1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasSetTracker.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "mem2reg" 46 47 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 48 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 49 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 50 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 51 52 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 53 // FIXME: If the memory unit is of pointer or integer type, we can permit 54 // assignments to subsections of the memory unit. 55 unsigned AS = AI->getType()->getAddressSpace(); 56 57 // Only allow direct and non-volatile loads and stores... 58 for (const User *U : AI->users()) { 59 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 60 // Note that atomic loads can be transformed; atomic semantics do 61 // not have any meaning for a local alloca. 62 if (LI->isVolatile()) 63 return false; 64 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 65 if (SI->getOperand(0) == AI) 66 return false; // Don't allow a store OF the AI, only INTO the AI. 67 // Note that atomic stores can be transformed; atomic semantics do 68 // not have any meaning for a local alloca. 69 if (SI->isVolatile()) 70 return false; 71 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 72 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 73 II->getIntrinsicID() != Intrinsic::lifetime_end) 74 return false; 75 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 76 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 77 return false; 78 if (!onlyUsedByLifetimeMarkers(BCI)) 79 return false; 80 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 81 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 82 return false; 83 if (!GEPI->hasAllZeroIndices()) 84 return false; 85 if (!onlyUsedByLifetimeMarkers(GEPI)) 86 return false; 87 } else { 88 return false; 89 } 90 } 91 92 return true; 93 } 94 95 namespace { 96 97 struct AllocaInfo { 98 SmallVector<BasicBlock *, 32> DefiningBlocks; 99 SmallVector<BasicBlock *, 32> UsingBlocks; 100 101 StoreInst *OnlyStore; 102 BasicBlock *OnlyBlock; 103 bool OnlyUsedInOneBlock; 104 105 Value *AllocaPointerVal; 106 DbgDeclareInst *DbgDeclare; 107 108 void clear() { 109 DefiningBlocks.clear(); 110 UsingBlocks.clear(); 111 OnlyStore = nullptr; 112 OnlyBlock = nullptr; 113 OnlyUsedInOneBlock = true; 114 AllocaPointerVal = nullptr; 115 DbgDeclare = nullptr; 116 } 117 118 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 119 /// by the rest of the pass to reason about the uses of this alloca. 120 void AnalyzeAlloca(AllocaInst *AI) { 121 clear(); 122 123 // As we scan the uses of the alloca instruction, keep track of stores, 124 // and decide whether all of the loads and stores to the alloca are within 125 // the same basic block. 126 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 127 Instruction *User = cast<Instruction>(*UI++); 128 129 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 130 // Remember the basic blocks which define new values for the alloca 131 DefiningBlocks.push_back(SI->getParent()); 132 AllocaPointerVal = SI->getOperand(0); 133 OnlyStore = SI; 134 } else { 135 LoadInst *LI = cast<LoadInst>(User); 136 // Otherwise it must be a load instruction, keep track of variable 137 // reads. 138 UsingBlocks.push_back(LI->getParent()); 139 AllocaPointerVal = LI; 140 } 141 142 if (OnlyUsedInOneBlock) { 143 if (!OnlyBlock) 144 OnlyBlock = User->getParent(); 145 else if (OnlyBlock != User->getParent()) 146 OnlyUsedInOneBlock = false; 147 } 148 } 149 150 DbgDeclare = FindAllocaDbgDeclare(AI); 151 } 152 }; 153 154 // Data package used by RenamePass() 155 class RenamePassData { 156 public: 157 typedef std::vector<Value *> ValVector; 158 159 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} 160 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) 161 : BB(B), Pred(P), Values(V) {} 162 BasicBlock *BB; 163 BasicBlock *Pred; 164 ValVector Values; 165 166 void swap(RenamePassData &RHS) { 167 std::swap(BB, RHS.BB); 168 std::swap(Pred, RHS.Pred); 169 Values.swap(RHS.Values); 170 } 171 }; 172 173 /// \brief This assigns and keeps a per-bb relative ordering of load/store 174 /// instructions in the block that directly load or store an alloca. 175 /// 176 /// This functionality is important because it avoids scanning large basic 177 /// blocks multiple times when promoting many allocas in the same block. 178 class LargeBlockInfo { 179 /// \brief For each instruction that we track, keep the index of the 180 /// instruction. 181 /// 182 /// The index starts out as the number of the instruction from the start of 183 /// the block. 184 DenseMap<const Instruction *, unsigned> InstNumbers; 185 186 public: 187 188 /// This code only looks at accesses to allocas. 189 static bool isInterestingInstruction(const Instruction *I) { 190 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 191 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 192 } 193 194 /// Get or calculate the index of the specified instruction. 195 unsigned getInstructionIndex(const Instruction *I) { 196 assert(isInterestingInstruction(I) && 197 "Not a load/store to/from an alloca?"); 198 199 // If we already have this instruction number, return it. 200 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 201 if (It != InstNumbers.end()) 202 return It->second; 203 204 // Scan the whole block to get the instruction. This accumulates 205 // information for every interesting instruction in the block, in order to 206 // avoid gratuitus rescans. 207 const BasicBlock *BB = I->getParent(); 208 unsigned InstNo = 0; 209 for (const Instruction &BBI : *BB) 210 if (isInterestingInstruction(&BBI)) 211 InstNumbers[&BBI] = InstNo++; 212 It = InstNumbers.find(I); 213 214 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 215 return It->second; 216 } 217 218 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 219 220 void clear() { InstNumbers.clear(); } 221 }; 222 223 struct PromoteMem2Reg { 224 /// The alloca instructions being promoted. 225 std::vector<AllocaInst *> Allocas; 226 DominatorTree &DT; 227 DIBuilder DIB; 228 229 /// An AliasSetTracker object to update. If null, don't update it. 230 AliasSetTracker *AST; 231 232 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 233 AssumptionCache *AC; 234 235 /// Reverse mapping of Allocas. 236 DenseMap<AllocaInst *, unsigned> AllocaLookup; 237 238 /// \brief The PhiNodes we're adding. 239 /// 240 /// That map is used to simplify some Phi nodes as we iterate over it, so 241 /// it should have deterministic iterators. We could use a MapVector, but 242 /// since we already maintain a map from BasicBlock* to a stable numbering 243 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 244 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 245 246 /// For each PHI node, keep track of which entry in Allocas it corresponds 247 /// to. 248 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 249 250 /// If we are updating an AliasSetTracker, then for each alloca that is of 251 /// pointer type, we keep track of what to copyValue to the inserted PHI 252 /// nodes here. 253 std::vector<Value *> PointerAllocaValues; 254 255 /// For each alloca, we keep track of the dbg.declare intrinsic that 256 /// describes it, if any, so that we can convert it to a dbg.value 257 /// intrinsic if the alloca gets promoted. 258 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; 259 260 /// The set of basic blocks the renamer has already visited. 261 /// 262 SmallPtrSet<BasicBlock *, 16> Visited; 263 264 /// Contains a stable numbering of basic blocks to avoid non-determinstic 265 /// behavior. 266 DenseMap<BasicBlock *, unsigned> BBNumbers; 267 268 /// Lazily compute the number of predecessors a block has. 269 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 270 271 public: 272 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 273 AliasSetTracker *AST, AssumptionCache *AC) 274 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 275 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 276 AST(AST), AC(AC) {} 277 278 void run(); 279 280 private: 281 void RemoveFromAllocasList(unsigned &AllocaIdx) { 282 Allocas[AllocaIdx] = Allocas.back(); 283 Allocas.pop_back(); 284 --AllocaIdx; 285 } 286 287 unsigned getNumPreds(const BasicBlock *BB) { 288 unsigned &NP = BBNumPreds[BB]; 289 if (NP == 0) 290 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 291 return NP - 1; 292 } 293 294 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 295 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 296 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 297 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 298 RenamePassData::ValVector &IncVals, 299 std::vector<RenamePassData> &Worklist); 300 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 301 }; 302 303 } // end of anonymous namespace 304 305 /// Given a LoadInst LI this adds assume(LI != null) after it. 306 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 307 Function *AssumeIntrinsic = 308 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 309 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 310 Constant::getNullValue(LI->getType())); 311 LoadNotNull->insertAfter(LI); 312 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 313 CI->insertAfter(LoadNotNull); 314 AC->registerAssumption(CI); 315 } 316 317 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 318 // Knowing that this alloca is promotable, we know that it's safe to kill all 319 // instructions except for load and store. 320 321 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 322 Instruction *I = cast<Instruction>(*UI); 323 ++UI; 324 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 325 continue; 326 327 if (!I->getType()->isVoidTy()) { 328 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 329 // Follow the use/def chain to erase them now instead of leaving it for 330 // dead code elimination later. 331 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 332 Instruction *Inst = cast<Instruction>(*UUI); 333 ++UUI; 334 Inst->eraseFromParent(); 335 } 336 } 337 I->eraseFromParent(); 338 } 339 } 340 341 /// \brief Rewrite as many loads as possible given a single store. 342 /// 343 /// When there is only a single store, we can use the domtree to trivially 344 /// replace all of the dominated loads with the stored value. Do so, and return 345 /// true if this has successfully promoted the alloca entirely. If this returns 346 /// false there were some loads which were not dominated by the single store 347 /// and thus must be phi-ed with undef. We fall back to the standard alloca 348 /// promotion algorithm in that case. 349 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 350 LargeBlockInfo &LBI, DominatorTree &DT, 351 AliasSetTracker *AST, 352 AssumptionCache *AC) { 353 StoreInst *OnlyStore = Info.OnlyStore; 354 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 355 BasicBlock *StoreBB = OnlyStore->getParent(); 356 int StoreIndex = -1; 357 358 // Clear out UsingBlocks. We will reconstruct it here if needed. 359 Info.UsingBlocks.clear(); 360 361 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 362 Instruction *UserInst = cast<Instruction>(*UI++); 363 if (!isa<LoadInst>(UserInst)) { 364 assert(UserInst == OnlyStore && "Should only have load/stores"); 365 continue; 366 } 367 LoadInst *LI = cast<LoadInst>(UserInst); 368 369 // Okay, if we have a load from the alloca, we want to replace it with the 370 // only value stored to the alloca. We can do this if the value is 371 // dominated by the store. If not, we use the rest of the mem2reg machinery 372 // to insert the phi nodes as needed. 373 if (!StoringGlobalVal) { // Non-instructions are always dominated. 374 if (LI->getParent() == StoreBB) { 375 // If we have a use that is in the same block as the store, compare the 376 // indices of the two instructions to see which one came first. If the 377 // load came before the store, we can't handle it. 378 if (StoreIndex == -1) 379 StoreIndex = LBI.getInstructionIndex(OnlyStore); 380 381 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 382 // Can't handle this load, bail out. 383 Info.UsingBlocks.push_back(StoreBB); 384 continue; 385 } 386 387 } else if (LI->getParent() != StoreBB && 388 !DT.dominates(StoreBB, LI->getParent())) { 389 // If the load and store are in different blocks, use BB dominance to 390 // check their relationships. If the store doesn't dom the use, bail 391 // out. 392 Info.UsingBlocks.push_back(LI->getParent()); 393 continue; 394 } 395 } 396 397 // Otherwise, we *can* safely rewrite this load. 398 Value *ReplVal = OnlyStore->getOperand(0); 399 // If the replacement value is the load, this must occur in unreachable 400 // code. 401 if (ReplVal == LI) 402 ReplVal = UndefValue::get(LI->getType()); 403 404 // If the load was marked as nonnull we don't want to lose 405 // that information when we erase this Load. So we preserve 406 // it with an assume. 407 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 408 !llvm::isKnownNonNullAt(ReplVal, LI, &DT)) 409 addAssumeNonNull(AC, LI); 410 411 LI->replaceAllUsesWith(ReplVal); 412 if (AST && LI->getType()->isPointerTy()) 413 AST->deleteValue(LI); 414 LI->eraseFromParent(); 415 LBI.deleteValue(LI); 416 } 417 418 // Finally, after the scan, check to see if the store is all that is left. 419 if (!Info.UsingBlocks.empty()) 420 return false; // If not, we'll have to fall back for the remainder. 421 422 // Record debuginfo for the store and remove the declaration's 423 // debuginfo. 424 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 425 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 426 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); 427 DDI->eraseFromParent(); 428 LBI.deleteValue(DDI); 429 } 430 // Remove the (now dead) store and alloca. 431 Info.OnlyStore->eraseFromParent(); 432 LBI.deleteValue(Info.OnlyStore); 433 434 if (AST) 435 AST->deleteValue(AI); 436 AI->eraseFromParent(); 437 LBI.deleteValue(AI); 438 return true; 439 } 440 441 /// Many allocas are only used within a single basic block. If this is the 442 /// case, avoid traversing the CFG and inserting a lot of potentially useless 443 /// PHI nodes by just performing a single linear pass over the basic block 444 /// using the Alloca. 445 /// 446 /// If we cannot promote this alloca (because it is read before it is written), 447 /// return false. This is necessary in cases where, due to control flow, the 448 /// alloca is undefined only on some control flow paths. e.g. code like 449 /// this is correct in LLVM IR: 450 /// // A is an alloca with no stores so far 451 /// for (...) { 452 /// int t = *A; 453 /// if (!first_iteration) 454 /// use(t); 455 /// *A = 42; 456 /// } 457 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 458 LargeBlockInfo &LBI, 459 AliasSetTracker *AST, 460 DominatorTree &DT, 461 AssumptionCache *AC) { 462 // The trickiest case to handle is when we have large blocks. Because of this, 463 // this code is optimized assuming that large blocks happen. This does not 464 // significantly pessimize the small block case. This uses LargeBlockInfo to 465 // make it efficient to get the index of various operations in the block. 466 467 // Walk the use-def list of the alloca, getting the locations of all stores. 468 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; 469 StoresByIndexTy StoresByIndex; 470 471 for (User *U : AI->users()) 472 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 473 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 474 475 // Sort the stores by their index, making it efficient to do a lookup with a 476 // binary search. 477 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 478 479 // Walk all of the loads from this alloca, replacing them with the nearest 480 // store above them, if any. 481 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 482 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 483 if (!LI) 484 continue; 485 486 unsigned LoadIdx = LBI.getInstructionIndex(LI); 487 488 // Find the nearest store that has a lower index than this load. 489 StoresByIndexTy::iterator I = 490 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 491 std::make_pair(LoadIdx, 492 static_cast<StoreInst *>(nullptr)), 493 less_first()); 494 if (I == StoresByIndex.begin()) { 495 if (StoresByIndex.empty()) 496 // If there are no stores, the load takes the undef value. 497 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 498 else 499 // There is no store before this load, bail out (load may be affected 500 // by the following stores - see main comment). 501 return false; 502 } else { 503 // Otherwise, there was a store before this load, the load takes its value. 504 // Note, if the load was marked as nonnull we don't want to lose that 505 // information when we erase it. So we preserve it with an assume. 506 Value *ReplVal = std::prev(I)->second->getOperand(0); 507 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 508 !llvm::isKnownNonNullAt(ReplVal, LI, &DT)) 509 addAssumeNonNull(AC, LI); 510 511 LI->replaceAllUsesWith(ReplVal); 512 } 513 514 if (AST && LI->getType()->isPointerTy()) 515 AST->deleteValue(LI); 516 LI->eraseFromParent(); 517 LBI.deleteValue(LI); 518 } 519 520 // Remove the (now dead) stores and alloca. 521 while (!AI->use_empty()) { 522 StoreInst *SI = cast<StoreInst>(AI->user_back()); 523 // Record debuginfo for the store before removing it. 524 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 525 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 526 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 527 } 528 SI->eraseFromParent(); 529 LBI.deleteValue(SI); 530 } 531 532 if (AST) 533 AST->deleteValue(AI); 534 AI->eraseFromParent(); 535 LBI.deleteValue(AI); 536 537 // The alloca's debuginfo can be removed as well. 538 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 539 DDI->eraseFromParent(); 540 LBI.deleteValue(DDI); 541 } 542 543 ++NumLocalPromoted; 544 return true; 545 } 546 547 void PromoteMem2Reg::run() { 548 Function &F = *DT.getRoot()->getParent(); 549 550 if (AST) 551 PointerAllocaValues.resize(Allocas.size()); 552 AllocaDbgDeclares.resize(Allocas.size()); 553 554 AllocaInfo Info; 555 LargeBlockInfo LBI; 556 ForwardIDFCalculator IDF(DT); 557 558 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 559 AllocaInst *AI = Allocas[AllocaNum]; 560 561 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 562 assert(AI->getParent()->getParent() == &F && 563 "All allocas should be in the same function, which is same as DF!"); 564 565 removeLifetimeIntrinsicUsers(AI); 566 567 if (AI->use_empty()) { 568 // If there are no uses of the alloca, just delete it now. 569 if (AST) 570 AST->deleteValue(AI); 571 AI->eraseFromParent(); 572 573 // Remove the alloca from the Allocas list, since it has been processed 574 RemoveFromAllocasList(AllocaNum); 575 ++NumDeadAlloca; 576 continue; 577 } 578 579 // Calculate the set of read and write-locations for each alloca. This is 580 // analogous to finding the 'uses' and 'definitions' of each variable. 581 Info.AnalyzeAlloca(AI); 582 583 // If there is only a single store to this value, replace any loads of 584 // it that are directly dominated by the definition with the value stored. 585 if (Info.DefiningBlocks.size() == 1) { 586 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST, AC)) { 587 // The alloca has been processed, move on. 588 RemoveFromAllocasList(AllocaNum); 589 ++NumSingleStore; 590 continue; 591 } 592 } 593 594 // If the alloca is only read and written in one basic block, just perform a 595 // linear sweep over the block to eliminate it. 596 if (Info.OnlyUsedInOneBlock && 597 promoteSingleBlockAlloca(AI, Info, LBI, AST, DT, AC)) { 598 // The alloca has been processed, move on. 599 RemoveFromAllocasList(AllocaNum); 600 continue; 601 } 602 603 // If we haven't computed a numbering for the BB's in the function, do so 604 // now. 605 if (BBNumbers.empty()) { 606 unsigned ID = 0; 607 for (auto &BB : F) 608 BBNumbers[&BB] = ID++; 609 } 610 611 // If we have an AST to keep updated, remember some pointer value that is 612 // stored into the alloca. 613 if (AST) 614 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 615 616 // Remember the dbg.declare intrinsic describing this alloca, if any. 617 if (Info.DbgDeclare) 618 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; 619 620 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 621 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 622 623 // At this point, we're committed to promoting the alloca using IDF's, and 624 // the standard SSA construction algorithm. Determine which blocks need PHI 625 // nodes and see if we can optimize out some work by avoiding insertion of 626 // dead phi nodes. 627 628 629 // Unique the set of defining blocks for efficient lookup. 630 SmallPtrSet<BasicBlock *, 32> DefBlocks; 631 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 632 633 // Determine which blocks the value is live in. These are blocks which lead 634 // to uses. 635 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 636 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 637 638 // At this point, we're committed to promoting the alloca using IDF's, and 639 // the standard SSA construction algorithm. Determine which blocks need phi 640 // nodes and see if we can optimize out some work by avoiding insertion of 641 // dead phi nodes. 642 IDF.setLiveInBlocks(LiveInBlocks); 643 IDF.setDefiningBlocks(DefBlocks); 644 SmallVector<BasicBlock *, 32> PHIBlocks; 645 IDF.calculate(PHIBlocks); 646 if (PHIBlocks.size() > 1) 647 std::sort(PHIBlocks.begin(), PHIBlocks.end(), 648 [this](BasicBlock *A, BasicBlock *B) { 649 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 650 }); 651 652 unsigned CurrentVersion = 0; 653 for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i) 654 QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion); 655 } 656 657 if (Allocas.empty()) 658 return; // All of the allocas must have been trivial! 659 660 LBI.clear(); 661 662 // Set the incoming values for the basic block to be null values for all of 663 // the alloca's. We do this in case there is a load of a value that has not 664 // been stored yet. In this case, it will get this null value. 665 // 666 RenamePassData::ValVector Values(Allocas.size()); 667 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 668 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 669 670 // Walks all basic blocks in the function performing the SSA rename algorithm 671 // and inserting the phi nodes we marked as necessary 672 // 673 std::vector<RenamePassData> RenamePassWorkList; 674 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values)); 675 do { 676 RenamePassData RPD; 677 RPD.swap(RenamePassWorkList.back()); 678 RenamePassWorkList.pop_back(); 679 // RenamePass may add new worklist entries. 680 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 681 } while (!RenamePassWorkList.empty()); 682 683 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 684 Visited.clear(); 685 686 // Remove the allocas themselves from the function. 687 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 688 Instruction *A = Allocas[i]; 689 690 // If there are any uses of the alloca instructions left, they must be in 691 // unreachable basic blocks that were not processed by walking the dominator 692 // tree. Just delete the users now. 693 if (!A->use_empty()) 694 A->replaceAllUsesWith(UndefValue::get(A->getType())); 695 if (AST) 696 AST->deleteValue(A); 697 A->eraseFromParent(); 698 } 699 700 const DataLayout &DL = F.getParent()->getDataLayout(); 701 702 // Remove alloca's dbg.declare instrinsics from the function. 703 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) 704 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) 705 DDI->eraseFromParent(); 706 707 // Loop over all of the PHI nodes and see if there are any that we can get 708 // rid of because they merge all of the same incoming values. This can 709 // happen due to undef values coming into the PHI nodes. This process is 710 // iterative, because eliminating one PHI node can cause others to be removed. 711 bool EliminatedAPHI = true; 712 while (EliminatedAPHI) { 713 EliminatedAPHI = false; 714 715 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 716 // simplify and RAUW them as we go. If it was not, we could add uses to 717 // the values we replace with in a non-deterministic order, thus creating 718 // non-deterministic def->use chains. 719 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 720 I = NewPhiNodes.begin(), 721 E = NewPhiNodes.end(); 722 I != E;) { 723 PHINode *PN = I->second; 724 725 // If this PHI node merges one value and/or undefs, get the value. 726 if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) { 727 if (AST && PN->getType()->isPointerTy()) 728 AST->deleteValue(PN); 729 PN->replaceAllUsesWith(V); 730 PN->eraseFromParent(); 731 NewPhiNodes.erase(I++); 732 EliminatedAPHI = true; 733 continue; 734 } 735 ++I; 736 } 737 } 738 739 // At this point, the renamer has added entries to PHI nodes for all reachable 740 // code. Unfortunately, there may be unreachable blocks which the renamer 741 // hasn't traversed. If this is the case, the PHI nodes may not 742 // have incoming values for all predecessors. Loop over all PHI nodes we have 743 // created, inserting undef values if they are missing any incoming values. 744 // 745 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 746 I = NewPhiNodes.begin(), 747 E = NewPhiNodes.end(); 748 I != E; ++I) { 749 // We want to do this once per basic block. As such, only process a block 750 // when we find the PHI that is the first entry in the block. 751 PHINode *SomePHI = I->second; 752 BasicBlock *BB = SomePHI->getParent(); 753 if (&BB->front() != SomePHI) 754 continue; 755 756 // Only do work here if there the PHI nodes are missing incoming values. We 757 // know that all PHI nodes that were inserted in a block will have the same 758 // number of incoming values, so we can just check any of them. 759 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 760 continue; 761 762 // Get the preds for BB. 763 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 764 765 // Ok, now we know that all of the PHI nodes are missing entries for some 766 // basic blocks. Start by sorting the incoming predecessors for efficient 767 // access. 768 std::sort(Preds.begin(), Preds.end()); 769 770 // Now we loop through all BB's which have entries in SomePHI and remove 771 // them from the Preds list. 772 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 773 // Do a log(n) search of the Preds list for the entry we want. 774 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 775 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 776 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 777 "PHI node has entry for a block which is not a predecessor!"); 778 779 // Remove the entry 780 Preds.erase(EntIt); 781 } 782 783 // At this point, the blocks left in the preds list must have dummy 784 // entries inserted into every PHI nodes for the block. Update all the phi 785 // nodes in this block that we are inserting (there could be phis before 786 // mem2reg runs). 787 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 788 BasicBlock::iterator BBI = BB->begin(); 789 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 790 SomePHI->getNumIncomingValues() == NumBadPreds) { 791 Value *UndefVal = UndefValue::get(SomePHI->getType()); 792 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 793 SomePHI->addIncoming(UndefVal, Preds[pred]); 794 } 795 } 796 797 NewPhiNodes.clear(); 798 } 799 800 /// \brief Determine which blocks the value is live in. 801 /// 802 /// These are blocks which lead to uses. Knowing this allows us to avoid 803 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 804 /// inserted phi nodes would be dead). 805 void PromoteMem2Reg::ComputeLiveInBlocks( 806 AllocaInst *AI, AllocaInfo &Info, 807 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 808 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 809 810 // To determine liveness, we must iterate through the predecessors of blocks 811 // where the def is live. Blocks are added to the worklist if we need to 812 // check their predecessors. Start with all the using blocks. 813 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 814 Info.UsingBlocks.end()); 815 816 // If any of the using blocks is also a definition block, check to see if the 817 // definition occurs before or after the use. If it happens before the use, 818 // the value isn't really live-in. 819 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 820 BasicBlock *BB = LiveInBlockWorklist[i]; 821 if (!DefBlocks.count(BB)) 822 continue; 823 824 // Okay, this is a block that both uses and defines the value. If the first 825 // reference to the alloca is a def (store), then we know it isn't live-in. 826 for (BasicBlock::iterator I = BB->begin();; ++I) { 827 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 828 if (SI->getOperand(1) != AI) 829 continue; 830 831 // We found a store to the alloca before a load. The alloca is not 832 // actually live-in here. 833 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 834 LiveInBlockWorklist.pop_back(); 835 --i; 836 --e; 837 break; 838 } 839 840 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 841 if (LI->getOperand(0) != AI) 842 continue; 843 844 // Okay, we found a load before a store to the alloca. It is actually 845 // live into this block. 846 break; 847 } 848 } 849 } 850 851 // Now that we have a set of blocks where the phi is live-in, recursively add 852 // their predecessors until we find the full region the value is live. 853 while (!LiveInBlockWorklist.empty()) { 854 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 855 856 // The block really is live in here, insert it into the set. If already in 857 // the set, then it has already been processed. 858 if (!LiveInBlocks.insert(BB).second) 859 continue; 860 861 // Since the value is live into BB, it is either defined in a predecessor or 862 // live into it to. Add the preds to the worklist unless they are a 863 // defining block. 864 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 865 BasicBlock *P = *PI; 866 867 // The value is not live into a predecessor if it defines the value. 868 if (DefBlocks.count(P)) 869 continue; 870 871 // Otherwise it is, add to the worklist. 872 LiveInBlockWorklist.push_back(P); 873 } 874 } 875 } 876 877 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 878 /// 879 /// Returns true if there wasn't already a phi-node for that variable 880 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 881 unsigned &Version) { 882 // Look up the basic-block in question. 883 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 884 885 // If the BB already has a phi node added for the i'th alloca then we're done! 886 if (PN) 887 return false; 888 889 // Create a PhiNode using the dereferenced type... and add the phi-node to the 890 // BasicBlock. 891 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 892 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 893 &BB->front()); 894 ++NumPHIInsert; 895 PhiToAllocaMap[PN] = AllocaNo; 896 897 if (AST && PN->getType()->isPointerTy()) 898 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 899 900 return true; 901 } 902 903 /// \brief Recursively traverse the CFG of the function, renaming loads and 904 /// stores to the allocas which we are promoting. 905 /// 906 /// IncomingVals indicates what value each Alloca contains on exit from the 907 /// predecessor block Pred. 908 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 909 RenamePassData::ValVector &IncomingVals, 910 std::vector<RenamePassData> &Worklist) { 911 NextIteration: 912 // If we are inserting any phi nodes into this BB, they will already be in the 913 // block. 914 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 915 // If we have PHI nodes to update, compute the number of edges from Pred to 916 // BB. 917 if (PhiToAllocaMap.count(APN)) { 918 // We want to be able to distinguish between PHI nodes being inserted by 919 // this invocation of mem2reg from those phi nodes that already existed in 920 // the IR before mem2reg was run. We determine that APN is being inserted 921 // because it is missing incoming edges. All other PHI nodes being 922 // inserted by this pass of mem2reg will have the same number of incoming 923 // operands so far. Remember this count. 924 unsigned NewPHINumOperands = APN->getNumOperands(); 925 926 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 927 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 928 929 // Add entries for all the phis. 930 BasicBlock::iterator PNI = BB->begin(); 931 do { 932 unsigned AllocaNo = PhiToAllocaMap[APN]; 933 934 // Add N incoming values to the PHI node. 935 for (unsigned i = 0; i != NumEdges; ++i) 936 APN->addIncoming(IncomingVals[AllocaNo], Pred); 937 938 // The currently active variable for this block is now the PHI. 939 IncomingVals[AllocaNo] = APN; 940 if (DbgDeclareInst *DDI = AllocaDbgDeclares[AllocaNo]) 941 ConvertDebugDeclareToDebugValue(DDI, APN, DIB); 942 943 // Get the next phi node. 944 ++PNI; 945 APN = dyn_cast<PHINode>(PNI); 946 if (!APN) 947 break; 948 949 // Verify that it is missing entries. If not, it is not being inserted 950 // by this mem2reg invocation so we want to ignore it. 951 } while (APN->getNumOperands() == NewPHINumOperands); 952 } 953 } 954 955 // Don't revisit blocks. 956 if (!Visited.insert(BB).second) 957 return; 958 959 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 960 Instruction *I = &*II++; // get the instruction, increment iterator 961 962 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 963 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 964 if (!Src) 965 continue; 966 967 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 968 if (AI == AllocaLookup.end()) 969 continue; 970 971 Value *V = IncomingVals[AI->second]; 972 973 // If the load was marked as nonnull we don't want to lose 974 // that information when we erase this Load. So we preserve 975 // it with an assume. 976 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 977 !llvm::isKnownNonNullAt(V, LI, &DT)) 978 addAssumeNonNull(AC, LI); 979 980 // Anything using the load now uses the current value. 981 LI->replaceAllUsesWith(V); 982 if (AST && LI->getType()->isPointerTy()) 983 AST->deleteValue(LI); 984 BB->getInstList().erase(LI); 985 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 986 // Delete this instruction and mark the name as the current holder of the 987 // value 988 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 989 if (!Dest) 990 continue; 991 992 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 993 if (ai == AllocaLookup.end()) 994 continue; 995 996 // what value were we writing? 997 IncomingVals[ai->second] = SI->getOperand(0); 998 // Record debuginfo for the store before removing it. 999 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) 1000 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1001 BB->getInstList().erase(SI); 1002 } 1003 } 1004 1005 // 'Recurse' to our successors. 1006 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1007 if (I == E) 1008 return; 1009 1010 // Keep track of the successors so we don't visit the same successor twice 1011 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1012 1013 // Handle the first successor without using the worklist. 1014 VisitedSuccs.insert(*I); 1015 Pred = BB; 1016 BB = *I; 1017 ++I; 1018 1019 for (; I != E; ++I) 1020 if (VisitedSuccs.insert(*I).second) 1021 Worklist.emplace_back(*I, Pred, IncomingVals); 1022 1023 goto NextIteration; 1024 } 1025 1026 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1027 AliasSetTracker *AST, AssumptionCache *AC) { 1028 // If there is nothing to do, bail out... 1029 if (Allocas.empty()) 1030 return; 1031 1032 PromoteMem2Reg(Allocas, DT, AST, AC).run(); 1033 } 1034