1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/TinyPtrVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // FIXME: If the memory unit is of pointer or integer type, we can permit 66 // assignments to subsections of the memory unit. 67 unsigned AS = AI->getType()->getAddressSpace(); 68 69 // Only allow direct and non-volatile loads and stores... 70 for (const User *U : AI->users()) { 71 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 72 // Note that atomic loads can be transformed; atomic semantics do 73 // not have any meaning for a local alloca. 74 if (LI->isVolatile()) 75 return false; 76 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 77 if (SI->getOperand(0) == AI) 78 return false; // Don't allow a store OF the AI, only INTO the AI. 79 // Note that atomic stores can be transformed; atomic semantics do 80 // not have any meaning for a local alloca. 81 if (SI->isVolatile()) 82 return false; 83 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 84 if (!II->isLifetimeStartOrEnd()) 85 return false; 86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 87 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 88 return false; 89 if (!onlyUsedByLifetimeMarkers(BCI)) 90 return false; 91 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 92 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 93 return false; 94 if (!GEPI->hasAllZeroIndices()) 95 return false; 96 if (!onlyUsedByLifetimeMarkers(GEPI)) 97 return false; 98 } else { 99 return false; 100 } 101 } 102 103 return true; 104 } 105 106 namespace { 107 108 struct AllocaInfo { 109 SmallVector<BasicBlock *, 32> DefiningBlocks; 110 SmallVector<BasicBlock *, 32> UsingBlocks; 111 112 StoreInst *OnlyStore; 113 BasicBlock *OnlyBlock; 114 bool OnlyUsedInOneBlock; 115 116 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; 117 118 void clear() { 119 DefiningBlocks.clear(); 120 UsingBlocks.clear(); 121 OnlyStore = nullptr; 122 OnlyBlock = nullptr; 123 OnlyUsedInOneBlock = true; 124 DbgDeclares.clear(); 125 } 126 127 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 128 /// by the rest of the pass to reason about the uses of this alloca. 129 void AnalyzeAlloca(AllocaInst *AI) { 130 clear(); 131 132 // As we scan the uses of the alloca instruction, keep track of stores, 133 // and decide whether all of the loads and stores to the alloca are within 134 // the same basic block. 135 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 136 Instruction *User = cast<Instruction>(*UI++); 137 138 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 139 // Remember the basic blocks which define new values for the alloca 140 DefiningBlocks.push_back(SI->getParent()); 141 OnlyStore = SI; 142 } else { 143 LoadInst *LI = cast<LoadInst>(User); 144 // Otherwise it must be a load instruction, keep track of variable 145 // reads. 146 UsingBlocks.push_back(LI->getParent()); 147 } 148 149 if (OnlyUsedInOneBlock) { 150 if (!OnlyBlock) 151 OnlyBlock = User->getParent(); 152 else if (OnlyBlock != User->getParent()) 153 OnlyUsedInOneBlock = false; 154 } 155 } 156 157 DbgDeclares = FindDbgAddrUses(AI); 158 } 159 }; 160 161 /// Data package used by RenamePass(). 162 struct RenamePassData { 163 using ValVector = std::vector<Value *>; 164 using LocationVector = std::vector<DebugLoc>; 165 166 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 167 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 168 169 BasicBlock *BB; 170 BasicBlock *Pred; 171 ValVector Values; 172 LocationVector Locations; 173 }; 174 175 /// This assigns and keeps a per-bb relative ordering of load/store 176 /// instructions in the block that directly load or store an alloca. 177 /// 178 /// This functionality is important because it avoids scanning large basic 179 /// blocks multiple times when promoting many allocas in the same block. 180 class LargeBlockInfo { 181 /// For each instruction that we track, keep the index of the 182 /// instruction. 183 /// 184 /// The index starts out as the number of the instruction from the start of 185 /// the block. 186 DenseMap<const Instruction *, unsigned> InstNumbers; 187 188 public: 189 190 /// This code only looks at accesses to allocas. 191 static bool isInterestingInstruction(const Instruction *I) { 192 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 193 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 194 } 195 196 /// Get or calculate the index of the specified instruction. 197 unsigned getInstructionIndex(const Instruction *I) { 198 assert(isInterestingInstruction(I) && 199 "Not a load/store to/from an alloca?"); 200 201 // If we already have this instruction number, return it. 202 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 203 if (It != InstNumbers.end()) 204 return It->second; 205 206 // Scan the whole block to get the instruction. This accumulates 207 // information for every interesting instruction in the block, in order to 208 // avoid gratuitus rescans. 209 const BasicBlock *BB = I->getParent(); 210 unsigned InstNo = 0; 211 for (const Instruction &BBI : *BB) 212 if (isInterestingInstruction(&BBI)) 213 InstNumbers[&BBI] = InstNo++; 214 It = InstNumbers.find(I); 215 216 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 217 return It->second; 218 } 219 220 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 221 222 void clear() { InstNumbers.clear(); } 223 }; 224 225 struct PromoteMem2Reg { 226 /// The alloca instructions being promoted. 227 std::vector<AllocaInst *> Allocas; 228 229 DominatorTree &DT; 230 DIBuilder DIB; 231 232 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 233 AssumptionCache *AC; 234 235 const SimplifyQuery SQ; 236 237 /// Reverse mapping of Allocas. 238 DenseMap<AllocaInst *, unsigned> AllocaLookup; 239 240 /// The PhiNodes we're adding. 241 /// 242 /// That map is used to simplify some Phi nodes as we iterate over it, so 243 /// it should have deterministic iterators. We could use a MapVector, but 244 /// since we already maintain a map from BasicBlock* to a stable numbering 245 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 246 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 247 248 /// For each PHI node, keep track of which entry in Allocas it corresponds 249 /// to. 250 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 251 252 /// If we are updating an AliasSetTracker, then for each alloca that is of 253 /// pointer type, we keep track of what to copyValue to the inserted PHI 254 /// nodes here. 255 std::vector<Value *> PointerAllocaValues; 256 257 /// For each alloca, we keep track of the dbg.declare intrinsic that 258 /// describes it, if any, so that we can convert it to a dbg.value 259 /// intrinsic if the alloca gets promoted. 260 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; 261 262 /// The set of basic blocks the renamer has already visited. 263 SmallPtrSet<BasicBlock *, 16> Visited; 264 265 /// Contains a stable numbering of basic blocks to avoid non-determinstic 266 /// behavior. 267 DenseMap<BasicBlock *, unsigned> BBNumbers; 268 269 /// Lazily compute the number of predecessors a block has. 270 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 271 272 public: 273 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 274 AssumptionCache *AC) 275 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 276 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 277 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 278 nullptr, &DT, AC) {} 279 280 void run(); 281 282 private: 283 void RemoveFromAllocasList(unsigned &AllocaIdx) { 284 Allocas[AllocaIdx] = Allocas.back(); 285 Allocas.pop_back(); 286 --AllocaIdx; 287 } 288 289 unsigned getNumPreds(const BasicBlock *BB) { 290 unsigned &NP = BBNumPreds[BB]; 291 if (NP == 0) 292 NP = pred_size(BB) + 1; 293 return NP - 1; 294 } 295 296 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 297 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 298 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 299 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 300 RenamePassData::ValVector &IncVals, 301 RenamePassData::LocationVector &IncLocs, 302 std::vector<RenamePassData> &Worklist); 303 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 304 }; 305 306 } // end anonymous namespace 307 308 /// Given a LoadInst LI this adds assume(LI != null) after it. 309 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 310 Function *AssumeIntrinsic = 311 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 312 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 313 Constant::getNullValue(LI->getType())); 314 LoadNotNull->insertAfter(LI); 315 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 316 CI->insertAfter(LoadNotNull); 317 AC->registerAssumption(CI); 318 } 319 320 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 321 // Knowing that this alloca is promotable, we know that it's safe to kill all 322 // instructions except for load and store. 323 324 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 325 Instruction *I = cast<Instruction>(*UI); 326 ++UI; 327 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 328 continue; 329 330 if (!I->getType()->isVoidTy()) { 331 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 332 // Follow the use/def chain to erase them now instead of leaving it for 333 // dead code elimination later. 334 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 335 Instruction *Inst = cast<Instruction>(*UUI); 336 ++UUI; 337 Inst->eraseFromParent(); 338 } 339 } 340 I->eraseFromParent(); 341 } 342 } 343 344 /// Rewrite as many loads as possible given a single store. 345 /// 346 /// When there is only a single store, we can use the domtree to trivially 347 /// replace all of the dominated loads with the stored value. Do so, and return 348 /// true if this has successfully promoted the alloca entirely. If this returns 349 /// false there were some loads which were not dominated by the single store 350 /// and thus must be phi-ed with undef. We fall back to the standard alloca 351 /// promotion algorithm in that case. 352 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 353 LargeBlockInfo &LBI, const DataLayout &DL, 354 DominatorTree &DT, AssumptionCache *AC) { 355 StoreInst *OnlyStore = Info.OnlyStore; 356 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 357 BasicBlock *StoreBB = OnlyStore->getParent(); 358 int StoreIndex = -1; 359 360 // Clear out UsingBlocks. We will reconstruct it here if needed. 361 Info.UsingBlocks.clear(); 362 363 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 364 Instruction *UserInst = cast<Instruction>(*UI++); 365 if (UserInst == OnlyStore) 366 continue; 367 LoadInst *LI = cast<LoadInst>(UserInst); 368 369 // Okay, if we have a load from the alloca, we want to replace it with the 370 // only value stored to the alloca. We can do this if the value is 371 // dominated by the store. If not, we use the rest of the mem2reg machinery 372 // to insert the phi nodes as needed. 373 if (!StoringGlobalVal) { // Non-instructions are always dominated. 374 if (LI->getParent() == StoreBB) { 375 // If we have a use that is in the same block as the store, compare the 376 // indices of the two instructions to see which one came first. If the 377 // load came before the store, we can't handle it. 378 if (StoreIndex == -1) 379 StoreIndex = LBI.getInstructionIndex(OnlyStore); 380 381 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 382 // Can't handle this load, bail out. 383 Info.UsingBlocks.push_back(StoreBB); 384 continue; 385 } 386 } else if (!DT.dominates(StoreBB, LI->getParent())) { 387 // If the load and store are in different blocks, use BB dominance to 388 // check their relationships. If the store doesn't dom the use, bail 389 // out. 390 Info.UsingBlocks.push_back(LI->getParent()); 391 continue; 392 } 393 } 394 395 // Otherwise, we *can* safely rewrite this load. 396 Value *ReplVal = OnlyStore->getOperand(0); 397 // If the replacement value is the load, this must occur in unreachable 398 // code. 399 if (ReplVal == LI) 400 ReplVal = UndefValue::get(LI->getType()); 401 402 // If the load was marked as nonnull we don't want to lose 403 // that information when we erase this Load. So we preserve 404 // it with an assume. 405 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 406 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 407 addAssumeNonNull(AC, LI); 408 409 LI->replaceAllUsesWith(ReplVal); 410 LI->eraseFromParent(); 411 LBI.deleteValue(LI); 412 } 413 414 // Finally, after the scan, check to see if the store is all that is left. 415 if (!Info.UsingBlocks.empty()) 416 return false; // If not, we'll have to fall back for the remainder. 417 418 // Record debuginfo for the store and remove the declaration's 419 // debuginfo. 420 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 421 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 422 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 423 DII->eraseFromParent(); 424 LBI.deleteValue(DII); 425 } 426 // Remove the (now dead) store and alloca. 427 Info.OnlyStore->eraseFromParent(); 428 LBI.deleteValue(Info.OnlyStore); 429 430 AI->eraseFromParent(); 431 LBI.deleteValue(AI); 432 return true; 433 } 434 435 /// Many allocas are only used within a single basic block. If this is the 436 /// case, avoid traversing the CFG and inserting a lot of potentially useless 437 /// PHI nodes by just performing a single linear pass over the basic block 438 /// using the Alloca. 439 /// 440 /// If we cannot promote this alloca (because it is read before it is written), 441 /// return false. This is necessary in cases where, due to control flow, the 442 /// alloca is undefined only on some control flow paths. e.g. code like 443 /// this is correct in LLVM IR: 444 /// // A is an alloca with no stores so far 445 /// for (...) { 446 /// int t = *A; 447 /// if (!first_iteration) 448 /// use(t); 449 /// *A = 42; 450 /// } 451 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 452 LargeBlockInfo &LBI, 453 const DataLayout &DL, 454 DominatorTree &DT, 455 AssumptionCache *AC) { 456 // The trickiest case to handle is when we have large blocks. Because of this, 457 // this code is optimized assuming that large blocks happen. This does not 458 // significantly pessimize the small block case. This uses LargeBlockInfo to 459 // make it efficient to get the index of various operations in the block. 460 461 // Walk the use-def list of the alloca, getting the locations of all stores. 462 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 463 StoresByIndexTy StoresByIndex; 464 465 for (User *U : AI->users()) 466 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 467 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 468 469 // Sort the stores by their index, making it efficient to do a lookup with a 470 // binary search. 471 llvm::sort(StoresByIndex, less_first()); 472 473 // Walk all of the loads from this alloca, replacing them with the nearest 474 // store above them, if any. 475 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 476 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 477 if (!LI) 478 continue; 479 480 unsigned LoadIdx = LBI.getInstructionIndex(LI); 481 482 // Find the nearest store that has a lower index than this load. 483 StoresByIndexTy::iterator I = llvm::lower_bound( 484 StoresByIndex, 485 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 486 less_first()); 487 if (I == StoresByIndex.begin()) { 488 if (StoresByIndex.empty()) 489 // If there are no stores, the load takes the undef value. 490 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 491 else 492 // There is no store before this load, bail out (load may be affected 493 // by the following stores - see main comment). 494 return false; 495 } else { 496 // Otherwise, there was a store before this load, the load takes its value. 497 // Note, if the load was marked as nonnull we don't want to lose that 498 // information when we erase it. So we preserve it with an assume. 499 Value *ReplVal = std::prev(I)->second->getOperand(0); 500 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 501 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 502 addAssumeNonNull(AC, LI); 503 504 // If the replacement value is the load, this must occur in unreachable 505 // code. 506 if (ReplVal == LI) 507 ReplVal = UndefValue::get(LI->getType()); 508 509 LI->replaceAllUsesWith(ReplVal); 510 } 511 512 LI->eraseFromParent(); 513 LBI.deleteValue(LI); 514 } 515 516 // Remove the (now dead) stores and alloca. 517 while (!AI->use_empty()) { 518 StoreInst *SI = cast<StoreInst>(AI->user_back()); 519 // Record debuginfo for the store before removing it. 520 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 521 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 522 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 523 } 524 SI->eraseFromParent(); 525 LBI.deleteValue(SI); 526 } 527 528 AI->eraseFromParent(); 529 LBI.deleteValue(AI); 530 531 // The alloca's debuginfo can be removed as well. 532 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 533 DII->eraseFromParent(); 534 LBI.deleteValue(DII); 535 } 536 537 ++NumLocalPromoted; 538 return true; 539 } 540 541 void PromoteMem2Reg::run() { 542 Function &F = *DT.getRoot()->getParent(); 543 544 AllocaDbgDeclares.resize(Allocas.size()); 545 546 AllocaInfo Info; 547 LargeBlockInfo LBI; 548 ForwardIDFCalculator IDF(DT); 549 550 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 551 AllocaInst *AI = Allocas[AllocaNum]; 552 553 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 554 assert(AI->getParent()->getParent() == &F && 555 "All allocas should be in the same function, which is same as DF!"); 556 557 removeLifetimeIntrinsicUsers(AI); 558 559 if (AI->use_empty()) { 560 // If there are no uses of the alloca, just delete it now. 561 AI->eraseFromParent(); 562 563 // Remove the alloca from the Allocas list, since it has been processed 564 RemoveFromAllocasList(AllocaNum); 565 ++NumDeadAlloca; 566 continue; 567 } 568 569 // Calculate the set of read and write-locations for each alloca. This is 570 // analogous to finding the 'uses' and 'definitions' of each variable. 571 Info.AnalyzeAlloca(AI); 572 573 // If there is only a single store to this value, replace any loads of 574 // it that are directly dominated by the definition with the value stored. 575 if (Info.DefiningBlocks.size() == 1) { 576 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 577 // The alloca has been processed, move on. 578 RemoveFromAllocasList(AllocaNum); 579 ++NumSingleStore; 580 continue; 581 } 582 } 583 584 // If the alloca is only read and written in one basic block, just perform a 585 // linear sweep over the block to eliminate it. 586 if (Info.OnlyUsedInOneBlock && 587 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 588 // The alloca has been processed, move on. 589 RemoveFromAllocasList(AllocaNum); 590 continue; 591 } 592 593 // If we haven't computed a numbering for the BB's in the function, do so 594 // now. 595 if (BBNumbers.empty()) { 596 unsigned ID = 0; 597 for (auto &BB : F) 598 BBNumbers[&BB] = ID++; 599 } 600 601 // Remember the dbg.declare intrinsic describing this alloca, if any. 602 if (!Info.DbgDeclares.empty()) 603 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 604 605 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 606 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 607 608 // At this point, we're committed to promoting the alloca using IDF's, and 609 // the standard SSA construction algorithm. Determine which blocks need PHI 610 // nodes and see if we can optimize out some work by avoiding insertion of 611 // dead phi nodes. 612 613 // Unique the set of defining blocks for efficient lookup. 614 SmallPtrSet<BasicBlock *, 32> DefBlocks; 615 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 616 617 // Determine which blocks the value is live in. These are blocks which lead 618 // to uses. 619 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 620 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 621 622 // At this point, we're committed to promoting the alloca using IDF's, and 623 // the standard SSA construction algorithm. Determine which blocks need phi 624 // nodes and see if we can optimize out some work by avoiding insertion of 625 // dead phi nodes. 626 IDF.setLiveInBlocks(LiveInBlocks); 627 IDF.setDefiningBlocks(DefBlocks); 628 SmallVector<BasicBlock *, 32> PHIBlocks; 629 IDF.calculate(PHIBlocks); 630 if (PHIBlocks.size() > 1) 631 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 632 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 633 }); 634 635 unsigned CurrentVersion = 0; 636 for (BasicBlock *BB : PHIBlocks) 637 QueuePhiNode(BB, AllocaNum, CurrentVersion); 638 } 639 640 if (Allocas.empty()) 641 return; // All of the allocas must have been trivial! 642 643 LBI.clear(); 644 645 // Set the incoming values for the basic block to be null values for all of 646 // the alloca's. We do this in case there is a load of a value that has not 647 // been stored yet. In this case, it will get this null value. 648 RenamePassData::ValVector Values(Allocas.size()); 649 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 650 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 651 652 // When handling debug info, treat all incoming values as if they have unknown 653 // locations until proven otherwise. 654 RenamePassData::LocationVector Locations(Allocas.size()); 655 656 // Walks all basic blocks in the function performing the SSA rename algorithm 657 // and inserting the phi nodes we marked as necessary 658 std::vector<RenamePassData> RenamePassWorkList; 659 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 660 std::move(Locations)); 661 do { 662 RenamePassData RPD = std::move(RenamePassWorkList.back()); 663 RenamePassWorkList.pop_back(); 664 // RenamePass may add new worklist entries. 665 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 666 } while (!RenamePassWorkList.empty()); 667 668 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 669 Visited.clear(); 670 671 // Remove the allocas themselves from the function. 672 for (Instruction *A : Allocas) { 673 // If there are any uses of the alloca instructions left, they must be in 674 // unreachable basic blocks that were not processed by walking the dominator 675 // tree. Just delete the users now. 676 if (!A->use_empty()) 677 A->replaceAllUsesWith(UndefValue::get(A->getType())); 678 A->eraseFromParent(); 679 } 680 681 // Remove alloca's dbg.declare instrinsics from the function. 682 for (auto &Declares : AllocaDbgDeclares) 683 for (auto *DII : Declares) 684 DII->eraseFromParent(); 685 686 // Loop over all of the PHI nodes and see if there are any that we can get 687 // rid of because they merge all of the same incoming values. This can 688 // happen due to undef values coming into the PHI nodes. This process is 689 // iterative, because eliminating one PHI node can cause others to be removed. 690 bool EliminatedAPHI = true; 691 while (EliminatedAPHI) { 692 EliminatedAPHI = false; 693 694 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 695 // simplify and RAUW them as we go. If it was not, we could add uses to 696 // the values we replace with in a non-deterministic order, thus creating 697 // non-deterministic def->use chains. 698 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 699 I = NewPhiNodes.begin(), 700 E = NewPhiNodes.end(); 701 I != E;) { 702 PHINode *PN = I->second; 703 704 // If this PHI node merges one value and/or undefs, get the value. 705 if (Value *V = SimplifyInstruction(PN, SQ)) { 706 PN->replaceAllUsesWith(V); 707 PN->eraseFromParent(); 708 NewPhiNodes.erase(I++); 709 EliminatedAPHI = true; 710 continue; 711 } 712 ++I; 713 } 714 } 715 716 // At this point, the renamer has added entries to PHI nodes for all reachable 717 // code. Unfortunately, there may be unreachable blocks which the renamer 718 // hasn't traversed. If this is the case, the PHI nodes may not 719 // have incoming values for all predecessors. Loop over all PHI nodes we have 720 // created, inserting undef values if they are missing any incoming values. 721 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 722 I = NewPhiNodes.begin(), 723 E = NewPhiNodes.end(); 724 I != E; ++I) { 725 // We want to do this once per basic block. As such, only process a block 726 // when we find the PHI that is the first entry in the block. 727 PHINode *SomePHI = I->second; 728 BasicBlock *BB = SomePHI->getParent(); 729 if (&BB->front() != SomePHI) 730 continue; 731 732 // Only do work here if there the PHI nodes are missing incoming values. We 733 // know that all PHI nodes that were inserted in a block will have the same 734 // number of incoming values, so we can just check any of them. 735 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 736 continue; 737 738 // Get the preds for BB. 739 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 740 741 // Ok, now we know that all of the PHI nodes are missing entries for some 742 // basic blocks. Start by sorting the incoming predecessors for efficient 743 // access. 744 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 745 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 746 }; 747 llvm::sort(Preds, CompareBBNumbers); 748 749 // Now we loop through all BB's which have entries in SomePHI and remove 750 // them from the Preds list. 751 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 752 // Do a log(n) search of the Preds list for the entry we want. 753 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 754 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 755 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 756 "PHI node has entry for a block which is not a predecessor!"); 757 758 // Remove the entry 759 Preds.erase(EntIt); 760 } 761 762 // At this point, the blocks left in the preds list must have dummy 763 // entries inserted into every PHI nodes for the block. Update all the phi 764 // nodes in this block that we are inserting (there could be phis before 765 // mem2reg runs). 766 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 767 BasicBlock::iterator BBI = BB->begin(); 768 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 769 SomePHI->getNumIncomingValues() == NumBadPreds) { 770 Value *UndefVal = UndefValue::get(SomePHI->getType()); 771 for (BasicBlock *Pred : Preds) 772 SomePHI->addIncoming(UndefVal, Pred); 773 } 774 } 775 776 NewPhiNodes.clear(); 777 } 778 779 /// Determine which blocks the value is live in. 780 /// 781 /// These are blocks which lead to uses. Knowing this allows us to avoid 782 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 783 /// inserted phi nodes would be dead). 784 void PromoteMem2Reg::ComputeLiveInBlocks( 785 AllocaInst *AI, AllocaInfo &Info, 786 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 787 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 788 // To determine liveness, we must iterate through the predecessors of blocks 789 // where the def is live. Blocks are added to the worklist if we need to 790 // check their predecessors. Start with all the using blocks. 791 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 792 Info.UsingBlocks.end()); 793 794 // If any of the using blocks is also a definition block, check to see if the 795 // definition occurs before or after the use. If it happens before the use, 796 // the value isn't really live-in. 797 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 798 BasicBlock *BB = LiveInBlockWorklist[i]; 799 if (!DefBlocks.count(BB)) 800 continue; 801 802 // Okay, this is a block that both uses and defines the value. If the first 803 // reference to the alloca is a def (store), then we know it isn't live-in. 804 for (BasicBlock::iterator I = BB->begin();; ++I) { 805 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 806 if (SI->getOperand(1) != AI) 807 continue; 808 809 // We found a store to the alloca before a load. The alloca is not 810 // actually live-in here. 811 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 812 LiveInBlockWorklist.pop_back(); 813 --i; 814 --e; 815 break; 816 } 817 818 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 819 if (LI->getOperand(0) != AI) 820 continue; 821 822 // Okay, we found a load before a store to the alloca. It is actually 823 // live into this block. 824 break; 825 } 826 } 827 } 828 829 // Now that we have a set of blocks where the phi is live-in, recursively add 830 // their predecessors until we find the full region the value is live. 831 while (!LiveInBlockWorklist.empty()) { 832 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 833 834 // The block really is live in here, insert it into the set. If already in 835 // the set, then it has already been processed. 836 if (!LiveInBlocks.insert(BB).second) 837 continue; 838 839 // Since the value is live into BB, it is either defined in a predecessor or 840 // live into it to. Add the preds to the worklist unless they are a 841 // defining block. 842 for (BasicBlock *P : predecessors(BB)) { 843 // The value is not live into a predecessor if it defines the value. 844 if (DefBlocks.count(P)) 845 continue; 846 847 // Otherwise it is, add to the worklist. 848 LiveInBlockWorklist.push_back(P); 849 } 850 } 851 } 852 853 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 854 /// 855 /// Returns true if there wasn't already a phi-node for that variable 856 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 857 unsigned &Version) { 858 // Look up the basic-block in question. 859 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 860 861 // If the BB already has a phi node added for the i'th alloca then we're done! 862 if (PN) 863 return false; 864 865 // Create a PhiNode using the dereferenced type... and add the phi-node to the 866 // BasicBlock. 867 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 868 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 869 &BB->front()); 870 ++NumPHIInsert; 871 PhiToAllocaMap[PN] = AllocaNo; 872 return true; 873 } 874 875 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 876 /// create a merged location incorporating \p DL, or to set \p DL directly. 877 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 878 bool ApplyMergedLoc) { 879 if (ApplyMergedLoc) 880 PN->applyMergedLocation(PN->getDebugLoc(), DL); 881 else 882 PN->setDebugLoc(DL); 883 } 884 885 /// Recursively traverse the CFG of the function, renaming loads and 886 /// stores to the allocas which we are promoting. 887 /// 888 /// IncomingVals indicates what value each Alloca contains on exit from the 889 /// predecessor block Pred. 890 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 891 RenamePassData::ValVector &IncomingVals, 892 RenamePassData::LocationVector &IncomingLocs, 893 std::vector<RenamePassData> &Worklist) { 894 NextIteration: 895 // If we are inserting any phi nodes into this BB, they will already be in the 896 // block. 897 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 898 // If we have PHI nodes to update, compute the number of edges from Pred to 899 // BB. 900 if (PhiToAllocaMap.count(APN)) { 901 // We want to be able to distinguish between PHI nodes being inserted by 902 // this invocation of mem2reg from those phi nodes that already existed in 903 // the IR before mem2reg was run. We determine that APN is being inserted 904 // because it is missing incoming edges. All other PHI nodes being 905 // inserted by this pass of mem2reg will have the same number of incoming 906 // operands so far. Remember this count. 907 unsigned NewPHINumOperands = APN->getNumOperands(); 908 909 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 910 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 911 912 // Add entries for all the phis. 913 BasicBlock::iterator PNI = BB->begin(); 914 do { 915 unsigned AllocaNo = PhiToAllocaMap[APN]; 916 917 // Update the location of the phi node. 918 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 919 APN->getNumIncomingValues() > 0); 920 921 // Add N incoming values to the PHI node. 922 for (unsigned i = 0; i != NumEdges; ++i) 923 APN->addIncoming(IncomingVals[AllocaNo], Pred); 924 925 // The currently active variable for this block is now the PHI. 926 IncomingVals[AllocaNo] = APN; 927 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 928 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 929 930 // Get the next phi node. 931 ++PNI; 932 APN = dyn_cast<PHINode>(PNI); 933 if (!APN) 934 break; 935 936 // Verify that it is missing entries. If not, it is not being inserted 937 // by this mem2reg invocation so we want to ignore it. 938 } while (APN->getNumOperands() == NewPHINumOperands); 939 } 940 } 941 942 // Don't revisit blocks. 943 if (!Visited.insert(BB).second) 944 return; 945 946 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 947 Instruction *I = &*II++; // get the instruction, increment iterator 948 949 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 950 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 951 if (!Src) 952 continue; 953 954 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 955 if (AI == AllocaLookup.end()) 956 continue; 957 958 Value *V = IncomingVals[AI->second]; 959 960 // If the load was marked as nonnull we don't want to lose 961 // that information when we erase this Load. So we preserve 962 // it with an assume. 963 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 964 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 965 addAssumeNonNull(AC, LI); 966 967 // Anything using the load now uses the current value. 968 LI->replaceAllUsesWith(V); 969 BB->getInstList().erase(LI); 970 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 971 // Delete this instruction and mark the name as the current holder of the 972 // value 973 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 974 if (!Dest) 975 continue; 976 977 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 978 if (ai == AllocaLookup.end()) 979 continue; 980 981 // what value were we writing? 982 unsigned AllocaNo = ai->second; 983 IncomingVals[AllocaNo] = SI->getOperand(0); 984 985 // Record debuginfo for the store before removing it. 986 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 987 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) 988 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 989 BB->getInstList().erase(SI); 990 } 991 } 992 993 // 'Recurse' to our successors. 994 succ_iterator I = succ_begin(BB), E = succ_end(BB); 995 if (I == E) 996 return; 997 998 // Keep track of the successors so we don't visit the same successor twice 999 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1000 1001 // Handle the first successor without using the worklist. 1002 VisitedSuccs.insert(*I); 1003 Pred = BB; 1004 BB = *I; 1005 ++I; 1006 1007 for (; I != E; ++I) 1008 if (VisitedSuccs.insert(*I).second) 1009 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1010 1011 goto NextIteration; 1012 } 1013 1014 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1015 AssumptionCache *AC) { 1016 // If there is nothing to do, bail out... 1017 if (Allocas.empty()) 1018 return; 1019 1020 PromoteMem2Reg(Allocas, DT, AC).run(); 1021 } 1022