1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/TinyPtrVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // FIXME: If the memory unit is of pointer or integer type, we can permit 66 // assignments to subsections of the memory unit. 67 unsigned AS = AI->getType()->getAddressSpace(); 68 69 // Only allow direct and non-volatile loads and stores... 70 for (const User *U : AI->users()) { 71 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 72 // Note that atomic loads can be transformed; atomic semantics do 73 // not have any meaning for a local alloca. 74 if (LI->isVolatile()) 75 return false; 76 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 77 if (SI->getOperand(0) == AI) 78 return false; // Don't allow a store OF the AI, only INTO the AI. 79 // Note that atomic stores can be transformed; atomic semantics do 80 // not have any meaning for a local alloca. 81 if (SI->isVolatile()) 82 return false; 83 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 84 if (!II->isLifetimeStartOrEnd()) 85 return false; 86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 87 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 88 return false; 89 if (!onlyUsedByLifetimeMarkers(BCI)) 90 return false; 91 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 92 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 93 return false; 94 if (!GEPI->hasAllZeroIndices()) 95 return false; 96 if (!onlyUsedByLifetimeMarkers(GEPI)) 97 return false; 98 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 99 if (!onlyUsedByLifetimeMarkers(ASCI)) 100 return false; 101 } else { 102 return false; 103 } 104 } 105 106 return true; 107 } 108 109 namespace { 110 111 struct AllocaInfo { 112 SmallVector<BasicBlock *, 32> DefiningBlocks; 113 SmallVector<BasicBlock *, 32> UsingBlocks; 114 115 StoreInst *OnlyStore; 116 BasicBlock *OnlyBlock; 117 bool OnlyUsedInOneBlock; 118 119 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; 120 121 void clear() { 122 DefiningBlocks.clear(); 123 UsingBlocks.clear(); 124 OnlyStore = nullptr; 125 OnlyBlock = nullptr; 126 OnlyUsedInOneBlock = true; 127 DbgDeclares.clear(); 128 } 129 130 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 131 /// by the rest of the pass to reason about the uses of this alloca. 132 void AnalyzeAlloca(AllocaInst *AI) { 133 clear(); 134 135 // As we scan the uses of the alloca instruction, keep track of stores, 136 // and decide whether all of the loads and stores to the alloca are within 137 // the same basic block. 138 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 139 Instruction *User = cast<Instruction>(*UI++); 140 141 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 142 // Remember the basic blocks which define new values for the alloca 143 DefiningBlocks.push_back(SI->getParent()); 144 OnlyStore = SI; 145 } else { 146 LoadInst *LI = cast<LoadInst>(User); 147 // Otherwise it must be a load instruction, keep track of variable 148 // reads. 149 UsingBlocks.push_back(LI->getParent()); 150 } 151 152 if (OnlyUsedInOneBlock) { 153 if (!OnlyBlock) 154 OnlyBlock = User->getParent(); 155 else if (OnlyBlock != User->getParent()) 156 OnlyUsedInOneBlock = false; 157 } 158 } 159 160 DbgDeclares = FindDbgAddrUses(AI); 161 } 162 }; 163 164 /// Data package used by RenamePass(). 165 struct RenamePassData { 166 using ValVector = std::vector<Value *>; 167 using LocationVector = std::vector<DebugLoc>; 168 169 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 170 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 171 172 BasicBlock *BB; 173 BasicBlock *Pred; 174 ValVector Values; 175 LocationVector Locations; 176 }; 177 178 /// This assigns and keeps a per-bb relative ordering of load/store 179 /// instructions in the block that directly load or store an alloca. 180 /// 181 /// This functionality is important because it avoids scanning large basic 182 /// blocks multiple times when promoting many allocas in the same block. 183 class LargeBlockInfo { 184 /// For each instruction that we track, keep the index of the 185 /// instruction. 186 /// 187 /// The index starts out as the number of the instruction from the start of 188 /// the block. 189 DenseMap<const Instruction *, unsigned> InstNumbers; 190 191 public: 192 193 /// This code only looks at accesses to allocas. 194 static bool isInterestingInstruction(const Instruction *I) { 195 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 196 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 197 } 198 199 /// Get or calculate the index of the specified instruction. 200 unsigned getInstructionIndex(const Instruction *I) { 201 assert(isInterestingInstruction(I) && 202 "Not a load/store to/from an alloca?"); 203 204 // If we already have this instruction number, return it. 205 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 206 if (It != InstNumbers.end()) 207 return It->second; 208 209 // Scan the whole block to get the instruction. This accumulates 210 // information for every interesting instruction in the block, in order to 211 // avoid gratuitus rescans. 212 const BasicBlock *BB = I->getParent(); 213 unsigned InstNo = 0; 214 for (const Instruction &BBI : *BB) 215 if (isInterestingInstruction(&BBI)) 216 InstNumbers[&BBI] = InstNo++; 217 It = InstNumbers.find(I); 218 219 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 220 return It->second; 221 } 222 223 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 224 225 void clear() { InstNumbers.clear(); } 226 }; 227 228 struct PromoteMem2Reg { 229 /// The alloca instructions being promoted. 230 std::vector<AllocaInst *> Allocas; 231 232 DominatorTree &DT; 233 DIBuilder DIB; 234 235 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 236 AssumptionCache *AC; 237 238 const SimplifyQuery SQ; 239 240 /// Reverse mapping of Allocas. 241 DenseMap<AllocaInst *, unsigned> AllocaLookup; 242 243 /// The PhiNodes we're adding. 244 /// 245 /// That map is used to simplify some Phi nodes as we iterate over it, so 246 /// it should have deterministic iterators. We could use a MapVector, but 247 /// since we already maintain a map from BasicBlock* to a stable numbering 248 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 249 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 250 251 /// For each PHI node, keep track of which entry in Allocas it corresponds 252 /// to. 253 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 254 255 /// For each alloca, we keep track of the dbg.declare intrinsic that 256 /// describes it, if any, so that we can convert it to a dbg.value 257 /// intrinsic if the alloca gets promoted. 258 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; 259 260 /// The set of basic blocks the renamer has already visited. 261 SmallPtrSet<BasicBlock *, 16> Visited; 262 263 /// Contains a stable numbering of basic blocks to avoid non-determinstic 264 /// behavior. 265 DenseMap<BasicBlock *, unsigned> BBNumbers; 266 267 /// Lazily compute the number of predecessors a block has. 268 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 269 270 public: 271 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 272 AssumptionCache *AC) 273 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 274 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 275 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 276 nullptr, &DT, AC) {} 277 278 void run(); 279 280 private: 281 void RemoveFromAllocasList(unsigned &AllocaIdx) { 282 Allocas[AllocaIdx] = Allocas.back(); 283 Allocas.pop_back(); 284 --AllocaIdx; 285 } 286 287 unsigned getNumPreds(const BasicBlock *BB) { 288 unsigned &NP = BBNumPreds[BB]; 289 if (NP == 0) 290 NP = pred_size(BB) + 1; 291 return NP - 1; 292 } 293 294 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 295 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 296 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 297 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 298 RenamePassData::ValVector &IncVals, 299 RenamePassData::LocationVector &IncLocs, 300 std::vector<RenamePassData> &Worklist); 301 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 302 }; 303 304 } // end anonymous namespace 305 306 /// Given a LoadInst LI this adds assume(LI != null) after it. 307 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 308 Function *AssumeIntrinsic = 309 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 310 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 311 Constant::getNullValue(LI->getType())); 312 LoadNotNull->insertAfter(LI); 313 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 314 CI->insertAfter(LoadNotNull); 315 AC->registerAssumption(CI); 316 } 317 318 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 319 // Knowing that this alloca is promotable, we know that it's safe to kill all 320 // instructions except for load and store. 321 322 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 323 Instruction *I = cast<Instruction>(*UI); 324 ++UI; 325 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 326 continue; 327 328 if (!I->getType()->isVoidTy()) { 329 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 330 // Follow the use/def chain to erase them now instead of leaving it for 331 // dead code elimination later. 332 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 333 Instruction *Inst = cast<Instruction>(*UUI); 334 ++UUI; 335 Inst->eraseFromParent(); 336 } 337 } 338 I->eraseFromParent(); 339 } 340 } 341 342 /// Rewrite as many loads as possible given a single store. 343 /// 344 /// When there is only a single store, we can use the domtree to trivially 345 /// replace all of the dominated loads with the stored value. Do so, and return 346 /// true if this has successfully promoted the alloca entirely. If this returns 347 /// false there were some loads which were not dominated by the single store 348 /// and thus must be phi-ed with undef. We fall back to the standard alloca 349 /// promotion algorithm in that case. 350 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 351 LargeBlockInfo &LBI, const DataLayout &DL, 352 DominatorTree &DT, AssumptionCache *AC) { 353 StoreInst *OnlyStore = Info.OnlyStore; 354 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 355 BasicBlock *StoreBB = OnlyStore->getParent(); 356 int StoreIndex = -1; 357 358 // Clear out UsingBlocks. We will reconstruct it here if needed. 359 Info.UsingBlocks.clear(); 360 361 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 362 Instruction *UserInst = cast<Instruction>(*UI++); 363 if (UserInst == OnlyStore) 364 continue; 365 LoadInst *LI = cast<LoadInst>(UserInst); 366 367 // Okay, if we have a load from the alloca, we want to replace it with the 368 // only value stored to the alloca. We can do this if the value is 369 // dominated by the store. If not, we use the rest of the mem2reg machinery 370 // to insert the phi nodes as needed. 371 if (!StoringGlobalVal) { // Non-instructions are always dominated. 372 if (LI->getParent() == StoreBB) { 373 // If we have a use that is in the same block as the store, compare the 374 // indices of the two instructions to see which one came first. If the 375 // load came before the store, we can't handle it. 376 if (StoreIndex == -1) 377 StoreIndex = LBI.getInstructionIndex(OnlyStore); 378 379 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 380 // Can't handle this load, bail out. 381 Info.UsingBlocks.push_back(StoreBB); 382 continue; 383 } 384 } else if (!DT.dominates(StoreBB, LI->getParent())) { 385 // If the load and store are in different blocks, use BB dominance to 386 // check their relationships. If the store doesn't dom the use, bail 387 // out. 388 Info.UsingBlocks.push_back(LI->getParent()); 389 continue; 390 } 391 } 392 393 // Otherwise, we *can* safely rewrite this load. 394 Value *ReplVal = OnlyStore->getOperand(0); 395 // If the replacement value is the load, this must occur in unreachable 396 // code. 397 if (ReplVal == LI) 398 ReplVal = UndefValue::get(LI->getType()); 399 400 // If the load was marked as nonnull we don't want to lose 401 // that information when we erase this Load. So we preserve 402 // it with an assume. 403 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 404 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 405 addAssumeNonNull(AC, LI); 406 407 LI->replaceAllUsesWith(ReplVal); 408 LI->eraseFromParent(); 409 LBI.deleteValue(LI); 410 } 411 412 // Finally, after the scan, check to see if the store is all that is left. 413 if (!Info.UsingBlocks.empty()) 414 return false; // If not, we'll have to fall back for the remainder. 415 416 // Record debuginfo for the store and remove the declaration's 417 // debuginfo. 418 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 419 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 420 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 421 DII->eraseFromParent(); 422 } 423 // Remove the (now dead) store and alloca. 424 Info.OnlyStore->eraseFromParent(); 425 LBI.deleteValue(Info.OnlyStore); 426 427 AI->eraseFromParent(); 428 return true; 429 } 430 431 /// Many allocas are only used within a single basic block. If this is the 432 /// case, avoid traversing the CFG and inserting a lot of potentially useless 433 /// PHI nodes by just performing a single linear pass over the basic block 434 /// using the Alloca. 435 /// 436 /// If we cannot promote this alloca (because it is read before it is written), 437 /// return false. This is necessary in cases where, due to control flow, the 438 /// alloca is undefined only on some control flow paths. e.g. code like 439 /// this is correct in LLVM IR: 440 /// // A is an alloca with no stores so far 441 /// for (...) { 442 /// int t = *A; 443 /// if (!first_iteration) 444 /// use(t); 445 /// *A = 42; 446 /// } 447 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 448 LargeBlockInfo &LBI, 449 const DataLayout &DL, 450 DominatorTree &DT, 451 AssumptionCache *AC) { 452 // The trickiest case to handle is when we have large blocks. Because of this, 453 // this code is optimized assuming that large blocks happen. This does not 454 // significantly pessimize the small block case. This uses LargeBlockInfo to 455 // make it efficient to get the index of various operations in the block. 456 457 // Walk the use-def list of the alloca, getting the locations of all stores. 458 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 459 StoresByIndexTy StoresByIndex; 460 461 for (User *U : AI->users()) 462 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 463 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 464 465 // Sort the stores by their index, making it efficient to do a lookup with a 466 // binary search. 467 llvm::sort(StoresByIndex, less_first()); 468 469 // Walk all of the loads from this alloca, replacing them with the nearest 470 // store above them, if any. 471 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 472 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 473 if (!LI) 474 continue; 475 476 unsigned LoadIdx = LBI.getInstructionIndex(LI); 477 478 // Find the nearest store that has a lower index than this load. 479 StoresByIndexTy::iterator I = llvm::lower_bound( 480 StoresByIndex, 481 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 482 less_first()); 483 if (I == StoresByIndex.begin()) { 484 if (StoresByIndex.empty()) 485 // If there are no stores, the load takes the undef value. 486 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 487 else 488 // There is no store before this load, bail out (load may be affected 489 // by the following stores - see main comment). 490 return false; 491 } else { 492 // Otherwise, there was a store before this load, the load takes its value. 493 // Note, if the load was marked as nonnull we don't want to lose that 494 // information when we erase it. So we preserve it with an assume. 495 Value *ReplVal = std::prev(I)->second->getOperand(0); 496 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 497 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 498 addAssumeNonNull(AC, LI); 499 500 // If the replacement value is the load, this must occur in unreachable 501 // code. 502 if (ReplVal == LI) 503 ReplVal = UndefValue::get(LI->getType()); 504 505 LI->replaceAllUsesWith(ReplVal); 506 } 507 508 LI->eraseFromParent(); 509 LBI.deleteValue(LI); 510 } 511 512 // Remove the (now dead) stores and alloca. 513 while (!AI->use_empty()) { 514 StoreInst *SI = cast<StoreInst>(AI->user_back()); 515 // Record debuginfo for the store before removing it. 516 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 517 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 518 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 519 } 520 SI->eraseFromParent(); 521 LBI.deleteValue(SI); 522 } 523 524 AI->eraseFromParent(); 525 526 // The alloca's debuginfo can be removed as well. 527 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) 528 DII->eraseFromParent(); 529 530 ++NumLocalPromoted; 531 return true; 532 } 533 534 void PromoteMem2Reg::run() { 535 Function &F = *DT.getRoot()->getParent(); 536 537 AllocaDbgDeclares.resize(Allocas.size()); 538 539 AllocaInfo Info; 540 LargeBlockInfo LBI; 541 ForwardIDFCalculator IDF(DT); 542 543 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 544 AllocaInst *AI = Allocas[AllocaNum]; 545 546 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 547 assert(AI->getParent()->getParent() == &F && 548 "All allocas should be in the same function, which is same as DF!"); 549 550 removeLifetimeIntrinsicUsers(AI); 551 552 if (AI->use_empty()) { 553 // If there are no uses of the alloca, just delete it now. 554 AI->eraseFromParent(); 555 556 // Remove the alloca from the Allocas list, since it has been processed 557 RemoveFromAllocasList(AllocaNum); 558 ++NumDeadAlloca; 559 continue; 560 } 561 562 // Calculate the set of read and write-locations for each alloca. This is 563 // analogous to finding the 'uses' and 'definitions' of each variable. 564 Info.AnalyzeAlloca(AI); 565 566 // If there is only a single store to this value, replace any loads of 567 // it that are directly dominated by the definition with the value stored. 568 if (Info.DefiningBlocks.size() == 1) { 569 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 570 // The alloca has been processed, move on. 571 RemoveFromAllocasList(AllocaNum); 572 ++NumSingleStore; 573 continue; 574 } 575 } 576 577 // If the alloca is only read and written in one basic block, just perform a 578 // linear sweep over the block to eliminate it. 579 if (Info.OnlyUsedInOneBlock && 580 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 581 // The alloca has been processed, move on. 582 RemoveFromAllocasList(AllocaNum); 583 continue; 584 } 585 586 // If we haven't computed a numbering for the BB's in the function, do so 587 // now. 588 if (BBNumbers.empty()) { 589 unsigned ID = 0; 590 for (auto &BB : F) 591 BBNumbers[&BB] = ID++; 592 } 593 594 // Remember the dbg.declare intrinsic describing this alloca, if any. 595 if (!Info.DbgDeclares.empty()) 596 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 597 598 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 599 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 600 601 // Unique the set of defining blocks for efficient lookup. 602 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 603 Info.DefiningBlocks.end()); 604 605 // Determine which blocks the value is live in. These are blocks which lead 606 // to uses. 607 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 608 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 609 610 // At this point, we're committed to promoting the alloca using IDF's, and 611 // the standard SSA construction algorithm. Determine which blocks need phi 612 // nodes and see if we can optimize out some work by avoiding insertion of 613 // dead phi nodes. 614 IDF.setLiveInBlocks(LiveInBlocks); 615 IDF.setDefiningBlocks(DefBlocks); 616 SmallVector<BasicBlock *, 32> PHIBlocks; 617 IDF.calculate(PHIBlocks); 618 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 619 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 620 }); 621 622 unsigned CurrentVersion = 0; 623 for (BasicBlock *BB : PHIBlocks) 624 QueuePhiNode(BB, AllocaNum, CurrentVersion); 625 } 626 627 if (Allocas.empty()) 628 return; // All of the allocas must have been trivial! 629 630 LBI.clear(); 631 632 // Set the incoming values for the basic block to be null values for all of 633 // the alloca's. We do this in case there is a load of a value that has not 634 // been stored yet. In this case, it will get this null value. 635 RenamePassData::ValVector Values(Allocas.size()); 636 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 637 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 638 639 // When handling debug info, treat all incoming values as if they have unknown 640 // locations until proven otherwise. 641 RenamePassData::LocationVector Locations(Allocas.size()); 642 643 // Walks all basic blocks in the function performing the SSA rename algorithm 644 // and inserting the phi nodes we marked as necessary 645 std::vector<RenamePassData> RenamePassWorkList; 646 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 647 std::move(Locations)); 648 do { 649 RenamePassData RPD = std::move(RenamePassWorkList.back()); 650 RenamePassWorkList.pop_back(); 651 // RenamePass may add new worklist entries. 652 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 653 } while (!RenamePassWorkList.empty()); 654 655 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 656 Visited.clear(); 657 658 // Remove the allocas themselves from the function. 659 for (Instruction *A : Allocas) { 660 // If there are any uses of the alloca instructions left, they must be in 661 // unreachable basic blocks that were not processed by walking the dominator 662 // tree. Just delete the users now. 663 if (!A->use_empty()) 664 A->replaceAllUsesWith(UndefValue::get(A->getType())); 665 A->eraseFromParent(); 666 } 667 668 // Remove alloca's dbg.declare instrinsics from the function. 669 for (auto &Declares : AllocaDbgDeclares) 670 for (auto *DII : Declares) 671 DII->eraseFromParent(); 672 673 // Loop over all of the PHI nodes and see if there are any that we can get 674 // rid of because they merge all of the same incoming values. This can 675 // happen due to undef values coming into the PHI nodes. This process is 676 // iterative, because eliminating one PHI node can cause others to be removed. 677 bool EliminatedAPHI = true; 678 while (EliminatedAPHI) { 679 EliminatedAPHI = false; 680 681 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 682 // simplify and RAUW them as we go. If it was not, we could add uses to 683 // the values we replace with in a non-deterministic order, thus creating 684 // non-deterministic def->use chains. 685 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 686 I = NewPhiNodes.begin(), 687 E = NewPhiNodes.end(); 688 I != E;) { 689 PHINode *PN = I->second; 690 691 // If this PHI node merges one value and/or undefs, get the value. 692 if (Value *V = SimplifyInstruction(PN, SQ)) { 693 PN->replaceAllUsesWith(V); 694 PN->eraseFromParent(); 695 NewPhiNodes.erase(I++); 696 EliminatedAPHI = true; 697 continue; 698 } 699 ++I; 700 } 701 } 702 703 // At this point, the renamer has added entries to PHI nodes for all reachable 704 // code. Unfortunately, there may be unreachable blocks which the renamer 705 // hasn't traversed. If this is the case, the PHI nodes may not 706 // have incoming values for all predecessors. Loop over all PHI nodes we have 707 // created, inserting undef values if they are missing any incoming values. 708 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 709 I = NewPhiNodes.begin(), 710 E = NewPhiNodes.end(); 711 I != E; ++I) { 712 // We want to do this once per basic block. As such, only process a block 713 // when we find the PHI that is the first entry in the block. 714 PHINode *SomePHI = I->second; 715 BasicBlock *BB = SomePHI->getParent(); 716 if (&BB->front() != SomePHI) 717 continue; 718 719 // Only do work here if there the PHI nodes are missing incoming values. We 720 // know that all PHI nodes that were inserted in a block will have the same 721 // number of incoming values, so we can just check any of them. 722 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 723 continue; 724 725 // Get the preds for BB. 726 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 727 728 // Ok, now we know that all of the PHI nodes are missing entries for some 729 // basic blocks. Start by sorting the incoming predecessors for efficient 730 // access. 731 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 732 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 733 }; 734 llvm::sort(Preds, CompareBBNumbers); 735 736 // Now we loop through all BB's which have entries in SomePHI and remove 737 // them from the Preds list. 738 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 739 // Do a log(n) search of the Preds list for the entry we want. 740 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 741 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 742 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 743 "PHI node has entry for a block which is not a predecessor!"); 744 745 // Remove the entry 746 Preds.erase(EntIt); 747 } 748 749 // At this point, the blocks left in the preds list must have dummy 750 // entries inserted into every PHI nodes for the block. Update all the phi 751 // nodes in this block that we are inserting (there could be phis before 752 // mem2reg runs). 753 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 754 BasicBlock::iterator BBI = BB->begin(); 755 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 756 SomePHI->getNumIncomingValues() == NumBadPreds) { 757 Value *UndefVal = UndefValue::get(SomePHI->getType()); 758 for (BasicBlock *Pred : Preds) 759 SomePHI->addIncoming(UndefVal, Pred); 760 } 761 } 762 763 NewPhiNodes.clear(); 764 } 765 766 /// Determine which blocks the value is live in. 767 /// 768 /// These are blocks which lead to uses. Knowing this allows us to avoid 769 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 770 /// inserted phi nodes would be dead). 771 void PromoteMem2Reg::ComputeLiveInBlocks( 772 AllocaInst *AI, AllocaInfo &Info, 773 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 774 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 775 // To determine liveness, we must iterate through the predecessors of blocks 776 // where the def is live. Blocks are added to the worklist if we need to 777 // check their predecessors. Start with all the using blocks. 778 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 779 Info.UsingBlocks.end()); 780 781 // If any of the using blocks is also a definition block, check to see if the 782 // definition occurs before or after the use. If it happens before the use, 783 // the value isn't really live-in. 784 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 785 BasicBlock *BB = LiveInBlockWorklist[i]; 786 if (!DefBlocks.count(BB)) 787 continue; 788 789 // Okay, this is a block that both uses and defines the value. If the first 790 // reference to the alloca is a def (store), then we know it isn't live-in. 791 for (BasicBlock::iterator I = BB->begin();; ++I) { 792 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 793 if (SI->getOperand(1) != AI) 794 continue; 795 796 // We found a store to the alloca before a load. The alloca is not 797 // actually live-in here. 798 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 799 LiveInBlockWorklist.pop_back(); 800 --i; 801 --e; 802 break; 803 } 804 805 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 806 // Okay, we found a load before a store to the alloca. It is actually 807 // live into this block. 808 if (LI->getOperand(0) == AI) 809 break; 810 } 811 } 812 813 // Now that we have a set of blocks where the phi is live-in, recursively add 814 // their predecessors until we find the full region the value is live. 815 while (!LiveInBlockWorklist.empty()) { 816 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 817 818 // The block really is live in here, insert it into the set. If already in 819 // the set, then it has already been processed. 820 if (!LiveInBlocks.insert(BB).second) 821 continue; 822 823 // Since the value is live into BB, it is either defined in a predecessor or 824 // live into it to. Add the preds to the worklist unless they are a 825 // defining block. 826 for (BasicBlock *P : predecessors(BB)) { 827 // The value is not live into a predecessor if it defines the value. 828 if (DefBlocks.count(P)) 829 continue; 830 831 // Otherwise it is, add to the worklist. 832 LiveInBlockWorklist.push_back(P); 833 } 834 } 835 } 836 837 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 838 /// 839 /// Returns true if there wasn't already a phi-node for that variable 840 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 841 unsigned &Version) { 842 // Look up the basic-block in question. 843 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 844 845 // If the BB already has a phi node added for the i'th alloca then we're done! 846 if (PN) 847 return false; 848 849 // Create a PhiNode using the dereferenced type... and add the phi-node to the 850 // BasicBlock. 851 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 852 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 853 &BB->front()); 854 ++NumPHIInsert; 855 PhiToAllocaMap[PN] = AllocaNo; 856 return true; 857 } 858 859 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 860 /// create a merged location incorporating \p DL, or to set \p DL directly. 861 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 862 bool ApplyMergedLoc) { 863 if (ApplyMergedLoc) 864 PN->applyMergedLocation(PN->getDebugLoc(), DL); 865 else 866 PN->setDebugLoc(DL); 867 } 868 869 /// Recursively traverse the CFG of the function, renaming loads and 870 /// stores to the allocas which we are promoting. 871 /// 872 /// IncomingVals indicates what value each Alloca contains on exit from the 873 /// predecessor block Pred. 874 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 875 RenamePassData::ValVector &IncomingVals, 876 RenamePassData::LocationVector &IncomingLocs, 877 std::vector<RenamePassData> &Worklist) { 878 NextIteration: 879 // If we are inserting any phi nodes into this BB, they will already be in the 880 // block. 881 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 882 // If we have PHI nodes to update, compute the number of edges from Pred to 883 // BB. 884 if (PhiToAllocaMap.count(APN)) { 885 // We want to be able to distinguish between PHI nodes being inserted by 886 // this invocation of mem2reg from those phi nodes that already existed in 887 // the IR before mem2reg was run. We determine that APN is being inserted 888 // because it is missing incoming edges. All other PHI nodes being 889 // inserted by this pass of mem2reg will have the same number of incoming 890 // operands so far. Remember this count. 891 unsigned NewPHINumOperands = APN->getNumOperands(); 892 893 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 894 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 895 896 // Add entries for all the phis. 897 BasicBlock::iterator PNI = BB->begin(); 898 do { 899 unsigned AllocaNo = PhiToAllocaMap[APN]; 900 901 // Update the location of the phi node. 902 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 903 APN->getNumIncomingValues() > 0); 904 905 // Add N incoming values to the PHI node. 906 for (unsigned i = 0; i != NumEdges; ++i) 907 APN->addIncoming(IncomingVals[AllocaNo], Pred); 908 909 // The currently active variable for this block is now the PHI. 910 IncomingVals[AllocaNo] = APN; 911 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 912 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 913 914 // Get the next phi node. 915 ++PNI; 916 APN = dyn_cast<PHINode>(PNI); 917 if (!APN) 918 break; 919 920 // Verify that it is missing entries. If not, it is not being inserted 921 // by this mem2reg invocation so we want to ignore it. 922 } while (APN->getNumOperands() == NewPHINumOperands); 923 } 924 } 925 926 // Don't revisit blocks. 927 if (!Visited.insert(BB).second) 928 return; 929 930 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 931 Instruction *I = &*II++; // get the instruction, increment iterator 932 933 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 934 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 935 if (!Src) 936 continue; 937 938 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 939 if (AI == AllocaLookup.end()) 940 continue; 941 942 Value *V = IncomingVals[AI->second]; 943 944 // If the load was marked as nonnull we don't want to lose 945 // that information when we erase this Load. So we preserve 946 // it with an assume. 947 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 948 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 949 addAssumeNonNull(AC, LI); 950 951 // Anything using the load now uses the current value. 952 LI->replaceAllUsesWith(V); 953 BB->getInstList().erase(LI); 954 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 955 // Delete this instruction and mark the name as the current holder of the 956 // value 957 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 958 if (!Dest) 959 continue; 960 961 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 962 if (ai == AllocaLookup.end()) 963 continue; 964 965 // what value were we writing? 966 unsigned AllocaNo = ai->second; 967 IncomingVals[AllocaNo] = SI->getOperand(0); 968 969 // Record debuginfo for the store before removing it. 970 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 971 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) 972 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 973 BB->getInstList().erase(SI); 974 } 975 } 976 977 // 'Recurse' to our successors. 978 succ_iterator I = succ_begin(BB), E = succ_end(BB); 979 if (I == E) 980 return; 981 982 // Keep track of the successors so we don't visit the same successor twice 983 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 984 985 // Handle the first successor without using the worklist. 986 VisitedSuccs.insert(*I); 987 Pred = BB; 988 BB = *I; 989 ++I; 990 991 for (; I != E; ++I) 992 if (VisitedSuccs.insert(*I).second) 993 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 994 995 goto NextIteration; 996 } 997 998 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 999 AssumptionCache *AC) { 1000 // If there is nothing to do, bail out... 1001 if (Allocas.empty()) 1002 return; 1003 1004 PromoteMem2Reg(Allocas, DT, AC).run(); 1005 } 1006