *, 32> DefBlocks; 852 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 853 854 // Determine which blocks the value is live in. These are blocks which lead 855 // to uses. 856 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 857 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 858 859 // Use a priority queue keyed on dominator tree level so that inserted nodes 860 // are handled from the bottom of the dominator tree upwards. 861 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair; 862 typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, 863 less_second> IDFPriorityQueue; 864 IDFPriorityQueue PQ; 865 866 for (BasicBlock *BB : DefBlocks) { 867 if (DomTreeNode *Node = DT.getNode(BB)) 868 PQ.push(std::make_pair(Node, DomLevels[Node])); 869 } 870 871 SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks; 872 SmallPtrSet<DomTreeNode *, 32> Visited; 873 SmallVector<DomTreeNode *, 32> Worklist; 874 while (!PQ.empty()) { 875 DomTreeNodePair RootPair = PQ.top(); 876 PQ.pop(); 877 DomTreeNode *Root = RootPair.first; 878 unsigned RootLevel = RootPair.second; 879 880 // Walk all dominator tree children of Root, inspecting their CFG edges with 881 // targets elsewhere on the dominator tree. Only targets whose level is at 882 // most Root's level are added to the iterated dominance frontier of the 883 // definition set. 884 885 Worklist.clear(); 886 Worklist.push_back(Root); 887 888 while (!Worklist.empty()) { 889 DomTreeNode *Node = Worklist.pop_back_val(); 890 BasicBlock *BB = Node->getBlock(); 891 892 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; 893 ++SI) { 894 DomTreeNode *SuccNode = DT.getNode(*SI); 895 896 // Quickly skip all CFG edges that are also dominator tree edges instead 897 // of catching them below. 898 if (SuccNode->getIDom() == Node) 899 continue; 900 901 unsigned SuccLevel = DomLevels[SuccNode]; 902 if (SuccLevel > RootLevel) 903 continue; 904 905 if (!Visited.insert(SuccNode).second) 906 continue; 907 908 BasicBlock *SuccBB = SuccNode->getBlock(); 909 if (!LiveInBlocks.count(SuccBB)) 910 continue; 911 912 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB)); 913 if (!DefBlocks.count(SuccBB)) 914 PQ.push(std::make_pair(SuccNode, SuccLevel)); 915 } 916 917 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; 918 ++CI) { 919 if (!Visited.count(*CI)) 920 Worklist.push_back(*CI); 921 } 922 } 923 } 924 925 if (DFBlocks.size() > 1) 926 std::sort(DFBlocks.begin(), DFBlocks.end()); 927 928 unsigned CurrentVersion = 0; 929 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) 930 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion); 931 } 932 933 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 934 /// 935 /// Returns true if there wasn't already a phi-node for that variable 936 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 937 unsigned &Version) { 938 // Look up the basic-block in question. 939 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 940 941 // If the BB already has a phi node added for the i'th alloca then we're done! 942 if (PN) 943 return false; 944 945 // Create a PhiNode using the dereferenced type... and add the phi-node to the 946 // BasicBlock. 947 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 948 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 949 BB->begin()); 950 ++NumPHIInsert; 951 PhiToAllocaMap[PN] = AllocaNo; 952 953 if (AST && PN->getType()->isPointerTy()) 954 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 955 956 return true; 957 } 958 959 /// \brief Recursively traverse the CFG of the function, renaming loads and 960 /// stores to the allocas which we are promoting. 961 /// 962 /// IncomingVals indicates what value each Alloca contains on exit from the 963 /// predecessor block Pred. 964 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 965 RenamePassData::ValVector &IncomingVals, 966 std::vector<RenamePassData> &Worklist) { 967 NextIteration: 968 // If we are inserting any phi nodes into this BB, they will already be in the 969 // block. 970 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 971 // If we have PHI nodes to update, compute the number of edges from Pred to 972 // BB. 973 if (PhiToAllocaMap.count(APN)) { 974 // We want to be able to distinguish between PHI nodes being inserted by 975 // this invocation of mem2reg from those phi nodes that already existed in 976 // the IR before mem2reg was run. We determine that APN is being inserted 977 // because it is missing incoming edges. All other PHI nodes being 978 // inserted by this pass of mem2reg will have the same number of incoming 979 // operands so far. Remember this count. 980 unsigned NewPHINumOperands = APN->getNumOperands(); 981 982 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 983 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 984 985 // Add entries for all the phis. 986 BasicBlock::iterator PNI = BB->begin(); 987 do { 988 unsigned AllocaNo = PhiToAllocaMap[APN]; 989 990 // Add N incoming values to the PHI node. 991 for (unsigned i = 0; i != NumEdges; ++i) 992 APN->addIncoming(IncomingVals[AllocaNo], Pred); 993 994 // The currently active variable for this block is now the PHI. 995 IncomingVals[AllocaNo] = APN; 996 997 // Get the next phi node. 998 ++PNI; 999 APN = dyn_cast<PHINode>(PNI); 1000 if (!APN) 1001 break; 1002 1003 // Verify that it is missing entries. If not, it is not being inserted 1004 // by this mem2reg invocation so we want to ignore it. 1005 } while (APN->getNumOperands() == NewPHINumOperands); 1006 } 1007 } 1008 1009 // Don't revisit blocks. 1010 if (!Visited.insert(BB).second) 1011 return; 1012 1013 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 1014 Instruction *I = II++; // get the instruction, increment iterator 1015 1016 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1017 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1018 if (!Src) 1019 continue; 1020 1021 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1022 if (AI == AllocaLookup.end()) 1023 continue; 1024 1025 Value *V = IncomingVals[AI->second]; 1026 1027 // Anything using the load now uses the current value. 1028 LI->replaceAllUsesWith(V); 1029 if (AST && LI->getType()->isPointerTy()) 1030 AST->deleteValue(LI); 1031 BB->getInstList().erase(LI); 1032 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1033 // Delete this instruction and mark the name as the current holder of the 1034 // value 1035 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1036 if (!Dest) 1037 continue; 1038 1039 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1040 if (ai == AllocaLookup.end()) 1041 continue; 1042 1043 // what value were we writing? 1044 IncomingVals[ai->second] = SI->getOperand(0); 1045 // Record debuginfo for the store before removing it. 1046 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) 1047 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1048 BB->getInstList().erase(SI); 1049 } 1050 } 1051 1052 // 'Recurse' to our successors. 1053 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1054 if (I == E) 1055 return; 1056 1057 // Keep track of the successors so we don't visit the same successor twice 1058 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1059 1060 // Handle the first successor without using the worklist. 1061 VisitedSuccs.insert(*I); 1062 Pred = BB; 1063 BB = *I; 1064 ++I; 1065 1066 for (; I != E; ++I) 1067 if (VisitedSuccs.insert(*I).second) 1068 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); 1069 1070 goto NextIteration; 1071 } 1072 1073 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1074 AliasSetTracker *AST, AssumptionCache *AC) { 1075 // If there is nothing to do, bail out... 1076 if (Allocas.empty()) 1077 return; 1078 1079 PromoteMem2Reg(Allocas, DT, AST, AC).run(); 1080 } 1081