1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "mem2reg" 45 46 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 47 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 48 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 49 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 50 51 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 52 // FIXME: If the memory unit is of pointer or integer type, we can permit 53 // assignments to subsections of the memory unit. 54 unsigned AS = AI->getType()->getAddressSpace(); 55 56 // Only allow direct and non-volatile loads and stores... 57 for (const User *U : AI->users()) { 58 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 59 // Note that atomic loads can be transformed; atomic semantics do 60 // not have any meaning for a local alloca. 61 if (LI->isVolatile()) 62 return false; 63 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 64 if (SI->getOperand(0) == AI) 65 return false; // Don't allow a store OF the AI, only INTO the AI. 66 // Note that atomic stores can be transformed; atomic semantics do 67 // not have any meaning for a local alloca. 68 if (SI->isVolatile()) 69 return false; 70 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 71 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 72 II->getIntrinsicID() != Intrinsic::lifetime_end) 73 return false; 74 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 75 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 76 return false; 77 if (!onlyUsedByLifetimeMarkers(BCI)) 78 return false; 79 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 80 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 81 return false; 82 if (!GEPI->hasAllZeroIndices()) 83 return false; 84 if (!onlyUsedByLifetimeMarkers(GEPI)) 85 return false; 86 } else { 87 return false; 88 } 89 } 90 91 return true; 92 } 93 94 namespace { 95 96 struct AllocaInfo { 97 SmallVector<BasicBlock *, 32> DefiningBlocks; 98 SmallVector<BasicBlock *, 32> UsingBlocks; 99 100 StoreInst *OnlyStore; 101 BasicBlock *OnlyBlock; 102 bool OnlyUsedInOneBlock; 103 104 Value *AllocaPointerVal; 105 DbgDeclareInst *DbgDeclare; 106 107 void clear() { 108 DefiningBlocks.clear(); 109 UsingBlocks.clear(); 110 OnlyStore = nullptr; 111 OnlyBlock = nullptr; 112 OnlyUsedInOneBlock = true; 113 AllocaPointerVal = nullptr; 114 DbgDeclare = nullptr; 115 } 116 117 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 118 /// by the rest of the pass to reason about the uses of this alloca. 119 void AnalyzeAlloca(AllocaInst *AI) { 120 clear(); 121 122 // As we scan the uses of the alloca instruction, keep track of stores, 123 // and decide whether all of the loads and stores to the alloca are within 124 // the same basic block. 125 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 126 Instruction *User = cast<Instruction>(*UI++); 127 128 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 129 // Remember the basic blocks which define new values for the alloca 130 DefiningBlocks.push_back(SI->getParent()); 131 AllocaPointerVal = SI->getOperand(0); 132 OnlyStore = SI; 133 } else { 134 LoadInst *LI = cast<LoadInst>(User); 135 // Otherwise it must be a load instruction, keep track of variable 136 // reads. 137 UsingBlocks.push_back(LI->getParent()); 138 AllocaPointerVal = LI; 139 } 140 141 if (OnlyUsedInOneBlock) { 142 if (!OnlyBlock) 143 OnlyBlock = User->getParent(); 144 else if (OnlyBlock != User->getParent()) 145 OnlyUsedInOneBlock = false; 146 } 147 } 148 149 DbgDeclare = FindAllocaDbgDeclare(AI); 150 } 151 }; 152 153 // Data package used by RenamePass() 154 class RenamePassData { 155 public: 156 typedef std::vector<Value *> ValVector; 157 158 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} 159 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) 160 : BB(B), Pred(P), Values(V) {} 161 BasicBlock *BB; 162 BasicBlock *Pred; 163 ValVector Values; 164 165 void swap(RenamePassData &RHS) { 166 std::swap(BB, RHS.BB); 167 std::swap(Pred, RHS.Pred); 168 Values.swap(RHS.Values); 169 } 170 }; 171 172 /// \brief This assigns and keeps a per-bb relative ordering of load/store 173 /// instructions in the block that directly load or store an alloca. 174 /// 175 /// This functionality is important because it avoids scanning large basic 176 /// blocks multiple times when promoting many allocas in the same block. 177 class LargeBlockInfo { 178 /// \brief For each instruction that we track, keep the index of the 179 /// instruction. 180 /// 181 /// The index starts out as the number of the instruction from the start of 182 /// the block. 183 DenseMap<const Instruction *, unsigned> InstNumbers; 184 185 public: 186 187 /// This code only looks at accesses to allocas. 188 static bool isInterestingInstruction(const Instruction *I) { 189 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 190 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 191 } 192 193 /// Get or calculate the index of the specified instruction. 194 unsigned getInstructionIndex(const Instruction *I) { 195 assert(isInterestingInstruction(I) && 196 "Not a load/store to/from an alloca?"); 197 198 // If we already have this instruction number, return it. 199 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 200 if (It != InstNumbers.end()) 201 return It->second; 202 203 // Scan the whole block to get the instruction. This accumulates 204 // information for every interesting instruction in the block, in order to 205 // avoid gratuitus rescans. 206 const BasicBlock *BB = I->getParent(); 207 unsigned InstNo = 0; 208 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; 209 ++BBI) 210 if (isInterestingInstruction(BBI)) 211 InstNumbers[BBI] = InstNo++; 212 It = InstNumbers.find(I); 213 214 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 215 return It->second; 216 } 217 218 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 219 220 void clear() { InstNumbers.clear(); } 221 }; 222 223 struct PromoteMem2Reg { 224 /// The alloca instructions being promoted. 225 std::vector<AllocaInst *> Allocas; 226 DominatorTree &DT; 227 DIBuilder DIB; 228 229 /// An AliasSetTracker object to update. If null, don't update it. 230 AliasSetTracker *AST; 231 232 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 233 AssumptionCache *AC; 234 235 /// Reverse mapping of Allocas. 236 DenseMap<AllocaInst *, unsigned> AllocaLookup; 237 238 /// \brief The PhiNodes we're adding. 239 /// 240 /// That map is used to simplify some Phi nodes as we iterate over it, so 241 /// it should have deterministic iterators. We could use a MapVector, but 242 /// since we already maintain a map from BasicBlock* to a stable numbering 243 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 244 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 245 246 /// For each PHI node, keep track of which entry in Allocas it corresponds 247 /// to. 248 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 249 250 /// If we are updating an AliasSetTracker, then for each alloca that is of 251 /// pointer type, we keep track of what to copyValue to the inserted PHI 252 /// nodes here. 253 std::vector<Value *> PointerAllocaValues; 254 255 /// For each alloca, we keep track of the dbg.declare intrinsic that 256 /// describes it, if any, so that we can convert it to a dbg.value 257 /// intrinsic if the alloca gets promoted. 258 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; 259 260 /// The set of basic blocks the renamer has already visited. 261 /// 262 SmallPtrSet<BasicBlock *, 16> Visited; 263 264 /// Contains a stable numbering of basic blocks to avoid non-determinstic 265 /// behavior. 266 DenseMap<BasicBlock *, unsigned> BBNumbers; 267 268 /// Lazily compute the number of predecessors a block has. 269 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 270 271 public: 272 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 273 AliasSetTracker *AST, AssumptionCache *AC) 274 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 275 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 276 AST(AST), AC(AC) {} 277 278 void run(); 279 280 private: 281 void RemoveFromAllocasList(unsigned &AllocaIdx) { 282 Allocas[AllocaIdx] = Allocas.back(); 283 Allocas.pop_back(); 284 --AllocaIdx; 285 } 286 287 unsigned getNumPreds(const BasicBlock *BB) { 288 unsigned &NP = BBNumPreds[BB]; 289 if (NP == 0) 290 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 291 return NP - 1; 292 } 293 294 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 295 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 296 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 297 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 298 RenamePassData::ValVector &IncVals, 299 std::vector<RenamePassData> &Worklist); 300 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 301 }; 302 303 } // end of anonymous namespace 304 305 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 306 // Knowing that this alloca is promotable, we know that it's safe to kill all 307 // instructions except for load and store. 308 309 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 310 Instruction *I = cast<Instruction>(*UI); 311 ++UI; 312 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 313 continue; 314 315 if (!I->getType()->isVoidTy()) { 316 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 317 // Follow the use/def chain to erase them now instead of leaving it for 318 // dead code elimination later. 319 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 320 Instruction *Inst = cast<Instruction>(*UUI); 321 ++UUI; 322 Inst->eraseFromParent(); 323 } 324 } 325 I->eraseFromParent(); 326 } 327 } 328 329 /// \brief Rewrite as many loads as possible given a single store. 330 /// 331 /// When there is only a single store, we can use the domtree to trivially 332 /// replace all of the dominated loads with the stored value. Do so, and return 333 /// true if this has successfully promoted the alloca entirely. If this returns 334 /// false there were some loads which were not dominated by the single store 335 /// and thus must be phi-ed with undef. We fall back to the standard alloca 336 /// promotion algorithm in that case. 337 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 338 LargeBlockInfo &LBI, 339 DominatorTree &DT, 340 AliasSetTracker *AST) { 341 StoreInst *OnlyStore = Info.OnlyStore; 342 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 343 BasicBlock *StoreBB = OnlyStore->getParent(); 344 int StoreIndex = -1; 345 346 // Clear out UsingBlocks. We will reconstruct it here if needed. 347 Info.UsingBlocks.clear(); 348 349 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 350 Instruction *UserInst = cast<Instruction>(*UI++); 351 if (!isa<LoadInst>(UserInst)) { 352 assert(UserInst == OnlyStore && "Should only have load/stores"); 353 continue; 354 } 355 LoadInst *LI = cast<LoadInst>(UserInst); 356 357 // Okay, if we have a load from the alloca, we want to replace it with the 358 // only value stored to the alloca. We can do this if the value is 359 // dominated by the store. If not, we use the rest of the mem2reg machinery 360 // to insert the phi nodes as needed. 361 if (!StoringGlobalVal) { // Non-instructions are always dominated. 362 if (LI->getParent() == StoreBB) { 363 // If we have a use that is in the same block as the store, compare the 364 // indices of the two instructions to see which one came first. If the 365 // load came before the store, we can't handle it. 366 if (StoreIndex == -1) 367 StoreIndex = LBI.getInstructionIndex(OnlyStore); 368 369 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 370 // Can't handle this load, bail out. 371 Info.UsingBlocks.push_back(StoreBB); 372 continue; 373 } 374 375 } else if (LI->getParent() != StoreBB && 376 !DT.dominates(StoreBB, LI->getParent())) { 377 // If the load and store are in different blocks, use BB dominance to 378 // check their relationships. If the store doesn't dom the use, bail 379 // out. 380 Info.UsingBlocks.push_back(LI->getParent()); 381 continue; 382 } 383 } 384 385 // Otherwise, we *can* safely rewrite this load. 386 Value *ReplVal = OnlyStore->getOperand(0); 387 // If the replacement value is the load, this must occur in unreachable 388 // code. 389 if (ReplVal == LI) 390 ReplVal = UndefValue::get(LI->getType()); 391 LI->replaceAllUsesWith(ReplVal); 392 if (AST && LI->getType()->isPointerTy()) 393 AST->deleteValue(LI); 394 LI->eraseFromParent(); 395 LBI.deleteValue(LI); 396 } 397 398 // Finally, after the scan, check to see if the store is all that is left. 399 if (!Info.UsingBlocks.empty()) 400 return false; // If not, we'll have to fall back for the remainder. 401 402 // Record debuginfo for the store and remove the declaration's 403 // debuginfo. 404 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 405 DIBuilder DIB(*AI->getParent()->getParent()->getParent(), 406 /*AllowUnresolved*/ false); 407 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); 408 DDI->eraseFromParent(); 409 LBI.deleteValue(DDI); 410 } 411 // Remove the (now dead) store and alloca. 412 Info.OnlyStore->eraseFromParent(); 413 LBI.deleteValue(Info.OnlyStore); 414 415 if (AST) 416 AST->deleteValue(AI); 417 AI->eraseFromParent(); 418 LBI.deleteValue(AI); 419 return true; 420 } 421 422 /// Many allocas are only used within a single basic block. If this is the 423 /// case, avoid traversing the CFG and inserting a lot of potentially useless 424 /// PHI nodes by just performing a single linear pass over the basic block 425 /// using the Alloca. 426 /// 427 /// If we cannot promote this alloca (because it is read before it is written), 428 /// return true. This is necessary in cases where, due to control flow, the 429 /// alloca is potentially undefined on some control flow paths. e.g. code like 430 /// this is potentially correct: 431 /// 432 /// for (...) { if (c) { A = undef; undef = B; } } 433 /// 434 /// ... so long as A is not used before undef is set. 435 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 436 LargeBlockInfo &LBI, 437 AliasSetTracker *AST) { 438 // The trickiest case to handle is when we have large blocks. Because of this, 439 // this code is optimized assuming that large blocks happen. This does not 440 // significantly pessimize the small block case. This uses LargeBlockInfo to 441 // make it efficient to get the index of various operations in the block. 442 443 // Walk the use-def list of the alloca, getting the locations of all stores. 444 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; 445 StoresByIndexTy StoresByIndex; 446 447 for (User *U : AI->users()) 448 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 449 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 450 451 // Sort the stores by their index, making it efficient to do a lookup with a 452 // binary search. 453 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 454 455 // Walk all of the loads from this alloca, replacing them with the nearest 456 // store above them, if any. 457 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 458 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 459 if (!LI) 460 continue; 461 462 unsigned LoadIdx = LBI.getInstructionIndex(LI); 463 464 // Find the nearest store that has a lower index than this load. 465 StoresByIndexTy::iterator I = 466 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 467 std::make_pair(LoadIdx, 468 static_cast<StoreInst *>(nullptr)), 469 less_first()); 470 471 if (I == StoresByIndex.begin()) 472 // If there is no store before this load, the load takes the undef value. 473 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 474 else 475 // Otherwise, there was a store before this load, the load takes its value. 476 LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0)); 477 478 if (AST && LI->getType()->isPointerTy()) 479 AST->deleteValue(LI); 480 LI->eraseFromParent(); 481 LBI.deleteValue(LI); 482 } 483 484 // Remove the (now dead) stores and alloca. 485 while (!AI->use_empty()) { 486 StoreInst *SI = cast<StoreInst>(AI->user_back()); 487 // Record debuginfo for the store before removing it. 488 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 489 DIBuilder DIB(*AI->getParent()->getParent()->getParent(), 490 /*AllowUnresolved*/ false); 491 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 492 } 493 SI->eraseFromParent(); 494 LBI.deleteValue(SI); 495 } 496 497 if (AST) 498 AST->deleteValue(AI); 499 AI->eraseFromParent(); 500 LBI.deleteValue(AI); 501 502 // The alloca's debuginfo can be removed as well. 503 if (DbgDeclareInst *DDI = Info.DbgDeclare) { 504 DDI->eraseFromParent(); 505 LBI.deleteValue(DDI); 506 } 507 508 ++NumLocalPromoted; 509 } 510 511 void PromoteMem2Reg::run() { 512 Function &F = *DT.getRoot()->getParent(); 513 514 if (AST) 515 PointerAllocaValues.resize(Allocas.size()); 516 AllocaDbgDeclares.resize(Allocas.size()); 517 518 AllocaInfo Info; 519 LargeBlockInfo LBI; 520 IDFCalculator IDF(DT); 521 522 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 523 AllocaInst *AI = Allocas[AllocaNum]; 524 525 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 526 assert(AI->getParent()->getParent() == &F && 527 "All allocas should be in the same function, which is same as DF!"); 528 529 removeLifetimeIntrinsicUsers(AI); 530 531 if (AI->use_empty()) { 532 // If there are no uses of the alloca, just delete it now. 533 if (AST) 534 AST->deleteValue(AI); 535 AI->eraseFromParent(); 536 537 // Remove the alloca from the Allocas list, since it has been processed 538 RemoveFromAllocasList(AllocaNum); 539 ++NumDeadAlloca; 540 continue; 541 } 542 543 // Calculate the set of read and write-locations for each alloca. This is 544 // analogous to finding the 'uses' and 'definitions' of each variable. 545 Info.AnalyzeAlloca(AI); 546 547 // If there is only a single store to this value, replace any loads of 548 // it that are directly dominated by the definition with the value stored. 549 if (Info.DefiningBlocks.size() == 1) { 550 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { 551 // The alloca has been processed, move on. 552 RemoveFromAllocasList(AllocaNum); 553 ++NumSingleStore; 554 continue; 555 } 556 } 557 558 // If the alloca is only read and written in one basic block, just perform a 559 // linear sweep over the block to eliminate it. 560 if (Info.OnlyUsedInOneBlock) { 561 promoteSingleBlockAlloca(AI, Info, LBI, AST); 562 563 // The alloca has been processed, move on. 564 RemoveFromAllocasList(AllocaNum); 565 continue; 566 } 567 568 // If we haven't computed a numbering for the BB's in the function, do so 569 // now. 570 if (BBNumbers.empty()) { 571 unsigned ID = 0; 572 for (auto &BB : F) 573 BBNumbers[&BB] = ID++; 574 } 575 576 // If we have an AST to keep updated, remember some pointer value that is 577 // stored into the alloca. 578 if (AST) 579 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 580 581 // Remember the dbg.declare intrinsic describing this alloca, if any. 582 if (Info.DbgDeclare) 583 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; 584 585 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 586 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 587 588 // At this point, we're committed to promoting the alloca using IDF's, and 589 // the standard SSA construction algorithm. Determine which blocks need PHI 590 // nodes and see if we can optimize out some work by avoiding insertion of 591 // dead phi nodes. 592 593 594 // Unique the set of defining blocks for efficient lookup. 595 SmallPtrSet<BasicBlock *, 32> DefBlocks; 596 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 597 598 // Determine which blocks the value is live in. These are blocks which lead 599 // to uses. 600 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 601 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 602 603 // At this point, we're committed to promoting the alloca using IDF's, and 604 // the standard SSA construction algorithm. Determine which blocks need phi 605 // nodes and see if we can optimize out some work by avoiding insertion of 606 // dead phi nodes. 607 IDF.setLiveInBlocks(LiveInBlocks); 608 IDF.setDefiningBlocks(DefBlocks); 609 SmallVector<BasicBlock *, 32> PHIBlocks; 610 IDF.calculate(PHIBlocks); 611 if (PHIBlocks.size() > 1) 612 std::sort(PHIBlocks.begin(), PHIBlocks.end(), 613 [this](BasicBlock *A, BasicBlock *B) { 614 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 615 }); 616 617 unsigned CurrentVersion = 0; 618 for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i) 619 QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion); 620 } 621 622 if (Allocas.empty()) 623 return; // All of the allocas must have been trivial! 624 625 LBI.clear(); 626 627 // Set the incoming values for the basic block to be null values for all of 628 // the alloca's. We do this in case there is a load of a value that has not 629 // been stored yet. In this case, it will get this null value. 630 // 631 RenamePassData::ValVector Values(Allocas.size()); 632 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 633 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 634 635 // Walks all basic blocks in the function performing the SSA rename algorithm 636 // and inserting the phi nodes we marked as necessary 637 // 638 std::vector<RenamePassData> RenamePassWorkList; 639 RenamePassWorkList.emplace_back(F.begin(), nullptr, std::move(Values)); 640 do { 641 RenamePassData RPD; 642 RPD.swap(RenamePassWorkList.back()); 643 RenamePassWorkList.pop_back(); 644 // RenamePass may add new worklist entries. 645 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 646 } while (!RenamePassWorkList.empty()); 647 648 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 649 Visited.clear(); 650 651 // Remove the allocas themselves from the function. 652 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 653 Instruction *A = Allocas[i]; 654 655 // If there are any uses of the alloca instructions left, they must be in 656 // unreachable basic blocks that were not processed by walking the dominator 657 // tree. Just delete the users now. 658 if (!A->use_empty()) 659 A->replaceAllUsesWith(UndefValue::get(A->getType())); 660 if (AST) 661 AST->deleteValue(A); 662 A->eraseFromParent(); 663 } 664 665 const DataLayout &DL = F.getParent()->getDataLayout(); 666 667 // Remove alloca's dbg.declare instrinsics from the function. 668 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) 669 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) 670 DDI->eraseFromParent(); 671 672 // Loop over all of the PHI nodes and see if there are any that we can get 673 // rid of because they merge all of the same incoming values. This can 674 // happen due to undef values coming into the PHI nodes. This process is 675 // iterative, because eliminating one PHI node can cause others to be removed. 676 bool EliminatedAPHI = true; 677 while (EliminatedAPHI) { 678 EliminatedAPHI = false; 679 680 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 681 // simplify and RAUW them as we go. If it was not, we could add uses to 682 // the values we replace with in a non-deterministic order, thus creating 683 // non-deterministic def->use chains. 684 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 685 I = NewPhiNodes.begin(), 686 E = NewPhiNodes.end(); 687 I != E;) { 688 PHINode *PN = I->second; 689 690 // If this PHI node merges one value and/or undefs, get the value. 691 if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) { 692 if (AST && PN->getType()->isPointerTy()) 693 AST->deleteValue(PN); 694 PN->replaceAllUsesWith(V); 695 PN->eraseFromParent(); 696 NewPhiNodes.erase(I++); 697 EliminatedAPHI = true; 698 continue; 699 } 700 ++I; 701 } 702 } 703 704 // At this point, the renamer has added entries to PHI nodes for all reachable 705 // code. Unfortunately, there may be unreachable blocks which the renamer 706 // hasn't traversed. If this is the case, the PHI nodes may not 707 // have incoming values for all predecessors. Loop over all PHI nodes we have 708 // created, inserting undef values if they are missing any incoming values. 709 // 710 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 711 I = NewPhiNodes.begin(), 712 E = NewPhiNodes.end(); 713 I != E; ++I) { 714 // We want to do this once per basic block. As such, only process a block 715 // when we find the PHI that is the first entry in the block. 716 PHINode *SomePHI = I->second; 717 BasicBlock *BB = SomePHI->getParent(); 718 if (&BB->front() != SomePHI) 719 continue; 720 721 // Only do work here if there the PHI nodes are missing incoming values. We 722 // know that all PHI nodes that were inserted in a block will have the same 723 // number of incoming values, so we can just check any of them. 724 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 725 continue; 726 727 // Get the preds for BB. 728 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 729 730 // Ok, now we know that all of the PHI nodes are missing entries for some 731 // basic blocks. Start by sorting the incoming predecessors for efficient 732 // access. 733 std::sort(Preds.begin(), Preds.end()); 734 735 // Now we loop through all BB's which have entries in SomePHI and remove 736 // them from the Preds list. 737 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 738 // Do a log(n) search of the Preds list for the entry we want. 739 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 740 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 741 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 742 "PHI node has entry for a block which is not a predecessor!"); 743 744 // Remove the entry 745 Preds.erase(EntIt); 746 } 747 748 // At this point, the blocks left in the preds list must have dummy 749 // entries inserted into every PHI nodes for the block. Update all the phi 750 // nodes in this block that we are inserting (there could be phis before 751 // mem2reg runs). 752 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 753 BasicBlock::iterator BBI = BB->begin(); 754 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 755 SomePHI->getNumIncomingValues() == NumBadPreds) { 756 Value *UndefVal = UndefValue::get(SomePHI->getType()); 757 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 758 SomePHI->addIncoming(UndefVal, Preds[pred]); 759 } 760 } 761 762 NewPhiNodes.clear(); 763 } 764 765 /// \brief Determine which blocks the value is live in. 766 /// 767 /// These are blocks which lead to uses. Knowing this allows us to avoid 768 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 769 /// inserted phi nodes would be dead). 770 void PromoteMem2Reg::ComputeLiveInBlocks( 771 AllocaInst *AI, AllocaInfo &Info, 772 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 773 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 774 775 // To determine liveness, we must iterate through the predecessors of blocks 776 // where the def is live. Blocks are added to the worklist if we need to 777 // check their predecessors. Start with all the using blocks. 778 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 779 Info.UsingBlocks.end()); 780 781 // If any of the using blocks is also a definition block, check to see if the 782 // definition occurs before or after the use. If it happens before the use, 783 // the value isn't really live-in. 784 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 785 BasicBlock *BB = LiveInBlockWorklist[i]; 786 if (!DefBlocks.count(BB)) 787 continue; 788 789 // Okay, this is a block that both uses and defines the value. If the first 790 // reference to the alloca is a def (store), then we know it isn't live-in. 791 for (BasicBlock::iterator I = BB->begin();; ++I) { 792 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 793 if (SI->getOperand(1) != AI) 794 continue; 795 796 // We found a store to the alloca before a load. The alloca is not 797 // actually live-in here. 798 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 799 LiveInBlockWorklist.pop_back(); 800 --i, --e; 801 break; 802 } 803 804 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 805 if (LI->getOperand(0) != AI) 806 continue; 807 808 // Okay, we found a load before a store to the alloca. It is actually 809 // live into this block. 810 break; 811 } 812 } 813 } 814 815 // Now that we have a set of blocks where the phi is live-in, recursively add 816 // their predecessors until we find the full region the value is live. 817 while (!LiveInBlockWorklist.empty()) { 818 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 819 820 // The block really is live in here, insert it into the set. If already in 821 // the set, then it has already been processed. 822 if (!LiveInBlocks.insert(BB).second) 823 continue; 824 825 // Since the value is live into BB, it is either defined in a predecessor or 826 // live into it to. Add the preds to the worklist unless they are a 827 // defining block. 828 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 829 BasicBlock *P = *PI; 830 831 // The value is not live into a predecessor if it defines the value. 832 if (DefBlocks.count(P)) 833 continue; 834 835 // Otherwise it is, add to the worklist. 836 LiveInBlockWorklist.push_back(P); 837 } 838 } 839 } 840 841 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 842 /// 843 /// Returns true if there wasn't already a phi-node for that variable 844 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 845 unsigned &Version) { 846 // Look up the basic-block in question. 847 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 848 849 // If the BB already has a phi node added for the i'th alloca then we're done! 850 if (PN) 851 return false; 852 853 // Create a PhiNode using the dereferenced type... and add the phi-node to the 854 // BasicBlock. 855 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 856 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 857 BB->begin()); 858 ++NumPHIInsert; 859 PhiToAllocaMap[PN] = AllocaNo; 860 861 if (AST && PN->getType()->isPointerTy()) 862 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 863 864 return true; 865 } 866 867 /// \brief Recursively traverse the CFG of the function, renaming loads and 868 /// stores to the allocas which we are promoting. 869 /// 870 /// IncomingVals indicates what value each Alloca contains on exit from the 871 /// predecessor block Pred. 872 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 873 RenamePassData::ValVector &IncomingVals, 874 std::vector<RenamePassData> &Worklist) { 875 NextIteration: 876 // If we are inserting any phi nodes into this BB, they will already be in the 877 // block. 878 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 879 // If we have PHI nodes to update, compute the number of edges from Pred to 880 // BB. 881 if (PhiToAllocaMap.count(APN)) { 882 // We want to be able to distinguish between PHI nodes being inserted by 883 // this invocation of mem2reg from those phi nodes that already existed in 884 // the IR before mem2reg was run. We determine that APN is being inserted 885 // because it is missing incoming edges. All other PHI nodes being 886 // inserted by this pass of mem2reg will have the same number of incoming 887 // operands so far. Remember this count. 888 unsigned NewPHINumOperands = APN->getNumOperands(); 889 890 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 891 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 892 893 // Add entries for all the phis. 894 BasicBlock::iterator PNI = BB->begin(); 895 do { 896 unsigned AllocaNo = PhiToAllocaMap[APN]; 897 898 // Add N incoming values to the PHI node. 899 for (unsigned i = 0; i != NumEdges; ++i) 900 APN->addIncoming(IncomingVals[AllocaNo], Pred); 901 902 // The currently active variable for this block is now the PHI. 903 IncomingVals[AllocaNo] = APN; 904 905 // Get the next phi node. 906 ++PNI; 907 APN = dyn_cast<PHINode>(PNI); 908 if (!APN) 909 break; 910 911 // Verify that it is missing entries. If not, it is not being inserted 912 // by this mem2reg invocation so we want to ignore it. 913 } while (APN->getNumOperands() == NewPHINumOperands); 914 } 915 } 916 917 // Don't revisit blocks. 918 if (!Visited.insert(BB).second) 919 return; 920 921 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 922 Instruction *I = II++; // get the instruction, increment iterator 923 924 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 925 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 926 if (!Src) 927 continue; 928 929 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 930 if (AI == AllocaLookup.end()) 931 continue; 932 933 Value *V = IncomingVals[AI->second]; 934 935 // Anything using the load now uses the current value. 936 LI->replaceAllUsesWith(V); 937 if (AST && LI->getType()->isPointerTy()) 938 AST->deleteValue(LI); 939 BB->getInstList().erase(LI); 940 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 941 // Delete this instruction and mark the name as the current holder of the 942 // value 943 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 944 if (!Dest) 945 continue; 946 947 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 948 if (ai == AllocaLookup.end()) 949 continue; 950 951 // what value were we writing? 952 IncomingVals[ai->second] = SI->getOperand(0); 953 // Record debuginfo for the store before removing it. 954 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) 955 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 956 BB->getInstList().erase(SI); 957 } 958 } 959 960 // 'Recurse' to our successors. 961 succ_iterator I = succ_begin(BB), E = succ_end(BB); 962 if (I == E) 963 return; 964 965 // Keep track of the successors so we don't visit the same successor twice 966 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 967 968 // Handle the first successor without using the worklist. 969 VisitedSuccs.insert(*I); 970 Pred = BB; 971 BB = *I; 972 ++I; 973 974 for (; I != E; ++I) 975 if (VisitedSuccs.insert(*I).second) 976 Worklist.emplace_back(*I, Pred, IncomingVals); 977 978 goto NextIteration; 979 } 980 981 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 982 AliasSetTracker *AST, AssumptionCache *AC) { 983 // If there is nothing to do, bail out... 984 if (Allocas.empty()) 985 return; 986 987 PromoteMem2Reg(Allocas, DT, AST, AC).run(); 988 } 989