1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/TinyPtrVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // FIXME: If the memory unit is of pointer or integer type, we can permit 66 // assignments to subsections of the memory unit. 67 unsigned AS = AI->getType()->getAddressSpace(); 68 69 // Only allow direct and non-volatile loads and stores... 70 for (const User *U : AI->users()) { 71 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 72 // Note that atomic loads can be transformed; atomic semantics do 73 // not have any meaning for a local alloca. 74 if (LI->isVolatile()) 75 return false; 76 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 77 if (SI->getOperand(0) == AI) 78 return false; // Don't allow a store OF the AI, only INTO the AI. 79 // Note that atomic stores can be transformed; atomic semantics do 80 // not have any meaning for a local alloca. 81 if (SI->isVolatile()) 82 return false; 83 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 84 if (!II->isLifetimeStartOrEnd()) 85 return false; 86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 87 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 88 return false; 89 if (!onlyUsedByLifetimeMarkers(BCI)) 90 return false; 91 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 92 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 93 return false; 94 if (!GEPI->hasAllZeroIndices()) 95 return false; 96 if (!onlyUsedByLifetimeMarkers(GEPI)) 97 return false; 98 } else { 99 return false; 100 } 101 } 102 103 return true; 104 } 105 106 namespace { 107 108 struct AllocaInfo { 109 SmallVector<BasicBlock *, 32> DefiningBlocks; 110 SmallVector<BasicBlock *, 32> UsingBlocks; 111 112 StoreInst *OnlyStore; 113 BasicBlock *OnlyBlock; 114 bool OnlyUsedInOneBlock; 115 116 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares; 117 118 void clear() { 119 DefiningBlocks.clear(); 120 UsingBlocks.clear(); 121 OnlyStore = nullptr; 122 OnlyBlock = nullptr; 123 OnlyUsedInOneBlock = true; 124 DbgDeclares.clear(); 125 } 126 127 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 128 /// by the rest of the pass to reason about the uses of this alloca. 129 void AnalyzeAlloca(AllocaInst *AI) { 130 clear(); 131 132 // As we scan the uses of the alloca instruction, keep track of stores, 133 // and decide whether all of the loads and stores to the alloca are within 134 // the same basic block. 135 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 136 Instruction *User = cast<Instruction>(*UI++); 137 138 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 139 // Remember the basic blocks which define new values for the alloca 140 DefiningBlocks.push_back(SI->getParent()); 141 OnlyStore = SI; 142 } else { 143 LoadInst *LI = cast<LoadInst>(User); 144 // Otherwise it must be a load instruction, keep track of variable 145 // reads. 146 UsingBlocks.push_back(LI->getParent()); 147 } 148 149 if (OnlyUsedInOneBlock) { 150 if (!OnlyBlock) 151 OnlyBlock = User->getParent(); 152 else if (OnlyBlock != User->getParent()) 153 OnlyUsedInOneBlock = false; 154 } 155 } 156 157 DbgDeclares = FindDbgAddrUses(AI); 158 } 159 }; 160 161 /// Data package used by RenamePass(). 162 struct RenamePassData { 163 using ValVector = std::vector<Value *>; 164 using LocationVector = std::vector<DebugLoc>; 165 166 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 167 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 168 169 BasicBlock *BB; 170 BasicBlock *Pred; 171 ValVector Values; 172 LocationVector Locations; 173 }; 174 175 /// This assigns and keeps a per-bb relative ordering of load/store 176 /// instructions in the block that directly load or store an alloca. 177 /// 178 /// This functionality is important because it avoids scanning large basic 179 /// blocks multiple times when promoting many allocas in the same block. 180 class LargeBlockInfo { 181 /// For each instruction that we track, keep the index of the 182 /// instruction. 183 /// 184 /// The index starts out as the number of the instruction from the start of 185 /// the block. 186 DenseMap<const Instruction *, unsigned> InstNumbers; 187 188 public: 189 190 /// This code only looks at accesses to allocas. 191 static bool isInterestingInstruction(const Instruction *I) { 192 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 193 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 194 } 195 196 /// Get or calculate the index of the specified instruction. 197 unsigned getInstructionIndex(const Instruction *I) { 198 assert(isInterestingInstruction(I) && 199 "Not a load/store to/from an alloca?"); 200 201 // If we already have this instruction number, return it. 202 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 203 if (It != InstNumbers.end()) 204 return It->second; 205 206 // Scan the whole block to get the instruction. This accumulates 207 // information for every interesting instruction in the block, in order to 208 // avoid gratuitus rescans. 209 const BasicBlock *BB = I->getParent(); 210 unsigned InstNo = 0; 211 for (const Instruction &BBI : *BB) 212 if (isInterestingInstruction(&BBI)) 213 InstNumbers[&BBI] = InstNo++; 214 It = InstNumbers.find(I); 215 216 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 217 return It->second; 218 } 219 220 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 221 222 void clear() { InstNumbers.clear(); } 223 }; 224 225 struct PromoteMem2Reg { 226 /// The alloca instructions being promoted. 227 std::vector<AllocaInst *> Allocas; 228 229 DominatorTree &DT; 230 DIBuilder DIB; 231 232 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 233 AssumptionCache *AC; 234 235 const SimplifyQuery SQ; 236 237 /// Reverse mapping of Allocas. 238 DenseMap<AllocaInst *, unsigned> AllocaLookup; 239 240 /// The PhiNodes we're adding. 241 /// 242 /// That map is used to simplify some Phi nodes as we iterate over it, so 243 /// it should have deterministic iterators. We could use a MapVector, but 244 /// since we already maintain a map from BasicBlock* to a stable numbering 245 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 246 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 247 248 /// For each PHI node, keep track of which entry in Allocas it corresponds 249 /// to. 250 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 251 252 /// If we are updating an AliasSetTracker, then for each alloca that is of 253 /// pointer type, we keep track of what to copyValue to the inserted PHI 254 /// nodes here. 255 std::vector<Value *> PointerAllocaValues; 256 257 /// For each alloca, we keep track of the dbg.declare intrinsic that 258 /// describes it, if any, so that we can convert it to a dbg.value 259 /// intrinsic if the alloca gets promoted. 260 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares; 261 262 /// The set of basic blocks the renamer has already visited. 263 SmallPtrSet<BasicBlock *, 16> Visited; 264 265 /// Contains a stable numbering of basic blocks to avoid non-determinstic 266 /// behavior. 267 DenseMap<BasicBlock *, unsigned> BBNumbers; 268 269 /// Lazily compute the number of predecessors a block has. 270 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 271 272 public: 273 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 274 AssumptionCache *AC) 275 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 276 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 277 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 278 nullptr, &DT, AC) {} 279 280 void run(); 281 282 private: 283 void RemoveFromAllocasList(unsigned &AllocaIdx) { 284 Allocas[AllocaIdx] = Allocas.back(); 285 Allocas.pop_back(); 286 --AllocaIdx; 287 } 288 289 unsigned getNumPreds(const BasicBlock *BB) { 290 unsigned &NP = BBNumPreds[BB]; 291 if (NP == 0) 292 NP = pred_size(BB) + 1; 293 return NP - 1; 294 } 295 296 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 297 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 298 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 299 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 300 RenamePassData::ValVector &IncVals, 301 RenamePassData::LocationVector &IncLocs, 302 std::vector<RenamePassData> &Worklist); 303 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 304 }; 305 306 } // end anonymous namespace 307 308 /// Given a LoadInst LI this adds assume(LI != null) after it. 309 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 310 Function *AssumeIntrinsic = 311 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 312 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 313 Constant::getNullValue(LI->getType())); 314 LoadNotNull->insertAfter(LI); 315 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 316 CI->insertAfter(LoadNotNull); 317 AC->registerAssumption(CI); 318 } 319 320 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 321 // Knowing that this alloca is promotable, we know that it's safe to kill all 322 // instructions except for load and store. 323 324 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 325 Instruction *I = cast<Instruction>(*UI); 326 ++UI; 327 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 328 continue; 329 330 if (!I->getType()->isVoidTy()) { 331 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 332 // Follow the use/def chain to erase them now instead of leaving it for 333 // dead code elimination later. 334 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 335 Instruction *Inst = cast<Instruction>(*UUI); 336 ++UUI; 337 Inst->eraseFromParent(); 338 } 339 } 340 I->eraseFromParent(); 341 } 342 } 343 344 /// Rewrite as many loads as possible given a single store. 345 /// 346 /// When there is only a single store, we can use the domtree to trivially 347 /// replace all of the dominated loads with the stored value. Do so, and return 348 /// true if this has successfully promoted the alloca entirely. If this returns 349 /// false there were some loads which were not dominated by the single store 350 /// and thus must be phi-ed with undef. We fall back to the standard alloca 351 /// promotion algorithm in that case. 352 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 353 LargeBlockInfo &LBI, const DataLayout &DL, 354 DominatorTree &DT, AssumptionCache *AC) { 355 StoreInst *OnlyStore = Info.OnlyStore; 356 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 357 BasicBlock *StoreBB = OnlyStore->getParent(); 358 int StoreIndex = -1; 359 360 // Clear out UsingBlocks. We will reconstruct it here if needed. 361 Info.UsingBlocks.clear(); 362 363 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 364 Instruction *UserInst = cast<Instruction>(*UI++); 365 if (!isa<LoadInst>(UserInst)) { 366 assert(UserInst == OnlyStore && "Should only have load/stores"); 367 continue; 368 } 369 LoadInst *LI = cast<LoadInst>(UserInst); 370 371 // Okay, if we have a load from the alloca, we want to replace it with the 372 // only value stored to the alloca. We can do this if the value is 373 // dominated by the store. If not, we use the rest of the mem2reg machinery 374 // to insert the phi nodes as needed. 375 if (!StoringGlobalVal) { // Non-instructions are always dominated. 376 if (LI->getParent() == StoreBB) { 377 // If we have a use that is in the same block as the store, compare the 378 // indices of the two instructions to see which one came first. If the 379 // load came before the store, we can't handle it. 380 if (StoreIndex == -1) 381 StoreIndex = LBI.getInstructionIndex(OnlyStore); 382 383 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 384 // Can't handle this load, bail out. 385 Info.UsingBlocks.push_back(StoreBB); 386 continue; 387 } 388 } else if (LI->getParent() != StoreBB && 389 !DT.dominates(StoreBB, LI->getParent())) { 390 // If the load and store are in different blocks, use BB dominance to 391 // check their relationships. If the store doesn't dom the use, bail 392 // out. 393 Info.UsingBlocks.push_back(LI->getParent()); 394 continue; 395 } 396 } 397 398 // Otherwise, we *can* safely rewrite this load. 399 Value *ReplVal = OnlyStore->getOperand(0); 400 // If the replacement value is the load, this must occur in unreachable 401 // code. 402 if (ReplVal == LI) 403 ReplVal = UndefValue::get(LI->getType()); 404 405 // If the load was marked as nonnull we don't want to lose 406 // that information when we erase this Load. So we preserve 407 // it with an assume. 408 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 409 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 410 addAssumeNonNull(AC, LI); 411 412 LI->replaceAllUsesWith(ReplVal); 413 LI->eraseFromParent(); 414 LBI.deleteValue(LI); 415 } 416 417 // Finally, after the scan, check to see if the store is all that is left. 418 if (!Info.UsingBlocks.empty()) 419 return false; // If not, we'll have to fall back for the remainder. 420 421 // Record debuginfo for the store and remove the declaration's 422 // debuginfo. 423 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 424 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 425 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 426 DII->eraseFromParent(); 427 LBI.deleteValue(DII); 428 } 429 // Remove the (now dead) store and alloca. 430 Info.OnlyStore->eraseFromParent(); 431 LBI.deleteValue(Info.OnlyStore); 432 433 AI->eraseFromParent(); 434 LBI.deleteValue(AI); 435 return true; 436 } 437 438 /// Many allocas are only used within a single basic block. If this is the 439 /// case, avoid traversing the CFG and inserting a lot of potentially useless 440 /// PHI nodes by just performing a single linear pass over the basic block 441 /// using the Alloca. 442 /// 443 /// If we cannot promote this alloca (because it is read before it is written), 444 /// return false. This is necessary in cases where, due to control flow, the 445 /// alloca is undefined only on some control flow paths. e.g. code like 446 /// this is correct in LLVM IR: 447 /// // A is an alloca with no stores so far 448 /// for (...) { 449 /// int t = *A; 450 /// if (!first_iteration) 451 /// use(t); 452 /// *A = 42; 453 /// } 454 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 455 LargeBlockInfo &LBI, 456 const DataLayout &DL, 457 DominatorTree &DT, 458 AssumptionCache *AC) { 459 // The trickiest case to handle is when we have large blocks. Because of this, 460 // this code is optimized assuming that large blocks happen. This does not 461 // significantly pessimize the small block case. This uses LargeBlockInfo to 462 // make it efficient to get the index of various operations in the block. 463 464 // Walk the use-def list of the alloca, getting the locations of all stores. 465 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 466 StoresByIndexTy StoresByIndex; 467 468 for (User *U : AI->users()) 469 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 470 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 471 472 // Sort the stores by their index, making it efficient to do a lookup with a 473 // binary search. 474 llvm::sort(StoresByIndex, less_first()); 475 476 // Walk all of the loads from this alloca, replacing them with the nearest 477 // store above them, if any. 478 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 479 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 480 if (!LI) 481 continue; 482 483 unsigned LoadIdx = LBI.getInstructionIndex(LI); 484 485 // Find the nearest store that has a lower index than this load. 486 StoresByIndexTy::iterator I = llvm::lower_bound( 487 StoresByIndex, 488 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 489 less_first()); 490 if (I == StoresByIndex.begin()) { 491 if (StoresByIndex.empty()) 492 // If there are no stores, the load takes the undef value. 493 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 494 else 495 // There is no store before this load, bail out (load may be affected 496 // by the following stores - see main comment). 497 return false; 498 } else { 499 // Otherwise, there was a store before this load, the load takes its value. 500 // Note, if the load was marked as nonnull we don't want to lose that 501 // information when we erase it. So we preserve it with an assume. 502 Value *ReplVal = std::prev(I)->second->getOperand(0); 503 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 504 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 505 addAssumeNonNull(AC, LI); 506 507 // If the replacement value is the load, this must occur in unreachable 508 // code. 509 if (ReplVal == LI) 510 ReplVal = UndefValue::get(LI->getType()); 511 512 LI->replaceAllUsesWith(ReplVal); 513 } 514 515 LI->eraseFromParent(); 516 LBI.deleteValue(LI); 517 } 518 519 // Remove the (now dead) stores and alloca. 520 while (!AI->use_empty()) { 521 StoreInst *SI = cast<StoreInst>(AI->user_back()); 522 // Record debuginfo for the store before removing it. 523 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 524 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 525 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 526 } 527 SI->eraseFromParent(); 528 LBI.deleteValue(SI); 529 } 530 531 AI->eraseFromParent(); 532 LBI.deleteValue(AI); 533 534 // The alloca's debuginfo can be removed as well. 535 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) { 536 DII->eraseFromParent(); 537 LBI.deleteValue(DII); 538 } 539 540 ++NumLocalPromoted; 541 return true; 542 } 543 544 void PromoteMem2Reg::run() { 545 Function &F = *DT.getRoot()->getParent(); 546 547 AllocaDbgDeclares.resize(Allocas.size()); 548 549 AllocaInfo Info; 550 LargeBlockInfo LBI; 551 ForwardIDFCalculator IDF(DT); 552 553 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 554 AllocaInst *AI = Allocas[AllocaNum]; 555 556 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 557 assert(AI->getParent()->getParent() == &F && 558 "All allocas should be in the same function, which is same as DF!"); 559 560 removeLifetimeIntrinsicUsers(AI); 561 562 if (AI->use_empty()) { 563 // If there are no uses of the alloca, just delete it now. 564 AI->eraseFromParent(); 565 566 // Remove the alloca from the Allocas list, since it has been processed 567 RemoveFromAllocasList(AllocaNum); 568 ++NumDeadAlloca; 569 continue; 570 } 571 572 // Calculate the set of read and write-locations for each alloca. This is 573 // analogous to finding the 'uses' and 'definitions' of each variable. 574 Info.AnalyzeAlloca(AI); 575 576 // If there is only a single store to this value, replace any loads of 577 // it that are directly dominated by the definition with the value stored. 578 if (Info.DefiningBlocks.size() == 1) { 579 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 580 // The alloca has been processed, move on. 581 RemoveFromAllocasList(AllocaNum); 582 ++NumSingleStore; 583 continue; 584 } 585 } 586 587 // If the alloca is only read and written in one basic block, just perform a 588 // linear sweep over the block to eliminate it. 589 if (Info.OnlyUsedInOneBlock && 590 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 591 // The alloca has been processed, move on. 592 RemoveFromAllocasList(AllocaNum); 593 continue; 594 } 595 596 // If we haven't computed a numbering for the BB's in the function, do so 597 // now. 598 if (BBNumbers.empty()) { 599 unsigned ID = 0; 600 for (auto &BB : F) 601 BBNumbers[&BB] = ID++; 602 } 603 604 // Remember the dbg.declare intrinsic describing this alloca, if any. 605 if (!Info.DbgDeclares.empty()) 606 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 607 608 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 609 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 610 611 // At this point, we're committed to promoting the alloca using IDF's, and 612 // the standard SSA construction algorithm. Determine which blocks need PHI 613 // nodes and see if we can optimize out some work by avoiding insertion of 614 // dead phi nodes. 615 616 // Unique the set of defining blocks for efficient lookup. 617 SmallPtrSet<BasicBlock *, 32> DefBlocks; 618 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 619 620 // Determine which blocks the value is live in. These are blocks which lead 621 // to uses. 622 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 623 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 624 625 // At this point, we're committed to promoting the alloca using IDF's, and 626 // the standard SSA construction algorithm. Determine which blocks need phi 627 // nodes and see if we can optimize out some work by avoiding insertion of 628 // dead phi nodes. 629 IDF.setLiveInBlocks(LiveInBlocks); 630 IDF.setDefiningBlocks(DefBlocks); 631 SmallVector<BasicBlock *, 32> PHIBlocks; 632 IDF.calculate(PHIBlocks); 633 if (PHIBlocks.size() > 1) 634 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 635 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 636 }); 637 638 unsigned CurrentVersion = 0; 639 for (BasicBlock *BB : PHIBlocks) 640 QueuePhiNode(BB, AllocaNum, CurrentVersion); 641 } 642 643 if (Allocas.empty()) 644 return; // All of the allocas must have been trivial! 645 646 LBI.clear(); 647 648 // Set the incoming values for the basic block to be null values for all of 649 // the alloca's. We do this in case there is a load of a value that has not 650 // been stored yet. In this case, it will get this null value. 651 RenamePassData::ValVector Values(Allocas.size()); 652 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 653 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 654 655 // When handling debug info, treat all incoming values as if they have unknown 656 // locations until proven otherwise. 657 RenamePassData::LocationVector Locations(Allocas.size()); 658 659 // Walks all basic blocks in the function performing the SSA rename algorithm 660 // and inserting the phi nodes we marked as necessary 661 std::vector<RenamePassData> RenamePassWorkList; 662 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 663 std::move(Locations)); 664 do { 665 RenamePassData RPD = std::move(RenamePassWorkList.back()); 666 RenamePassWorkList.pop_back(); 667 // RenamePass may add new worklist entries. 668 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 669 } while (!RenamePassWorkList.empty()); 670 671 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 672 Visited.clear(); 673 674 // Remove the allocas themselves from the function. 675 for (Instruction *A : Allocas) { 676 // If there are any uses of the alloca instructions left, they must be in 677 // unreachable basic blocks that were not processed by walking the dominator 678 // tree. Just delete the users now. 679 if (!A->use_empty()) 680 A->replaceAllUsesWith(UndefValue::get(A->getType())); 681 A->eraseFromParent(); 682 } 683 684 // Remove alloca's dbg.declare instrinsics from the function. 685 for (auto &Declares : AllocaDbgDeclares) 686 for (auto *DII : Declares) 687 DII->eraseFromParent(); 688 689 // Loop over all of the PHI nodes and see if there are any that we can get 690 // rid of because they merge all of the same incoming values. This can 691 // happen due to undef values coming into the PHI nodes. This process is 692 // iterative, because eliminating one PHI node can cause others to be removed. 693 bool EliminatedAPHI = true; 694 while (EliminatedAPHI) { 695 EliminatedAPHI = false; 696 697 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 698 // simplify and RAUW them as we go. If it was not, we could add uses to 699 // the values we replace with in a non-deterministic order, thus creating 700 // non-deterministic def->use chains. 701 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 702 I = NewPhiNodes.begin(), 703 E = NewPhiNodes.end(); 704 I != E;) { 705 PHINode *PN = I->second; 706 707 // If this PHI node merges one value and/or undefs, get the value. 708 if (Value *V = SimplifyInstruction(PN, SQ)) { 709 PN->replaceAllUsesWith(V); 710 PN->eraseFromParent(); 711 NewPhiNodes.erase(I++); 712 EliminatedAPHI = true; 713 continue; 714 } 715 ++I; 716 } 717 } 718 719 // At this point, the renamer has added entries to PHI nodes for all reachable 720 // code. Unfortunately, there may be unreachable blocks which the renamer 721 // hasn't traversed. If this is the case, the PHI nodes may not 722 // have incoming values for all predecessors. Loop over all PHI nodes we have 723 // created, inserting undef values if they are missing any incoming values. 724 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 725 I = NewPhiNodes.begin(), 726 E = NewPhiNodes.end(); 727 I != E; ++I) { 728 // We want to do this once per basic block. As such, only process a block 729 // when we find the PHI that is the first entry in the block. 730 PHINode *SomePHI = I->second; 731 BasicBlock *BB = SomePHI->getParent(); 732 if (&BB->front() != SomePHI) 733 continue; 734 735 // Only do work here if there the PHI nodes are missing incoming values. We 736 // know that all PHI nodes that were inserted in a block will have the same 737 // number of incoming values, so we can just check any of them. 738 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 739 continue; 740 741 // Get the preds for BB. 742 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 743 744 // Ok, now we know that all of the PHI nodes are missing entries for some 745 // basic blocks. Start by sorting the incoming predecessors for efficient 746 // access. 747 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 748 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 749 }; 750 llvm::sort(Preds, CompareBBNumbers); 751 752 // Now we loop through all BB's which have entries in SomePHI and remove 753 // them from the Preds list. 754 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 755 // Do a log(n) search of the Preds list for the entry we want. 756 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 757 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 758 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 759 "PHI node has entry for a block which is not a predecessor!"); 760 761 // Remove the entry 762 Preds.erase(EntIt); 763 } 764 765 // At this point, the blocks left in the preds list must have dummy 766 // entries inserted into every PHI nodes for the block. Update all the phi 767 // nodes in this block that we are inserting (there could be phis before 768 // mem2reg runs). 769 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 770 BasicBlock::iterator BBI = BB->begin(); 771 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 772 SomePHI->getNumIncomingValues() == NumBadPreds) { 773 Value *UndefVal = UndefValue::get(SomePHI->getType()); 774 for (BasicBlock *Pred : Preds) 775 SomePHI->addIncoming(UndefVal, Pred); 776 } 777 } 778 779 NewPhiNodes.clear(); 780 } 781 782 /// Determine which blocks the value is live in. 783 /// 784 /// These are blocks which lead to uses. Knowing this allows us to avoid 785 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 786 /// inserted phi nodes would be dead). 787 void PromoteMem2Reg::ComputeLiveInBlocks( 788 AllocaInst *AI, AllocaInfo &Info, 789 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 790 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 791 // To determine liveness, we must iterate through the predecessors of blocks 792 // where the def is live. Blocks are added to the worklist if we need to 793 // check their predecessors. Start with all the using blocks. 794 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 795 Info.UsingBlocks.end()); 796 797 // If any of the using blocks is also a definition block, check to see if the 798 // definition occurs before or after the use. If it happens before the use, 799 // the value isn't really live-in. 800 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 801 BasicBlock *BB = LiveInBlockWorklist[i]; 802 if (!DefBlocks.count(BB)) 803 continue; 804 805 // Okay, this is a block that both uses and defines the value. If the first 806 // reference to the alloca is a def (store), then we know it isn't live-in. 807 for (BasicBlock::iterator I = BB->begin();; ++I) { 808 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 809 if (SI->getOperand(1) != AI) 810 continue; 811 812 // We found a store to the alloca before a load. The alloca is not 813 // actually live-in here. 814 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 815 LiveInBlockWorklist.pop_back(); 816 --i; 817 --e; 818 break; 819 } 820 821 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 822 if (LI->getOperand(0) != AI) 823 continue; 824 825 // Okay, we found a load before a store to the alloca. It is actually 826 // live into this block. 827 break; 828 } 829 } 830 } 831 832 // Now that we have a set of blocks where the phi is live-in, recursively add 833 // their predecessors until we find the full region the value is live. 834 while (!LiveInBlockWorklist.empty()) { 835 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 836 837 // The block really is live in here, insert it into the set. If already in 838 // the set, then it has already been processed. 839 if (!LiveInBlocks.insert(BB).second) 840 continue; 841 842 // Since the value is live into BB, it is either defined in a predecessor or 843 // live into it to. Add the preds to the worklist unless they are a 844 // defining block. 845 for (BasicBlock *P : predecessors(BB)) { 846 // The value is not live into a predecessor if it defines the value. 847 if (DefBlocks.count(P)) 848 continue; 849 850 // Otherwise it is, add to the worklist. 851 LiveInBlockWorklist.push_back(P); 852 } 853 } 854 } 855 856 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 857 /// 858 /// Returns true if there wasn't already a phi-node for that variable 859 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 860 unsigned &Version) { 861 // Look up the basic-block in question. 862 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 863 864 // If the BB already has a phi node added for the i'th alloca then we're done! 865 if (PN) 866 return false; 867 868 // Create a PhiNode using the dereferenced type... and add the phi-node to the 869 // BasicBlock. 870 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 871 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 872 &BB->front()); 873 ++NumPHIInsert; 874 PhiToAllocaMap[PN] = AllocaNo; 875 return true; 876 } 877 878 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 879 /// create a merged location incorporating \p DL, or to set \p DL directly. 880 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 881 bool ApplyMergedLoc) { 882 if (ApplyMergedLoc) 883 PN->applyMergedLocation(PN->getDebugLoc(), DL); 884 else 885 PN->setDebugLoc(DL); 886 } 887 888 /// Recursively traverse the CFG of the function, renaming loads and 889 /// stores to the allocas which we are promoting. 890 /// 891 /// IncomingVals indicates what value each Alloca contains on exit from the 892 /// predecessor block Pred. 893 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 894 RenamePassData::ValVector &IncomingVals, 895 RenamePassData::LocationVector &IncomingLocs, 896 std::vector<RenamePassData> &Worklist) { 897 NextIteration: 898 // If we are inserting any phi nodes into this BB, they will already be in the 899 // block. 900 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 901 // If we have PHI nodes to update, compute the number of edges from Pred to 902 // BB. 903 if (PhiToAllocaMap.count(APN)) { 904 // We want to be able to distinguish between PHI nodes being inserted by 905 // this invocation of mem2reg from those phi nodes that already existed in 906 // the IR before mem2reg was run. We determine that APN is being inserted 907 // because it is missing incoming edges. All other PHI nodes being 908 // inserted by this pass of mem2reg will have the same number of incoming 909 // operands so far. Remember this count. 910 unsigned NewPHINumOperands = APN->getNumOperands(); 911 912 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 913 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 914 915 // Add entries for all the phis. 916 BasicBlock::iterator PNI = BB->begin(); 917 do { 918 unsigned AllocaNo = PhiToAllocaMap[APN]; 919 920 // Update the location of the phi node. 921 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 922 APN->getNumIncomingValues() > 0); 923 924 // Add N incoming values to the PHI node. 925 for (unsigned i = 0; i != NumEdges; ++i) 926 APN->addIncoming(IncomingVals[AllocaNo], Pred); 927 928 // The currently active variable for this block is now the PHI. 929 IncomingVals[AllocaNo] = APN; 930 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 931 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 932 933 // Get the next phi node. 934 ++PNI; 935 APN = dyn_cast<PHINode>(PNI); 936 if (!APN) 937 break; 938 939 // Verify that it is missing entries. If not, it is not being inserted 940 // by this mem2reg invocation so we want to ignore it. 941 } while (APN->getNumOperands() == NewPHINumOperands); 942 } 943 } 944 945 // Don't revisit blocks. 946 if (!Visited.insert(BB).second) 947 return; 948 949 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 950 Instruction *I = &*II++; // get the instruction, increment iterator 951 952 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 953 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 954 if (!Src) 955 continue; 956 957 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 958 if (AI == AllocaLookup.end()) 959 continue; 960 961 Value *V = IncomingVals[AI->second]; 962 963 // If the load was marked as nonnull we don't want to lose 964 // that information when we erase this Load. So we preserve 965 // it with an assume. 966 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 967 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 968 addAssumeNonNull(AC, LI); 969 970 // Anything using the load now uses the current value. 971 LI->replaceAllUsesWith(V); 972 BB->getInstList().erase(LI); 973 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 974 // Delete this instruction and mark the name as the current holder of the 975 // value 976 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 977 if (!Dest) 978 continue; 979 980 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 981 if (ai == AllocaLookup.end()) 982 continue; 983 984 // what value were we writing? 985 unsigned AllocaNo = ai->second; 986 IncomingVals[AllocaNo] = SI->getOperand(0); 987 988 // Record debuginfo for the store before removing it. 989 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 990 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second]) 991 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 992 BB->getInstList().erase(SI); 993 } 994 } 995 996 // 'Recurse' to our successors. 997 succ_iterator I = succ_begin(BB), E = succ_end(BB); 998 if (I == E) 999 return; 1000 1001 // Keep track of the successors so we don't visit the same successor twice 1002 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1003 1004 // Handle the first successor without using the worklist. 1005 VisitedSuccs.insert(*I); 1006 Pred = BB; 1007 BB = *I; 1008 ++I; 1009 1010 for (; I != E; ++I) 1011 if (VisitedSuccs.insert(*I).second) 1012 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1013 1014 goto NextIteration; 1015 } 1016 1017 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1018 AssumptionCache *AC) { 1019 // If there is nothing to do, bail out... 1020 if (Allocas.empty()) 1021 return; 1022 1023 PromoteMem2Reg(Allocas, DT, AC).run(); 1024 } 1025