1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/TinyPtrVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // FIXME: If the memory unit is of pointer or integer type, we can permit 66 // assignments to subsections of the memory unit. 67 unsigned AS = AI->getType()->getAddressSpace(); 68 69 // Only allow direct and non-volatile loads and stores... 70 for (const User *U : AI->users()) { 71 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 72 // Note that atomic loads can be transformed; atomic semantics do 73 // not have any meaning for a local alloca. 74 if (LI->isVolatile()) 75 return false; 76 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 77 if (SI->getOperand(0) == AI) 78 return false; // Don't allow a store OF the AI, only INTO the AI. 79 // Note that atomic stores can be transformed; atomic semantics do 80 // not have any meaning for a local alloca. 81 if (SI->isVolatile()) 82 return false; 83 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 84 if (!II->isLifetimeStartOrEnd()) 85 return false; 86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 87 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 88 return false; 89 if (!onlyUsedByLifetimeMarkers(BCI)) 90 return false; 91 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 92 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 93 return false; 94 if (!GEPI->hasAllZeroIndices()) 95 return false; 96 if (!onlyUsedByLifetimeMarkers(GEPI)) 97 return false; 98 } else { 99 return false; 100 } 101 } 102 103 return true; 104 } 105 106 namespace { 107 108 struct AllocaInfo { 109 SmallVector<BasicBlock *, 32> DefiningBlocks; 110 SmallVector<BasicBlock *, 32> UsingBlocks; 111 112 StoreInst *OnlyStore; 113 BasicBlock *OnlyBlock; 114 bool OnlyUsedInOneBlock; 115 116 Value *AllocaPointerVal; 117 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; 118 119 void clear() { 120 DefiningBlocks.clear(); 121 UsingBlocks.clear(); 122 OnlyStore = nullptr; 123 OnlyBlock = nullptr; 124 OnlyUsedInOneBlock = true; 125 AllocaPointerVal = nullptr; 126 DbgDeclares.clear(); 127 } 128 129 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 130 /// by the rest of the pass to reason about the uses of this alloca. 131 void AnalyzeAlloca(AllocaInst *AI) { 132 clear(); 133 134 // As we scan the uses of the alloca instruction, keep track of stores, 135 // and decide whether all of the loads and stores to the alloca are within 136 // the same basic block. 137 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 138 Instruction *User = cast<Instruction>(*UI++); 139 140 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 141 // Remember the basic blocks which define new values for the alloca 142 DefiningBlocks.push_back(SI->getParent()); 143 AllocaPointerVal = SI->getOperand(0); 144 OnlyStore = SI; 145 } else { 146 LoadInst *LI = cast<LoadInst>(User); 147 // Otherwise it must be a load instruction, keep track of variable 148 // reads. 149 UsingBlocks.push_back(LI->getParent()); 150 AllocaPointerVal = LI; 151 } 152 153 if (OnlyUsedInOneBlock) { 154 if (!OnlyBlock) 155 OnlyBlock = User->getParent(); 156 else if (OnlyBlock != User->getParent()) 157 OnlyUsedInOneBlock = false; 158 } 159 } 160 161 DbgDeclares = FindDbgAddrUses(AI); 162 } 163 }; 164 165 /// Data package used by RenamePass(). 166 struct RenamePassData { 167 using ValVector = std::vector<Value *>; 168 using LocationVector = std::vector<DebugLoc>; 169 170 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 171 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 172 173 BasicBlock *BB; 174 BasicBlock *Pred; 175 ValVector Values; 176 LocationVector Locations; 177 }; 178 179 /// This assigns and keeps a per-bb relative ordering of load/store 180 /// instructions in the block that directly load or store an alloca. 181 /// 182 /// This functionality is important because it avoids scanning large basic 183 /// blocks multiple times when promoting many allocas in the same block. 184 class LargeBlockInfo { 185 /// For each instruction that we track, keep the index of the 186 /// instruction. 187 /// 188 /// The index starts out as the number of the instruction from the start of 189 /// the block. 190 DenseMap<const Instruction *, unsigned> InstNumbers; 191 192 public: 193 194 /// This code only looks at accesses to allocas. 195 static bool isInterestingInstruction(const Instruction *I) { 196 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 197 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 198 } 199 200 /// Get or calculate the index of the specified instruction. 201 unsigned getInstructionIndex(const Instruction *I) { 202 assert(isInterestingInstruction(I) && 203 "Not a load/store to/from an alloca?"); 204 205 // If we already have this instruction number, return it. 206 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 207 if (It != InstNumbers.end()) 208 return It->second; 209 210 // Scan the whole block to get the instruction. This accumulates 211 // information for every interesting instruction in the block, in order to 212 // avoid gratuitus rescans. 213 const BasicBlock *BB = I->getParent(); 214 unsigned InstNo = 0; 215 for (const Instruction &BBI : *BB) 216 if (isInterestingInstruction(&BBI)) 217 InstNumbers[&BBI] = InstNo++; 218 It = InstNumbers.find(I); 219 220 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 221 return It->second; 222 } 223 224 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 225 226 void clear() { InstNumbers.clear(); } 227 }; 228 229 struct PromoteMem2Reg { 230 /// The alloca instructions being promoted. 231 std::vector<AllocaInst *> Allocas; 232 233 DominatorTree &DT; 234 DIBuilder DIB; 235 236 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 237 AssumptionCache *AC; 238 239 const SimplifyQuery SQ; 240 241 /// Reverse mapping of Allocas. 242 DenseMap<AllocaInst *, unsigned> AllocaLookup; 243 244 /// The PhiNodes we're adding. 245 /// 246 /// That map is used to simplify some Phi nodes as we iterate over it, so 247 /// it should have deterministic iterators. We could use a MapVector, but 248 /// since we already maintain a map from BasicBlock* to a stable numbering 249 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 250 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 251 252 /// For each PHI node, keep track of which entry in Allocas it corresponds 253 /// to. 254 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 255 256 /// If we are updating an AliasSetTracker, then for each alloca that is of 257 /// pointer type, we keep track of what to copyValue to the inserted PHI 258 /// nodes here. 259 std::vector<Value *> PointerAllocaValues; 260 261 /// For each alloca, we keep track of the dbg.declare intrinsic that 262 /// describes it, if any, so that we can convert it to a dbg.value 263 /// intrinsic if the alloca gets promoted. 264 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; 265 266 /// The set of basic blocks the renamer has already visited. 267 SmallPtrSet<BasicBlock *, 16> Visited; 268 269 /// Contains a stable numbering of basic blocks to avoid non-determinstic 270 /// behavior. 271 DenseMap<BasicBlock *, unsigned> BBNumbers; 272 273 /// Lazily compute the number of predecessors a block has. 274 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 275 276 public: 277 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 278 AssumptionCache *AC) 279 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 280 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 281 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 282 nullptr, &DT, AC) {} 283 284 void run(); 285 286 private: 287 void RemoveFromAllocasList(unsigned &AllocaIdx) { 288 Allocas[AllocaIdx] = Allocas.back(); 289 Allocas.pop_back(); 290 --AllocaIdx; 291 } 292 293 unsigned getNumPreds(const BasicBlock *BB) { 294 unsigned &NP = BBNumPreds[BB]; 295 if (NP == 0) 296 NP = pred_size(BB) + 1; 297 return NP - 1; 298 } 299 300 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 301 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 302 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 303 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 304 RenamePassData::ValVector &IncVals, 305 RenamePassData::LocationVector &IncLocs, 306 std::vector<RenamePassData> &Worklist); 307 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 308 }; 309 310 } // end anonymous namespace 311 312 /// Given a LoadInst LI this adds assume(LI != null) after it. 313 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 314 Function *AssumeIntrinsic = 315 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 316 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 317 Constant::getNullValue(LI->getType())); 318 LoadNotNull->insertAfter(LI); 319 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 320 CI->insertAfter(LoadNotNull); 321 AC->registerAssumption(CI); 322 } 323 324 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 325 // Knowing that this alloca is promotable, we know that it's safe to kill all 326 // instructions except for load and store. 327 328 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 329 Instruction *I = cast<Instruction>(*UI); 330 ++UI; 331 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 332 continue; 333 334 if (!I->getType()->isVoidTy()) { 335 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 336 // Follow the use/def chain to erase them now instead of leaving it for 337 // dead code elimination later. 338 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 339 Instruction *Inst = cast<Instruction>(*UUI); 340 ++UUI; 341 Inst->eraseFromParent(); 342 } 343 } 344 I->eraseFromParent(); 345 } 346 } 347 348 /// Rewrite as many loads as possible given a single store. 349 /// 350 /// When there is only a single store, we can use the domtree to trivially 351 /// replace all of the dominated loads with the stored value. Do so, and return 352 /// true if this has successfully promoted the alloca entirely. If this returns 353 /// false there were some loads which were not dominated by the single store 354 /// and thus must be phi-ed with undef. We fall back to the standard alloca 355 /// promotion algorithm in that case. 356 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 357 LargeBlockInfo &LBI, const DataLayout &DL, 358 DominatorTree &DT, AssumptionCache *AC) { 359 StoreInst *OnlyStore = Info.OnlyStore; 360 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 361 BasicBlock *StoreBB = OnlyStore->getParent(); 362 int StoreIndex = -1; 363 364 // Clear out UsingBlocks. We will reconstruct it here if needed. 365 Info.UsingBlocks.clear(); 366 367 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 368 Instruction *UserInst = cast<Instruction>(*UI++); 369 if (!isa<LoadInst>(UserInst)) { 370 assert(UserInst == OnlyStore && "Should only have load/stores"); 371 continue; 372 } 373 LoadInst *LI = cast<LoadInst>(UserInst); 374 375 // Okay, if we have a load from the alloca, we want to replace it with the 376 // only value stored to the alloca. We can do this if the value is 377 // dominated by the store. If not, we use the rest of the mem2reg machinery 378 // to insert the phi nodes as needed. 379 if (!StoringGlobalVal) { // Non-instructions are always dominated. 380 if (LI->getParent() == StoreBB) { 381 // If we have a use that is in the same block as the store, compare the 382 // indices of the two instructions to see which one came first. If the 383 // load came before the store, we can't handle it. 384 if (StoreIndex == -1) 385 StoreIndex = LBI.getInstructionIndex(OnlyStore); 386 387 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 388 // Can't handle this load, bail out. 389 Info.UsingBlocks.push_back(StoreBB); 390 continue; 391 } 392 } else if (LI->getParent() != StoreBB && 393 !DT.dominates(StoreBB, LI->getParent())) { 394 // If the load and store are in different blocks, use BB dominance to 395 // check their relationships. If the store doesn't dom the use, bail 396 // out. 397 Info.UsingBlocks.push_back(LI->getParent()); 398 continue; 399 } 400 } 401 402 // Otherwise, we *can* safely rewrite this load. 403 Value *ReplVal = OnlyStore->getOperand(0); 404 // If the replacement value is the load, this must occur in unreachable 405 // code. 406 if (ReplVal == LI) 407 ReplVal = UndefValue::get(LI->getType()); 408 409 // If the load was marked as nonnull we don't want to lose 410 // that information when we erase this Load. So we preserve 411 // it with an assume. 412 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 413 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 414 addAssumeNonNull(AC, LI); 415 416 LI->replaceAllUsesWith(ReplVal); 417 LI->eraseFromParent(); 418 LBI.deleteValue(LI); 419 } 420 421 // Finally, after the scan, check to see if the store is all that is left. 422 if (!Info.UsingBlocks.empty()) 423 return false; // If not, we'll have to fall back for the remainder. 424 425 // Record debuginfo for the store and remove the declaration's 426 // debuginfo. 427 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 428 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 429 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 430 DII->eraseFromParent(); 431 LBI.deleteValue(DII); 432 } 433 // Remove the (now dead) store and alloca. 434 Info.OnlyStore->eraseFromParent(); 435 LBI.deleteValue(Info.OnlyStore); 436 437 AI->eraseFromParent(); 438 LBI.deleteValue(AI); 439 return true; 440 } 441 442 /// Many allocas are only used within a single basic block. If this is the 443 /// case, avoid traversing the CFG and inserting a lot of potentially useless 444 /// PHI nodes by just performing a single linear pass over the basic block 445 /// using the Alloca. 446 /// 447 /// If we cannot promote this alloca (because it is read before it is written), 448 /// return false. This is necessary in cases where, due to control flow, the 449 /// alloca is undefined only on some control flow paths. e.g. code like 450 /// this is correct in LLVM IR: 451 /// // A is an alloca with no stores so far 452 /// for (...) { 453 /// int t = *A; 454 /// if (!first_iteration) 455 /// use(t); 456 /// *A = 42; 457 /// } 458 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 459 LargeBlockInfo &LBI, 460 const DataLayout &DL, 461 DominatorTree &DT, 462 AssumptionCache *AC) { 463 // The trickiest case to handle is when we have large blocks. Because of this, 464 // this code is optimized assuming that large blocks happen. This does not 465 // significantly pessimize the small block case. This uses LargeBlockInfo to 466 // make it efficient to get the index of various operations in the block. 467 468 // Walk the use-def list of the alloca, getting the locations of all stores. 469 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 470 StoresByIndexTy StoresByIndex; 471 472 for (User *U : AI->users()) 473 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 474 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 475 476 // Sort the stores by their index, making it efficient to do a lookup with a 477 // binary search. 478 llvm::sort(StoresByIndex, less_first()); 479 480 // Walk all of the loads from this alloca, replacing them with the nearest 481 // store above them, if any. 482 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 483 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 484 if (!LI) 485 continue; 486 487 unsigned LoadIdx = LBI.getInstructionIndex(LI); 488 489 // Find the nearest store that has a lower index than this load. 490 StoresByIndexTy::iterator I = llvm::lower_bound( 491 StoresByIndex, 492 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 493 less_first()); 494 if (I == StoresByIndex.begin()) { 495 if (StoresByIndex.empty()) 496 // If there are no stores, the load takes the undef value. 497 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 498 else 499 // There is no store before this load, bail out (load may be affected 500 // by the following stores - see main comment). 501 return false; 502 } else { 503 // Otherwise, there was a store before this load, the load takes its value. 504 // Note, if the load was marked as nonnull we don't want to lose that 505 // information when we erase it. So we preserve it with an assume. 506 Value *ReplVal = std::prev(I)->second->getOperand(0); 507 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 508 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 509 addAssumeNonNull(AC, LI); 510 511 // If the replacement value is the load, this must occur in unreachable 512 // code. 513 if (ReplVal == LI) 514 ReplVal = UndefValue::get(LI->getType()); 515 516 LI->replaceAllUsesWith(ReplVal); 517 } 518 519 LI->eraseFromParent(); 520 LBI.deleteValue(LI); 521 } 522 523 // Remove the (now dead) stores and alloca. 524 while (!AI->use_empty()) { 525 StoreInst *SI = cast<StoreInst>(AI->user_back()); 526 // Record debuginfo for the store before removing it. 527 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 528 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 529 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 530 } 531 SI->eraseFromParent(); 532 LBI.deleteValue(SI); 533 } 534 535 AI->eraseFromParent(); 536 LBI.deleteValue(AI); 537 538 // The alloca's debuginfo can be removed as well. 539 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 540 DII->eraseFromParent(); 541 LBI.deleteValue(DII); 542 } 543 544 ++NumLocalPromoted; 545 return true; 546 } 547 548 void PromoteMem2Reg::run() { 549 Function &F = *DT.getRoot()->getParent(); 550 551 AllocaDbgDeclares.resize(Allocas.size()); 552 553 AllocaInfo Info; 554 LargeBlockInfo LBI; 555 ForwardIDFCalculator IDF(DT); 556 557 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 558 AllocaInst *AI = Allocas[AllocaNum]; 559 560 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 561 assert(AI->getParent()->getParent() == &F && 562 "All allocas should be in the same function, which is same as DF!"); 563 564 removeLifetimeIntrinsicUsers(AI); 565 566 if (AI->use_empty()) { 567 // If there are no uses of the alloca, just delete it now. 568 AI->eraseFromParent(); 569 570 // Remove the alloca from the Allocas list, since it has been processed 571 RemoveFromAllocasList(AllocaNum); 572 ++NumDeadAlloca; 573 continue; 574 } 575 576 // Calculate the set of read and write-locations for each alloca. This is 577 // analogous to finding the 'uses' and 'definitions' of each variable. 578 Info.AnalyzeAlloca(AI); 579 580 // If there is only a single store to this value, replace any loads of 581 // it that are directly dominated by the definition with the value stored. 582 if (Info.DefiningBlocks.size() == 1) { 583 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 584 // The alloca has been processed, move on. 585 RemoveFromAllocasList(AllocaNum); 586 ++NumSingleStore; 587 continue; 588 } 589 } 590 591 // If the alloca is only read and written in one basic block, just perform a 592 // linear sweep over the block to eliminate it. 593 if (Info.OnlyUsedInOneBlock && 594 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 595 // The alloca has been processed, move on. 596 RemoveFromAllocasList(AllocaNum); 597 continue; 598 } 599 600 // If we haven't computed a numbering for the BB's in the function, do so 601 // now. 602 if (BBNumbers.empty()) { 603 unsigned ID = 0; 604 for (auto &BB : F) 605 BBNumbers[&BB] = ID++; 606 } 607 608 // Remember the dbg.declare intrinsic describing this alloca, if any. 609 if (!Info.DbgDeclares.empty()) 610 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 611 612 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 613 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 614 615 // At this point, we're committed to promoting the alloca using IDF's, and 616 // the standard SSA construction algorithm. Determine which blocks need PHI 617 // nodes and see if we can optimize out some work by avoiding insertion of 618 // dead phi nodes. 619 620 // Unique the set of defining blocks for efficient lookup. 621 SmallPtrSet<BasicBlock *, 32> DefBlocks; 622 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 623 624 // Determine which blocks the value is live in. These are blocks which lead 625 // to uses. 626 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 627 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 628 629 // At this point, we're committed to promoting the alloca using IDF's, and 630 // the standard SSA construction algorithm. Determine which blocks need phi 631 // nodes and see if we can optimize out some work by avoiding insertion of 632 // dead phi nodes. 633 IDF.setLiveInBlocks(LiveInBlocks); 634 IDF.setDefiningBlocks(DefBlocks); 635 SmallVector<BasicBlock *, 32> PHIBlocks; 636 IDF.calculate(PHIBlocks); 637 if (PHIBlocks.size() > 1) 638 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 639 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 640 }); 641 642 unsigned CurrentVersion = 0; 643 for (BasicBlock *BB : PHIBlocks) 644 QueuePhiNode(BB, AllocaNum, CurrentVersion); 645 } 646 647 if (Allocas.empty()) 648 return; // All of the allocas must have been trivial! 649 650 LBI.clear(); 651 652 // Set the incoming values for the basic block to be null values for all of 653 // the alloca's. We do this in case there is a load of a value that has not 654 // been stored yet. In this case, it will get this null value. 655 RenamePassData::ValVector Values(Allocas.size()); 656 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 657 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 658 659 // When handling debug info, treat all incoming values as if they have unknown 660 // locations until proven otherwise. 661 RenamePassData::LocationVector Locations(Allocas.size()); 662 663 // Walks all basic blocks in the function performing the SSA rename algorithm 664 // and inserting the phi nodes we marked as necessary 665 std::vector<RenamePassData> RenamePassWorkList; 666 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 667 std::move(Locations)); 668 do { 669 RenamePassData RPD = std::move(RenamePassWorkList.back()); 670 RenamePassWorkList.pop_back(); 671 // RenamePass may add new worklist entries. 672 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 673 } while (!RenamePassWorkList.empty()); 674 675 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 676 Visited.clear(); 677 678 // Remove the allocas themselves from the function. 679 for (Instruction *A : Allocas) { 680 // If there are any uses of the alloca instructions left, they must be in 681 // unreachable basic blocks that were not processed by walking the dominator 682 // tree. Just delete the users now. 683 if (!A->use_empty()) 684 A->replaceAllUsesWith(UndefValue::get(A->getType())); 685 A->eraseFromParent(); 686 } 687 688 // Remove alloca's dbg.declare instrinsics from the function. 689 for (auto &Declares : AllocaDbgDeclares) 690 for (auto *DII : Declares) 691 DII->eraseFromParent(); 692 693 // Loop over all of the PHI nodes and see if there are any that we can get 694 // rid of because they merge all of the same incoming values. This can 695 // happen due to undef values coming into the PHI nodes. This process is 696 // iterative, because eliminating one PHI node can cause others to be removed. 697 bool EliminatedAPHI = true; 698 while (EliminatedAPHI) { 699 EliminatedAPHI = false; 700 701 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 702 // simplify and RAUW them as we go. If it was not, we could add uses to 703 // the values we replace with in a non-deterministic order, thus creating 704 // non-deterministic def->use chains. 705 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 706 I = NewPhiNodes.begin(), 707 E = NewPhiNodes.end(); 708 I != E;) { 709 PHINode *PN = I->second; 710 711 // If this PHI node merges one value and/or undefs, get the value. 712 if (Value *V = SimplifyInstruction(PN, SQ)) { 713 PN->replaceAllUsesWith(V); 714 PN->eraseFromParent(); 715 NewPhiNodes.erase(I++); 716 EliminatedAPHI = true; 717 continue; 718 } 719 ++I; 720 } 721 } 722 723 // At this point, the renamer has added entries to PHI nodes for all reachable 724 // code. Unfortunately, there may be unreachable blocks which the renamer 725 // hasn't traversed. If this is the case, the PHI nodes may not 726 // have incoming values for all predecessors. Loop over all PHI nodes we have 727 // created, inserting undef values if they are missing any incoming values. 728 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 729 I = NewPhiNodes.begin(), 730 E = NewPhiNodes.end(); 731 I != E; ++I) { 732 // We want to do this once per basic block. As such, only process a block 733 // when we find the PHI that is the first entry in the block. 734 PHINode *SomePHI = I->second; 735 BasicBlock *BB = SomePHI->getParent(); 736 if (&BB->front() != SomePHI) 737 continue; 738 739 // Only do work here if there the PHI nodes are missing incoming values. We 740 // know that all PHI nodes that were inserted in a block will have the same 741 // number of incoming values, so we can just check any of them. 742 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 743 continue; 744 745 // Get the preds for BB. 746 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 747 748 // Ok, now we know that all of the PHI nodes are missing entries for some 749 // basic blocks. Start by sorting the incoming predecessors for efficient 750 // access. 751 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 752 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 753 }; 754 llvm::sort(Preds, CompareBBNumbers); 755 756 // Now we loop through all BB's which have entries in SomePHI and remove 757 // them from the Preds list. 758 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 759 // Do a log(n) search of the Preds list for the entry we want. 760 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 761 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 762 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 763 "PHI node has entry for a block which is not a predecessor!"); 764 765 // Remove the entry 766 Preds.erase(EntIt); 767 } 768 769 // At this point, the blocks left in the preds list must have dummy 770 // entries inserted into every PHI nodes for the block. Update all the phi 771 // nodes in this block that we are inserting (there could be phis before 772 // mem2reg runs). 773 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 774 BasicBlock::iterator BBI = BB->begin(); 775 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 776 SomePHI->getNumIncomingValues() == NumBadPreds) { 777 Value *UndefVal = UndefValue::get(SomePHI->getType()); 778 for (BasicBlock *Pred : Preds) 779 SomePHI->addIncoming(UndefVal, Pred); 780 } 781 } 782 783 NewPhiNodes.clear(); 784 } 785 786 /// Determine which blocks the value is live in. 787 /// 788 /// These are blocks which lead to uses. Knowing this allows us to avoid 789 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 790 /// inserted phi nodes would be dead). 791 void PromoteMem2Reg::ComputeLiveInBlocks( 792 AllocaInst *AI, AllocaInfo &Info, 793 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 794 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 795 // To determine liveness, we must iterate through the predecessors of blocks 796 // where the def is live. Blocks are added to the worklist if we need to 797 // check their predecessors. Start with all the using blocks. 798 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 799 Info.UsingBlocks.end()); 800 801 // If any of the using blocks is also a definition block, check to see if the 802 // definition occurs before or after the use. If it happens before the use, 803 // the value isn't really live-in. 804 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 805 BasicBlock *BB = LiveInBlockWorklist[i]; 806 if (!DefBlocks.count(BB)) 807 continue; 808 809 // Okay, this is a block that both uses and defines the value. If the first 810 // reference to the alloca is a def (store), then we know it isn't live-in. 811 for (BasicBlock::iterator I = BB->begin();; ++I) { 812 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 813 if (SI->getOperand(1) != AI) 814 continue; 815 816 // We found a store to the alloca before a load. The alloca is not 817 // actually live-in here. 818 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 819 LiveInBlockWorklist.pop_back(); 820 --i; 821 --e; 822 break; 823 } 824 825 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 826 if (LI->getOperand(0) != AI) 827 continue; 828 829 // Okay, we found a load before a store to the alloca. It is actually 830 // live into this block. 831 break; 832 } 833 } 834 } 835 836 // Now that we have a set of blocks where the phi is live-in, recursively add 837 // their predecessors until we find the full region the value is live. 838 while (!LiveInBlockWorklist.empty()) { 839 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 840 841 // The block really is live in here, insert it into the set. If already in 842 // the set, then it has already been processed. 843 if (!LiveInBlocks.insert(BB).second) 844 continue; 845 846 // Since the value is live into BB, it is either defined in a predecessor or 847 // live into it to. Add the preds to the worklist unless they are a 848 // defining block. 849 for (BasicBlock *P : predecessors(BB)) { 850 // The value is not live into a predecessor if it defines the value. 851 if (DefBlocks.count(P)) 852 continue; 853 854 // Otherwise it is, add to the worklist. 855 LiveInBlockWorklist.push_back(P); 856 } 857 } 858 } 859 860 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 861 /// 862 /// Returns true if there wasn't already a phi-node for that variable 863 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 864 unsigned &Version) { 865 // Look up the basic-block in question. 866 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 867 868 // If the BB already has a phi node added for the i'th alloca then we're done! 869 if (PN) 870 return false; 871 872 // Create a PhiNode using the dereferenced type... and add the phi-node to the 873 // BasicBlock. 874 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 875 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 876 &BB->front()); 877 ++NumPHIInsert; 878 PhiToAllocaMap[PN] = AllocaNo; 879 return true; 880 } 881 882 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 883 /// create a merged location incorporating \p DL, or to set \p DL directly. 884 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 885 bool ApplyMergedLoc) { 886 if (ApplyMergedLoc) 887 PN->applyMergedLocation(PN->getDebugLoc(), DL); 888 else 889 PN->setDebugLoc(DL); 890 } 891 892 /// Recursively traverse the CFG of the function, renaming loads and 893 /// stores to the allocas which we are promoting. 894 /// 895 /// IncomingVals indicates what value each Alloca contains on exit from the 896 /// predecessor block Pred. 897 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 898 RenamePassData::ValVector &IncomingVals, 899 RenamePassData::LocationVector &IncomingLocs, 900 std::vector<RenamePassData> &Worklist) { 901 NextIteration: 902 // If we are inserting any phi nodes into this BB, they will already be in the 903 // block. 904 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 905 // If we have PHI nodes to update, compute the number of edges from Pred to 906 // BB. 907 if (PhiToAllocaMap.count(APN)) { 908 // We want to be able to distinguish between PHI nodes being inserted by 909 // this invocation of mem2reg from those phi nodes that already existed in 910 // the IR before mem2reg was run. We determine that APN is being inserted 911 // because it is missing incoming edges. All other PHI nodes being 912 // inserted by this pass of mem2reg will have the same number of incoming 913 // operands so far. Remember this count. 914 unsigned NewPHINumOperands = APN->getNumOperands(); 915 916 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 917 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 918 919 // Add entries for all the phis. 920 BasicBlock::iterator PNI = BB->begin(); 921 do { 922 unsigned AllocaNo = PhiToAllocaMap[APN]; 923 924 // Update the location of the phi node. 925 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 926 APN->getNumIncomingValues() > 0); 927 928 // Add N incoming values to the PHI node. 929 for (unsigned i = 0; i != NumEdges; ++i) 930 APN->addIncoming(IncomingVals[AllocaNo], Pred); 931 932 // The currently active variable for this block is now the PHI. 933 IncomingVals[AllocaNo] = APN; 934 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 935 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 936 937 // Get the next phi node. 938 ++PNI; 939 APN = dyn_cast<PHINode>(PNI); 940 if (!APN) 941 break; 942 943 // Verify that it is missing entries. If not, it is not being inserted 944 // by this mem2reg invocation so we want to ignore it. 945 } while (APN->getNumOperands() == NewPHINumOperands); 946 } 947 } 948 949 // Don't revisit blocks. 950 if (!Visited.insert(BB).second) 951 return; 952 953 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 954 Instruction *I = &*II++; // get the instruction, increment iterator 955 956 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 957 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 958 if (!Src) 959 continue; 960 961 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 962 if (AI == AllocaLookup.end()) 963 continue; 964 965 Value *V = IncomingVals[AI->second]; 966 967 // If the load was marked as nonnull we don't want to lose 968 // that information when we erase this Load. So we preserve 969 // it with an assume. 970 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 971 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 972 addAssumeNonNull(AC, LI); 973 974 // Anything using the load now uses the current value. 975 LI->replaceAllUsesWith(V); 976 BB->getInstList().erase(LI); 977 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 978 // Delete this instruction and mark the name as the current holder of the 979 // value 980 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 981 if (!Dest) 982 continue; 983 984 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 985 if (ai == AllocaLookup.end()) 986 continue; 987 988 // what value were we writing? 989 unsigned AllocaNo = ai->second; 990 IncomingVals[AllocaNo] = SI->getOperand(0); 991 992 // Record debuginfo for the store before removing it. 993 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 994 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) 995 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 996 BB->getInstList().erase(SI); 997 } 998 } 999 1000 // 'Recurse' to our successors. 1001 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1002 if (I == E) 1003 return; 1004 1005 // Keep track of the successors so we don't visit the same successor twice 1006 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1007 1008 // Handle the first successor without using the worklist. 1009 VisitedSuccs.insert(*I); 1010 Pred = BB; 1011 BB = *I; 1012 ++I; 1013 1014 for (; I != E; ++I) 1015 if (VisitedSuccs.insert(*I).second) 1016 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1017 1018 goto NextIteration; 1019 } 1020 1021 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1022 AssumptionCache *AC) { 1023 // If there is nothing to do, bail out... 1024 if (Allocas.empty()) 1025 return; 1026 1027 PromoteMem2Reg(Allocas, DT, AC).run(); 1028 } 1029