1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // Only allow direct and non-volatile loads and stores...
66   for (const User *U : AI->users()) {
67     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68       // Note that atomic loads can be transformed; atomic semantics do
69       // not have any meaning for a local alloca.
70       if (LI->isVolatile())
71         return false;
72     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73       if (SI->getOperand(0) == AI)
74         return false; // Don't allow a store OF the AI, only INTO the AI.
75       // Note that atomic stores can be transformed; atomic semantics do
76       // not have any meaning for a local alloca.
77       if (SI->isVolatile())
78         return false;
79     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
81         return false;
82     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
83       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
84         return false;
85     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
86       if (!GEPI->hasAllZeroIndices())
87         return false;
88       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
89         return false;
90     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
91       if (!onlyUsedByLifetimeMarkers(ASCI))
92         return false;
93     } else {
94       return false;
95     }
96   }
97 
98   return true;
99 }
100 
101 namespace {
102 
103 struct AllocaInfo {
104   SmallVector<BasicBlock *, 32> DefiningBlocks;
105   SmallVector<BasicBlock *, 32> UsingBlocks;
106 
107   StoreInst *OnlyStore;
108   BasicBlock *OnlyBlock;
109   bool OnlyUsedInOneBlock;
110 
111   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;
112 
113   void clear() {
114     DefiningBlocks.clear();
115     UsingBlocks.clear();
116     OnlyStore = nullptr;
117     OnlyBlock = nullptr;
118     OnlyUsedInOneBlock = true;
119     DbgDeclares.clear();
120   }
121 
122   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
123   /// by the rest of the pass to reason about the uses of this alloca.
124   void AnalyzeAlloca(AllocaInst *AI) {
125     clear();
126 
127     // As we scan the uses of the alloca instruction, keep track of stores,
128     // and decide whether all of the loads and stores to the alloca are within
129     // the same basic block.
130     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
131       Instruction *User = cast<Instruction>(*UI++);
132 
133       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
134         // Remember the basic blocks which define new values for the alloca
135         DefiningBlocks.push_back(SI->getParent());
136         OnlyStore = SI;
137       } else {
138         LoadInst *LI = cast<LoadInst>(User);
139         // Otherwise it must be a load instruction, keep track of variable
140         // reads.
141         UsingBlocks.push_back(LI->getParent());
142       }
143 
144       if (OnlyUsedInOneBlock) {
145         if (!OnlyBlock)
146           OnlyBlock = User->getParent();
147         else if (OnlyBlock != User->getParent())
148           OnlyUsedInOneBlock = false;
149       }
150     }
151 
152     DbgDeclares = FindDbgAddrUses(AI);
153   }
154 };
155 
156 /// Data package used by RenamePass().
157 struct RenamePassData {
158   using ValVector = std::vector<Value *>;
159   using LocationVector = std::vector<DebugLoc>;
160 
161   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
162       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
163 
164   BasicBlock *BB;
165   BasicBlock *Pred;
166   ValVector Values;
167   LocationVector Locations;
168 };
169 
170 /// This assigns and keeps a per-bb relative ordering of load/store
171 /// instructions in the block that directly load or store an alloca.
172 ///
173 /// This functionality is important because it avoids scanning large basic
174 /// blocks multiple times when promoting many allocas in the same block.
175 class LargeBlockInfo {
176   /// For each instruction that we track, keep the index of the
177   /// instruction.
178   ///
179   /// The index starts out as the number of the instruction from the start of
180   /// the block.
181   DenseMap<const Instruction *, unsigned> InstNumbers;
182 
183 public:
184 
185   /// This code only looks at accesses to allocas.
186   static bool isInterestingInstruction(const Instruction *I) {
187     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
188            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
189   }
190 
191   /// Get or calculate the index of the specified instruction.
192   unsigned getInstructionIndex(const Instruction *I) {
193     assert(isInterestingInstruction(I) &&
194            "Not a load/store to/from an alloca?");
195 
196     // If we already have this instruction number, return it.
197     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
198     if (It != InstNumbers.end())
199       return It->second;
200 
201     // Scan the whole block to get the instruction.  This accumulates
202     // information for every interesting instruction in the block, in order to
203     // avoid gratuitus rescans.
204     const BasicBlock *BB = I->getParent();
205     unsigned InstNo = 0;
206     for (const Instruction &BBI : *BB)
207       if (isInterestingInstruction(&BBI))
208         InstNumbers[&BBI] = InstNo++;
209     It = InstNumbers.find(I);
210 
211     assert(It != InstNumbers.end() && "Didn't insert instruction?");
212     return It->second;
213   }
214 
215   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
216 
217   void clear() { InstNumbers.clear(); }
218 };
219 
220 struct PromoteMem2Reg {
221   /// The alloca instructions being promoted.
222   std::vector<AllocaInst *> Allocas;
223 
224   DominatorTree &DT;
225   DIBuilder DIB;
226 
227   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
228   AssumptionCache *AC;
229 
230   const SimplifyQuery SQ;
231 
232   /// Reverse mapping of Allocas.
233   DenseMap<AllocaInst *, unsigned> AllocaLookup;
234 
235   /// The PhiNodes we're adding.
236   ///
237   /// That map is used to simplify some Phi nodes as we iterate over it, so
238   /// it should have deterministic iterators.  We could use a MapVector, but
239   /// since we already maintain a map from BasicBlock* to a stable numbering
240   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
241   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
242 
243   /// For each PHI node, keep track of which entry in Allocas it corresponds
244   /// to.
245   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
246 
247   /// For each alloca, we keep track of the dbg.declare intrinsic that
248   /// describes it, if any, so that we can convert it to a dbg.value
249   /// intrinsic if the alloca gets promoted.
250   SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;
251 
252   /// The set of basic blocks the renamer has already visited.
253   SmallPtrSet<BasicBlock *, 16> Visited;
254 
255   /// Contains a stable numbering of basic blocks to avoid non-determinstic
256   /// behavior.
257   DenseMap<BasicBlock *, unsigned> BBNumbers;
258 
259   /// Lazily compute the number of predecessors a block has.
260   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
261 
262 public:
263   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
264                  AssumptionCache *AC)
265       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
266         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
267         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
268                    nullptr, &DT, AC) {}
269 
270   void run();
271 
272 private:
273   void RemoveFromAllocasList(unsigned &AllocaIdx) {
274     Allocas[AllocaIdx] = Allocas.back();
275     Allocas.pop_back();
276     --AllocaIdx;
277   }
278 
279   unsigned getNumPreds(const BasicBlock *BB) {
280     unsigned &NP = BBNumPreds[BB];
281     if (NP == 0)
282       NP = pred_size(BB) + 1;
283     return NP - 1;
284   }
285 
286   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
287                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
288                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
289   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
290                   RenamePassData::ValVector &IncVals,
291                   RenamePassData::LocationVector &IncLocs,
292                   std::vector<RenamePassData> &Worklist);
293   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
294 };
295 
296 } // end anonymous namespace
297 
298 /// Given a LoadInst LI this adds assume(LI != null) after it.
299 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
300   Function *AssumeIntrinsic =
301       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
302   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
303                                        Constant::getNullValue(LI->getType()));
304   LoadNotNull->insertAfter(LI);
305   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
306   CI->insertAfter(LoadNotNull);
307   AC->registerAssumption(CI);
308 }
309 
310 static void removeIntrinsicUsers(AllocaInst *AI) {
311   // Knowing that this alloca is promotable, we know that it's safe to kill all
312   // instructions except for load and store.
313 
314   for (auto UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) {
315     Instruction *I = cast<Instruction>(UI->getUser());
316     Use &U = *UI;
317     ++UI;
318     if (isa<LoadInst>(I) || isa<StoreInst>(I))
319       continue;
320 
321     // Drop the use of AI in droppable instructions.
322     if (I->isDroppable()) {
323       I->dropDroppableUse(U);
324       continue;
325     }
326 
327     if (!I->getType()->isVoidTy()) {
328       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
329       // Follow the use/def chain to erase them now instead of leaving it for
330       // dead code elimination later.
331       for (auto UUI = I->use_begin(), UUE = I->use_end(); UUI != UUE;) {
332         Instruction *Inst = cast<Instruction>(UUI->getUser());
333         Use &UU = *UUI;
334         ++UUI;
335 
336         // Drop the use of I in droppable instructions.
337         if (Inst->isDroppable()) {
338           Inst->dropDroppableUse(UU);
339           continue;
340         }
341         Inst->eraseFromParent();
342       }
343     }
344     I->eraseFromParent();
345   }
346 }
347 
348 /// Rewrite as many loads as possible given a single store.
349 ///
350 /// When there is only a single store, we can use the domtree to trivially
351 /// replace all of the dominated loads with the stored value. Do so, and return
352 /// true if this has successfully promoted the alloca entirely. If this returns
353 /// false there were some loads which were not dominated by the single store
354 /// and thus must be phi-ed with undef. We fall back to the standard alloca
355 /// promotion algorithm in that case.
356 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
357                                      LargeBlockInfo &LBI, const DataLayout &DL,
358                                      DominatorTree &DT, AssumptionCache *AC) {
359   StoreInst *OnlyStore = Info.OnlyStore;
360   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
361   BasicBlock *StoreBB = OnlyStore->getParent();
362   int StoreIndex = -1;
363 
364   // Clear out UsingBlocks.  We will reconstruct it here if needed.
365   Info.UsingBlocks.clear();
366 
367   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
368     Instruction *UserInst = cast<Instruction>(*UI++);
369     if (UserInst == OnlyStore)
370       continue;
371     LoadInst *LI = cast<LoadInst>(UserInst);
372 
373     // Okay, if we have a load from the alloca, we want to replace it with the
374     // only value stored to the alloca.  We can do this if the value is
375     // dominated by the store.  If not, we use the rest of the mem2reg machinery
376     // to insert the phi nodes as needed.
377     if (!StoringGlobalVal) { // Non-instructions are always dominated.
378       if (LI->getParent() == StoreBB) {
379         // If we have a use that is in the same block as the store, compare the
380         // indices of the two instructions to see which one came first.  If the
381         // load came before the store, we can't handle it.
382         if (StoreIndex == -1)
383           StoreIndex = LBI.getInstructionIndex(OnlyStore);
384 
385         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
386           // Can't handle this load, bail out.
387           Info.UsingBlocks.push_back(StoreBB);
388           continue;
389         }
390       } else if (!DT.dominates(StoreBB, LI->getParent())) {
391         // If the load and store are in different blocks, use BB dominance to
392         // check their relationships.  If the store doesn't dom the use, bail
393         // out.
394         Info.UsingBlocks.push_back(LI->getParent());
395         continue;
396       }
397     }
398 
399     // Otherwise, we *can* safely rewrite this load.
400     Value *ReplVal = OnlyStore->getOperand(0);
401     // If the replacement value is the load, this must occur in unreachable
402     // code.
403     if (ReplVal == LI)
404       ReplVal = UndefValue::get(LI->getType());
405 
406     // If the load was marked as nonnull we don't want to lose
407     // that information when we erase this Load. So we preserve
408     // it with an assume.
409     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
410         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
411       addAssumeNonNull(AC, LI);
412 
413     LI->replaceAllUsesWith(ReplVal);
414     LI->eraseFromParent();
415     LBI.deleteValue(LI);
416   }
417 
418   // Finally, after the scan, check to see if the store is all that is left.
419   if (!Info.UsingBlocks.empty())
420     return false; // If not, we'll have to fall back for the remainder.
421 
422   // Record debuginfo for the store and remove the declaration's
423   // debuginfo.
424   for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
425     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
426     ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
427     DII->eraseFromParent();
428   }
429   // Remove the (now dead) store and alloca.
430   Info.OnlyStore->eraseFromParent();
431   LBI.deleteValue(Info.OnlyStore);
432 
433   AI->eraseFromParent();
434   return true;
435 }
436 
437 /// Many allocas are only used within a single basic block.  If this is the
438 /// case, avoid traversing the CFG and inserting a lot of potentially useless
439 /// PHI nodes by just performing a single linear pass over the basic block
440 /// using the Alloca.
441 ///
442 /// If we cannot promote this alloca (because it is read before it is written),
443 /// return false.  This is necessary in cases where, due to control flow, the
444 /// alloca is undefined only on some control flow paths.  e.g. code like
445 /// this is correct in LLVM IR:
446 ///  // A is an alloca with no stores so far
447 ///  for (...) {
448 ///    int t = *A;
449 ///    if (!first_iteration)
450 ///      use(t);
451 ///    *A = 42;
452 ///  }
453 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
454                                      LargeBlockInfo &LBI,
455                                      const DataLayout &DL,
456                                      DominatorTree &DT,
457                                      AssumptionCache *AC) {
458   // The trickiest case to handle is when we have large blocks. Because of this,
459   // this code is optimized assuming that large blocks happen.  This does not
460   // significantly pessimize the small block case.  This uses LargeBlockInfo to
461   // make it efficient to get the index of various operations in the block.
462 
463   // Walk the use-def list of the alloca, getting the locations of all stores.
464   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
465   StoresByIndexTy StoresByIndex;
466 
467   for (User *U : AI->users())
468     if (StoreInst *SI = dyn_cast<StoreInst>(U))
469       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
470 
471   // Sort the stores by their index, making it efficient to do a lookup with a
472   // binary search.
473   llvm::sort(StoresByIndex, less_first());
474 
475   // Walk all of the loads from this alloca, replacing them with the nearest
476   // store above them, if any.
477   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
478     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
479     if (!LI)
480       continue;
481 
482     unsigned LoadIdx = LBI.getInstructionIndex(LI);
483 
484     // Find the nearest store that has a lower index than this load.
485     StoresByIndexTy::iterator I = llvm::lower_bound(
486         StoresByIndex,
487         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
488         less_first());
489     if (I == StoresByIndex.begin()) {
490       if (StoresByIndex.empty())
491         // If there are no stores, the load takes the undef value.
492         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
493       else
494         // There is no store before this load, bail out (load may be affected
495         // by the following stores - see main comment).
496         return false;
497     } else {
498       // Otherwise, there was a store before this load, the load takes its value.
499       // Note, if the load was marked as nonnull we don't want to lose that
500       // information when we erase it. So we preserve it with an assume.
501       Value *ReplVal = std::prev(I)->second->getOperand(0);
502       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
503           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
504         addAssumeNonNull(AC, LI);
505 
506       // If the replacement value is the load, this must occur in unreachable
507       // code.
508       if (ReplVal == LI)
509         ReplVal = UndefValue::get(LI->getType());
510 
511       LI->replaceAllUsesWith(ReplVal);
512     }
513 
514     LI->eraseFromParent();
515     LBI.deleteValue(LI);
516   }
517 
518   // Remove the (now dead) stores and alloca.
519   while (!AI->use_empty()) {
520     StoreInst *SI = cast<StoreInst>(AI->user_back());
521     // Record debuginfo for the store before removing it.
522     for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
523       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
524       ConvertDebugDeclareToDebugValue(DII, SI, DIB);
525     }
526     SI->eraseFromParent();
527     LBI.deleteValue(SI);
528   }
529 
530   AI->eraseFromParent();
531 
532   // The alloca's debuginfo can be removed as well.
533   for (DbgVariableIntrinsic *DII : Info.DbgDeclares)
534     DII->eraseFromParent();
535 
536   ++NumLocalPromoted;
537   return true;
538 }
539 
540 void PromoteMem2Reg::run() {
541   Function &F = *DT.getRoot()->getParent();
542 
543   AllocaDbgDeclares.resize(Allocas.size());
544 
545   AllocaInfo Info;
546   LargeBlockInfo LBI;
547   ForwardIDFCalculator IDF(DT);
548 
549   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
550     AllocaInst *AI = Allocas[AllocaNum];
551 
552     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
553     assert(AI->getParent()->getParent() == &F &&
554            "All allocas should be in the same function, which is same as DF!");
555 
556     removeIntrinsicUsers(AI);
557 
558     if (AI->use_empty()) {
559       // If there are no uses of the alloca, just delete it now.
560       AI->eraseFromParent();
561 
562       // Remove the alloca from the Allocas list, since it has been processed
563       RemoveFromAllocasList(AllocaNum);
564       ++NumDeadAlloca;
565       continue;
566     }
567 
568     // Calculate the set of read and write-locations for each alloca.  This is
569     // analogous to finding the 'uses' and 'definitions' of each variable.
570     Info.AnalyzeAlloca(AI);
571 
572     // If there is only a single store to this value, replace any loads of
573     // it that are directly dominated by the definition with the value stored.
574     if (Info.DefiningBlocks.size() == 1) {
575       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
576         // The alloca has been processed, move on.
577         RemoveFromAllocasList(AllocaNum);
578         ++NumSingleStore;
579         continue;
580       }
581     }
582 
583     // If the alloca is only read and written in one basic block, just perform a
584     // linear sweep over the block to eliminate it.
585     if (Info.OnlyUsedInOneBlock &&
586         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
587       // The alloca has been processed, move on.
588       RemoveFromAllocasList(AllocaNum);
589       continue;
590     }
591 
592     // If we haven't computed a numbering for the BB's in the function, do so
593     // now.
594     if (BBNumbers.empty()) {
595       unsigned ID = 0;
596       for (auto &BB : F)
597         BBNumbers[&BB] = ID++;
598     }
599 
600     // Remember the dbg.declare intrinsic describing this alloca, if any.
601     if (!Info.DbgDeclares.empty())
602       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
603 
604     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
605     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
606 
607     // Unique the set of defining blocks for efficient lookup.
608     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
609                                             Info.DefiningBlocks.end());
610 
611     // Determine which blocks the value is live in.  These are blocks which lead
612     // to uses.
613     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
614     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
615 
616     // At this point, we're committed to promoting the alloca using IDF's, and
617     // the standard SSA construction algorithm.  Determine which blocks need phi
618     // nodes and see if we can optimize out some work by avoiding insertion of
619     // dead phi nodes.
620     IDF.setLiveInBlocks(LiveInBlocks);
621     IDF.setDefiningBlocks(DefBlocks);
622     SmallVector<BasicBlock *, 32> PHIBlocks;
623     IDF.calculate(PHIBlocks);
624     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
625       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
626     });
627 
628     unsigned CurrentVersion = 0;
629     for (BasicBlock *BB : PHIBlocks)
630       QueuePhiNode(BB, AllocaNum, CurrentVersion);
631   }
632 
633   if (Allocas.empty())
634     return; // All of the allocas must have been trivial!
635 
636   LBI.clear();
637 
638   // Set the incoming values for the basic block to be null values for all of
639   // the alloca's.  We do this in case there is a load of a value that has not
640   // been stored yet.  In this case, it will get this null value.
641   RenamePassData::ValVector Values(Allocas.size());
642   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
643     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
644 
645   // When handling debug info, treat all incoming values as if they have unknown
646   // locations until proven otherwise.
647   RenamePassData::LocationVector Locations(Allocas.size());
648 
649   // Walks all basic blocks in the function performing the SSA rename algorithm
650   // and inserting the phi nodes we marked as necessary
651   std::vector<RenamePassData> RenamePassWorkList;
652   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
653                                   std::move(Locations));
654   do {
655     RenamePassData RPD = std::move(RenamePassWorkList.back());
656     RenamePassWorkList.pop_back();
657     // RenamePass may add new worklist entries.
658     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
659   } while (!RenamePassWorkList.empty());
660 
661   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
662   Visited.clear();
663 
664   // Remove the allocas themselves from the function.
665   for (Instruction *A : Allocas) {
666     // If there are any uses of the alloca instructions left, they must be in
667     // unreachable basic blocks that were not processed by walking the dominator
668     // tree. Just delete the users now.
669     if (!A->use_empty())
670       A->replaceAllUsesWith(UndefValue::get(A->getType()));
671     A->eraseFromParent();
672   }
673 
674   // Remove alloca's dbg.declare instrinsics from the function.
675   for (auto &Declares : AllocaDbgDeclares)
676     for (auto *DII : Declares)
677       DII->eraseFromParent();
678 
679   // Loop over all of the PHI nodes and see if there are any that we can get
680   // rid of because they merge all of the same incoming values.  This can
681   // happen due to undef values coming into the PHI nodes.  This process is
682   // iterative, because eliminating one PHI node can cause others to be removed.
683   bool EliminatedAPHI = true;
684   while (EliminatedAPHI) {
685     EliminatedAPHI = false;
686 
687     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
688     // simplify and RAUW them as we go.  If it was not, we could add uses to
689     // the values we replace with in a non-deterministic order, thus creating
690     // non-deterministic def->use chains.
691     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
692              I = NewPhiNodes.begin(),
693              E = NewPhiNodes.end();
694          I != E;) {
695       PHINode *PN = I->second;
696 
697       // If this PHI node merges one value and/or undefs, get the value.
698       if (Value *V = SimplifyInstruction(PN, SQ)) {
699         PN->replaceAllUsesWith(V);
700         PN->eraseFromParent();
701         NewPhiNodes.erase(I++);
702         EliminatedAPHI = true;
703         continue;
704       }
705       ++I;
706     }
707   }
708 
709   // At this point, the renamer has added entries to PHI nodes for all reachable
710   // code.  Unfortunately, there may be unreachable blocks which the renamer
711   // hasn't traversed.  If this is the case, the PHI nodes may not
712   // have incoming values for all predecessors.  Loop over all PHI nodes we have
713   // created, inserting undef values if they are missing any incoming values.
714   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
715            I = NewPhiNodes.begin(),
716            E = NewPhiNodes.end();
717        I != E; ++I) {
718     // We want to do this once per basic block.  As such, only process a block
719     // when we find the PHI that is the first entry in the block.
720     PHINode *SomePHI = I->second;
721     BasicBlock *BB = SomePHI->getParent();
722     if (&BB->front() != SomePHI)
723       continue;
724 
725     // Only do work here if there the PHI nodes are missing incoming values.  We
726     // know that all PHI nodes that were inserted in a block will have the same
727     // number of incoming values, so we can just check any of them.
728     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
729       continue;
730 
731     // Get the preds for BB.
732     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
733 
734     // Ok, now we know that all of the PHI nodes are missing entries for some
735     // basic blocks.  Start by sorting the incoming predecessors for efficient
736     // access.
737     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
738       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
739     };
740     llvm::sort(Preds, CompareBBNumbers);
741 
742     // Now we loop through all BB's which have entries in SomePHI and remove
743     // them from the Preds list.
744     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
745       // Do a log(n) search of the Preds list for the entry we want.
746       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
747           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
748       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
749              "PHI node has entry for a block which is not a predecessor!");
750 
751       // Remove the entry
752       Preds.erase(EntIt);
753     }
754 
755     // At this point, the blocks left in the preds list must have dummy
756     // entries inserted into every PHI nodes for the block.  Update all the phi
757     // nodes in this block that we are inserting (there could be phis before
758     // mem2reg runs).
759     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
760     BasicBlock::iterator BBI = BB->begin();
761     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
762            SomePHI->getNumIncomingValues() == NumBadPreds) {
763       Value *UndefVal = UndefValue::get(SomePHI->getType());
764       for (BasicBlock *Pred : Preds)
765         SomePHI->addIncoming(UndefVal, Pred);
766     }
767   }
768 
769   NewPhiNodes.clear();
770 }
771 
772 /// Determine which blocks the value is live in.
773 ///
774 /// These are blocks which lead to uses.  Knowing this allows us to avoid
775 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
776 /// inserted phi nodes would be dead).
777 void PromoteMem2Reg::ComputeLiveInBlocks(
778     AllocaInst *AI, AllocaInfo &Info,
779     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
780     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
781   // To determine liveness, we must iterate through the predecessors of blocks
782   // where the def is live.  Blocks are added to the worklist if we need to
783   // check their predecessors.  Start with all the using blocks.
784   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
785                                                     Info.UsingBlocks.end());
786 
787   // If any of the using blocks is also a definition block, check to see if the
788   // definition occurs before or after the use.  If it happens before the use,
789   // the value isn't really live-in.
790   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
791     BasicBlock *BB = LiveInBlockWorklist[i];
792     if (!DefBlocks.count(BB))
793       continue;
794 
795     // Okay, this is a block that both uses and defines the value.  If the first
796     // reference to the alloca is a def (store), then we know it isn't live-in.
797     for (BasicBlock::iterator I = BB->begin();; ++I) {
798       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
799         if (SI->getOperand(1) != AI)
800           continue;
801 
802         // We found a store to the alloca before a load.  The alloca is not
803         // actually live-in here.
804         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
805         LiveInBlockWorklist.pop_back();
806         --i;
807         --e;
808         break;
809       }
810 
811       if (LoadInst *LI = dyn_cast<LoadInst>(I))
812         // Okay, we found a load before a store to the alloca.  It is actually
813         // live into this block.
814         if (LI->getOperand(0) == AI)
815           break;
816     }
817   }
818 
819   // Now that we have a set of blocks where the phi is live-in, recursively add
820   // their predecessors until we find the full region the value is live.
821   while (!LiveInBlockWorklist.empty()) {
822     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
823 
824     // The block really is live in here, insert it into the set.  If already in
825     // the set, then it has already been processed.
826     if (!LiveInBlocks.insert(BB).second)
827       continue;
828 
829     // Since the value is live into BB, it is either defined in a predecessor or
830     // live into it to.  Add the preds to the worklist unless they are a
831     // defining block.
832     for (BasicBlock *P : predecessors(BB)) {
833       // The value is not live into a predecessor if it defines the value.
834       if (DefBlocks.count(P))
835         continue;
836 
837       // Otherwise it is, add to the worklist.
838       LiveInBlockWorklist.push_back(P);
839     }
840   }
841 }
842 
843 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
844 ///
845 /// Returns true if there wasn't already a phi-node for that variable
846 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
847                                   unsigned &Version) {
848   // Look up the basic-block in question.
849   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
850 
851   // If the BB already has a phi node added for the i'th alloca then we're done!
852   if (PN)
853     return false;
854 
855   // Create a PhiNode using the dereferenced type... and add the phi-node to the
856   // BasicBlock.
857   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
858                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
859                        &BB->front());
860   ++NumPHIInsert;
861   PhiToAllocaMap[PN] = AllocaNo;
862   return true;
863 }
864 
865 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
866 /// create a merged location incorporating \p DL, or to set \p DL directly.
867 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
868                                            bool ApplyMergedLoc) {
869   if (ApplyMergedLoc)
870     PN->applyMergedLocation(PN->getDebugLoc(), DL);
871   else
872     PN->setDebugLoc(DL);
873 }
874 
875 /// Recursively traverse the CFG of the function, renaming loads and
876 /// stores to the allocas which we are promoting.
877 ///
878 /// IncomingVals indicates what value each Alloca contains on exit from the
879 /// predecessor block Pred.
880 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
881                                 RenamePassData::ValVector &IncomingVals,
882                                 RenamePassData::LocationVector &IncomingLocs,
883                                 std::vector<RenamePassData> &Worklist) {
884 NextIteration:
885   // If we are inserting any phi nodes into this BB, they will already be in the
886   // block.
887   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
888     // If we have PHI nodes to update, compute the number of edges from Pred to
889     // BB.
890     if (PhiToAllocaMap.count(APN)) {
891       // We want to be able to distinguish between PHI nodes being inserted by
892       // this invocation of mem2reg from those phi nodes that already existed in
893       // the IR before mem2reg was run.  We determine that APN is being inserted
894       // because it is missing incoming edges.  All other PHI nodes being
895       // inserted by this pass of mem2reg will have the same number of incoming
896       // operands so far.  Remember this count.
897       unsigned NewPHINumOperands = APN->getNumOperands();
898 
899       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
900       assert(NumEdges && "Must be at least one edge from Pred to BB!");
901 
902       // Add entries for all the phis.
903       BasicBlock::iterator PNI = BB->begin();
904       do {
905         unsigned AllocaNo = PhiToAllocaMap[APN];
906 
907         // Update the location of the phi node.
908         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
909                                        APN->getNumIncomingValues() > 0);
910 
911         // Add N incoming values to the PHI node.
912         for (unsigned i = 0; i != NumEdges; ++i)
913           APN->addIncoming(IncomingVals[AllocaNo], Pred);
914 
915         // The currently active variable for this block is now the PHI.
916         IncomingVals[AllocaNo] = APN;
917         for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
918           ConvertDebugDeclareToDebugValue(DII, APN, DIB);
919 
920         // Get the next phi node.
921         ++PNI;
922         APN = dyn_cast<PHINode>(PNI);
923         if (!APN)
924           break;
925 
926         // Verify that it is missing entries.  If not, it is not being inserted
927         // by this mem2reg invocation so we want to ignore it.
928       } while (APN->getNumOperands() == NewPHINumOperands);
929     }
930   }
931 
932   // Don't revisit blocks.
933   if (!Visited.insert(BB).second)
934     return;
935 
936   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
937     Instruction *I = &*II++; // get the instruction, increment iterator
938 
939     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
940       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
941       if (!Src)
942         continue;
943 
944       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
945       if (AI == AllocaLookup.end())
946         continue;
947 
948       Value *V = IncomingVals[AI->second];
949 
950       // If the load was marked as nonnull we don't want to lose
951       // that information when we erase this Load. So we preserve
952       // it with an assume.
953       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
954           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
955         addAssumeNonNull(AC, LI);
956 
957       // Anything using the load now uses the current value.
958       LI->replaceAllUsesWith(V);
959       BB->getInstList().erase(LI);
960     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
961       // Delete this instruction and mark the name as the current holder of the
962       // value
963       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
964       if (!Dest)
965         continue;
966 
967       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
968       if (ai == AllocaLookup.end())
969         continue;
970 
971       // what value were we writing?
972       unsigned AllocaNo = ai->second;
973       IncomingVals[AllocaNo] = SI->getOperand(0);
974 
975       // Record debuginfo for the store before removing it.
976       IncomingLocs[AllocaNo] = SI->getDebugLoc();
977       for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
978         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
979       BB->getInstList().erase(SI);
980     }
981   }
982 
983   // 'Recurse' to our successors.
984   succ_iterator I = succ_begin(BB), E = succ_end(BB);
985   if (I == E)
986     return;
987 
988   // Keep track of the successors so we don't visit the same successor twice
989   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
990 
991   // Handle the first successor without using the worklist.
992   VisitedSuccs.insert(*I);
993   Pred = BB;
994   BB = *I;
995   ++I;
996 
997   for (; I != E; ++I)
998     if (VisitedSuccs.insert(*I).second)
999       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1000 
1001   goto NextIteration;
1002 }
1003 
1004 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1005                            AssumptionCache *AC) {
1006   // If there is nothing to do, bail out...
1007   if (Allocas.empty())
1008     return;
1009 
1010   PromoteMem2Reg(Allocas, DT, AC).run();
1011 }
1012