1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "mem2reg"
58 
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
63 
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65   // FIXME: If the memory unit is of pointer or integer type, we can permit
66   // assignments to subsections of the memory unit.
67   unsigned AS = AI->getType()->getAddressSpace();
68 
69   // Only allow direct and non-volatile loads and stores...
70   for (const User *U : AI->users()) {
71     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
72       // Note that atomic loads can be transformed; atomic semantics do
73       // not have any meaning for a local alloca.
74       if (LI->isVolatile())
75         return false;
76     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
77       if (SI->getOperand(0) == AI)
78         return false; // Don't allow a store OF the AI, only INTO the AI.
79       // Note that atomic stores can be transformed; atomic semantics do
80       // not have any meaning for a local alloca.
81       if (SI->isVolatile())
82         return false;
83     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
84       if (!II->isLifetimeStartOrEnd())
85         return false;
86     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
87       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
88         return false;
89       if (!onlyUsedByLifetimeMarkers(BCI))
90         return false;
91     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
92       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
93         return false;
94       if (!GEPI->hasAllZeroIndices())
95         return false;
96       if (!onlyUsedByLifetimeMarkers(GEPI))
97         return false;
98     } else {
99       return false;
100     }
101   }
102 
103   return true;
104 }
105 
106 namespace {
107 
108 struct AllocaInfo {
109   SmallVector<BasicBlock *, 32> DefiningBlocks;
110   SmallVector<BasicBlock *, 32> UsingBlocks;
111 
112   StoreInst *OnlyStore;
113   BasicBlock *OnlyBlock;
114   bool OnlyUsedInOneBlock;
115 
116   Value *AllocaPointerVal;
117   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;
118 
119   void clear() {
120     DefiningBlocks.clear();
121     UsingBlocks.clear();
122     OnlyStore = nullptr;
123     OnlyBlock = nullptr;
124     OnlyUsedInOneBlock = true;
125     AllocaPointerVal = nullptr;
126     DbgDeclares.clear();
127   }
128 
129   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
130   /// by the rest of the pass to reason about the uses of this alloca.
131   void AnalyzeAlloca(AllocaInst *AI) {
132     clear();
133 
134     // As we scan the uses of the alloca instruction, keep track of stores,
135     // and decide whether all of the loads and stores to the alloca are within
136     // the same basic block.
137     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
138       Instruction *User = cast<Instruction>(*UI++);
139 
140       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
141         // Remember the basic blocks which define new values for the alloca
142         DefiningBlocks.push_back(SI->getParent());
143         AllocaPointerVal = SI->getOperand(0);
144         OnlyStore = SI;
145       } else {
146         LoadInst *LI = cast<LoadInst>(User);
147         // Otherwise it must be a load instruction, keep track of variable
148         // reads.
149         UsingBlocks.push_back(LI->getParent());
150         AllocaPointerVal = LI;
151       }
152 
153       if (OnlyUsedInOneBlock) {
154         if (!OnlyBlock)
155           OnlyBlock = User->getParent();
156         else if (OnlyBlock != User->getParent())
157           OnlyUsedInOneBlock = false;
158       }
159     }
160 
161     DbgDeclares = FindDbgAddrUses(AI);
162   }
163 };
164 
165 /// Data package used by RenamePass().
166 struct RenamePassData {
167   using ValVector = std::vector<Value *>;
168   using LocationVector = std::vector<DebugLoc>;
169 
170   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
171       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
172 
173   BasicBlock *BB;
174   BasicBlock *Pred;
175   ValVector Values;
176   LocationVector Locations;
177 };
178 
179 /// This assigns and keeps a per-bb relative ordering of load/store
180 /// instructions in the block that directly load or store an alloca.
181 ///
182 /// This functionality is important because it avoids scanning large basic
183 /// blocks multiple times when promoting many allocas in the same block.
184 class LargeBlockInfo {
185   /// For each instruction that we track, keep the index of the
186   /// instruction.
187   ///
188   /// The index starts out as the number of the instruction from the start of
189   /// the block.
190   DenseMap<const Instruction *, unsigned> InstNumbers;
191 
192 public:
193 
194   /// This code only looks at accesses to allocas.
195   static bool isInterestingInstruction(const Instruction *I) {
196     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
197            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
198   }
199 
200   /// Get or calculate the index of the specified instruction.
201   unsigned getInstructionIndex(const Instruction *I) {
202     assert(isInterestingInstruction(I) &&
203            "Not a load/store to/from an alloca?");
204 
205     // If we already have this instruction number, return it.
206     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
207     if (It != InstNumbers.end())
208       return It->second;
209 
210     // Scan the whole block to get the instruction.  This accumulates
211     // information for every interesting instruction in the block, in order to
212     // avoid gratuitus rescans.
213     const BasicBlock *BB = I->getParent();
214     unsigned InstNo = 0;
215     for (const Instruction &BBI : *BB)
216       if (isInterestingInstruction(&BBI))
217         InstNumbers[&BBI] = InstNo++;
218     It = InstNumbers.find(I);
219 
220     assert(It != InstNumbers.end() && "Didn't insert instruction?");
221     return It->second;
222   }
223 
224   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
225 
226   void clear() { InstNumbers.clear(); }
227 };
228 
229 struct PromoteMem2Reg {
230   /// The alloca instructions being promoted.
231   std::vector<AllocaInst *> Allocas;
232 
233   DominatorTree &DT;
234   DIBuilder DIB;
235 
236   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
237   AssumptionCache *AC;
238 
239   const SimplifyQuery SQ;
240 
241   /// Reverse mapping of Allocas.
242   DenseMap<AllocaInst *, unsigned> AllocaLookup;
243 
244   /// The PhiNodes we're adding.
245   ///
246   /// That map is used to simplify some Phi nodes as we iterate over it, so
247   /// it should have deterministic iterators.  We could use a MapVector, but
248   /// since we already maintain a map from BasicBlock* to a stable numbering
249   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
250   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
251 
252   /// For each PHI node, keep track of which entry in Allocas it corresponds
253   /// to.
254   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
255 
256   /// If we are updating an AliasSetTracker, then for each alloca that is of
257   /// pointer type, we keep track of what to copyValue to the inserted PHI
258   /// nodes here.
259   std::vector<Value *> PointerAllocaValues;
260 
261   /// For each alloca, we keep track of the dbg.declare intrinsic that
262   /// describes it, if any, so that we can convert it to a dbg.value
263   /// intrinsic if the alloca gets promoted.
264   SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;
265 
266   /// The set of basic blocks the renamer has already visited.
267   SmallPtrSet<BasicBlock *, 16> Visited;
268 
269   /// Contains a stable numbering of basic blocks to avoid non-determinstic
270   /// behavior.
271   DenseMap<BasicBlock *, unsigned> BBNumbers;
272 
273   /// Lazily compute the number of predecessors a block has.
274   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
275 
276 public:
277   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
278                  AssumptionCache *AC)
279       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
280         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
281         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
282                    nullptr, &DT, AC) {}
283 
284   void run();
285 
286 private:
287   void RemoveFromAllocasList(unsigned &AllocaIdx) {
288     Allocas[AllocaIdx] = Allocas.back();
289     Allocas.pop_back();
290     --AllocaIdx;
291   }
292 
293   unsigned getNumPreds(const BasicBlock *BB) {
294     unsigned &NP = BBNumPreds[BB];
295     if (NP == 0)
296       NP = pred_size(BB) + 1;
297     return NP - 1;
298   }
299 
300   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
301                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
302                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
303   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
304                   RenamePassData::ValVector &IncVals,
305                   RenamePassData::LocationVector &IncLocs,
306                   std::vector<RenamePassData> &Worklist);
307   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
308 };
309 
310 } // end anonymous namespace
311 
312 /// Given a LoadInst LI this adds assume(LI != null) after it.
313 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
314   Function *AssumeIntrinsic =
315       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
316   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
317                                        Constant::getNullValue(LI->getType()));
318   LoadNotNull->insertAfter(LI);
319   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
320   CI->insertAfter(LoadNotNull);
321   AC->registerAssumption(CI);
322 }
323 
324 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
325   // Knowing that this alloca is promotable, we know that it's safe to kill all
326   // instructions except for load and store.
327 
328   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
329     Instruction *I = cast<Instruction>(*UI);
330     ++UI;
331     if (isa<LoadInst>(I) || isa<StoreInst>(I))
332       continue;
333 
334     if (!I->getType()->isVoidTy()) {
335       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
336       // Follow the use/def chain to erase them now instead of leaving it for
337       // dead code elimination later.
338       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
339         Instruction *Inst = cast<Instruction>(*UUI);
340         ++UUI;
341         Inst->eraseFromParent();
342       }
343     }
344     I->eraseFromParent();
345   }
346 }
347 
348 /// Rewrite as many loads as possible given a single store.
349 ///
350 /// When there is only a single store, we can use the domtree to trivially
351 /// replace all of the dominated loads with the stored value. Do so, and return
352 /// true if this has successfully promoted the alloca entirely. If this returns
353 /// false there were some loads which were not dominated by the single store
354 /// and thus must be phi-ed with undef. We fall back to the standard alloca
355 /// promotion algorithm in that case.
356 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
357                                      LargeBlockInfo &LBI, const DataLayout &DL,
358                                      DominatorTree &DT, AssumptionCache *AC) {
359   StoreInst *OnlyStore = Info.OnlyStore;
360   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
361   BasicBlock *StoreBB = OnlyStore->getParent();
362   int StoreIndex = -1;
363 
364   // Clear out UsingBlocks.  We will reconstruct it here if needed.
365   Info.UsingBlocks.clear();
366 
367   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
368     Instruction *UserInst = cast<Instruction>(*UI++);
369     if (!isa<LoadInst>(UserInst)) {
370       assert(UserInst == OnlyStore && "Should only have load/stores");
371       continue;
372     }
373     LoadInst *LI = cast<LoadInst>(UserInst);
374 
375     // Okay, if we have a load from the alloca, we want to replace it with the
376     // only value stored to the alloca.  We can do this if the value is
377     // dominated by the store.  If not, we use the rest of the mem2reg machinery
378     // to insert the phi nodes as needed.
379     if (!StoringGlobalVal) { // Non-instructions are always dominated.
380       if (LI->getParent() == StoreBB) {
381         // If we have a use that is in the same block as the store, compare the
382         // indices of the two instructions to see which one came first.  If the
383         // load came before the store, we can't handle it.
384         if (StoreIndex == -1)
385           StoreIndex = LBI.getInstructionIndex(OnlyStore);
386 
387         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
388           // Can't handle this load, bail out.
389           Info.UsingBlocks.push_back(StoreBB);
390           continue;
391         }
392       } else if (LI->getParent() != StoreBB &&
393                  !DT.dominates(StoreBB, LI->getParent())) {
394         // If the load and store are in different blocks, use BB dominance to
395         // check their relationships.  If the store doesn't dom the use, bail
396         // out.
397         Info.UsingBlocks.push_back(LI->getParent());
398         continue;
399       }
400     }
401 
402     // Otherwise, we *can* safely rewrite this load.
403     Value *ReplVal = OnlyStore->getOperand(0);
404     // If the replacement value is the load, this must occur in unreachable
405     // code.
406     if (ReplVal == LI)
407       ReplVal = UndefValue::get(LI->getType());
408 
409     // If the load was marked as nonnull we don't want to lose
410     // that information when we erase this Load. So we preserve
411     // it with an assume.
412     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
413         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
414       addAssumeNonNull(AC, LI);
415 
416     LI->replaceAllUsesWith(ReplVal);
417     LI->eraseFromParent();
418     LBI.deleteValue(LI);
419   }
420 
421   // Finally, after the scan, check to see if the store is all that is left.
422   if (!Info.UsingBlocks.empty())
423     return false; // If not, we'll have to fall back for the remainder.
424 
425   // Record debuginfo for the store and remove the declaration's
426   // debuginfo.
427   for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
428     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
429     ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
430     DII->eraseFromParent();
431     LBI.deleteValue(DII);
432   }
433   // Remove the (now dead) store and alloca.
434   Info.OnlyStore->eraseFromParent();
435   LBI.deleteValue(Info.OnlyStore);
436 
437   AI->eraseFromParent();
438   LBI.deleteValue(AI);
439   return true;
440 }
441 
442 /// Many allocas are only used within a single basic block.  If this is the
443 /// case, avoid traversing the CFG and inserting a lot of potentially useless
444 /// PHI nodes by just performing a single linear pass over the basic block
445 /// using the Alloca.
446 ///
447 /// If we cannot promote this alloca (because it is read before it is written),
448 /// return false.  This is necessary in cases where, due to control flow, the
449 /// alloca is undefined only on some control flow paths.  e.g. code like
450 /// this is correct in LLVM IR:
451 ///  // A is an alloca with no stores so far
452 ///  for (...) {
453 ///    int t = *A;
454 ///    if (!first_iteration)
455 ///      use(t);
456 ///    *A = 42;
457 ///  }
458 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
459                                      LargeBlockInfo &LBI,
460                                      const DataLayout &DL,
461                                      DominatorTree &DT,
462                                      AssumptionCache *AC) {
463   // The trickiest case to handle is when we have large blocks. Because of this,
464   // this code is optimized assuming that large blocks happen.  This does not
465   // significantly pessimize the small block case.  This uses LargeBlockInfo to
466   // make it efficient to get the index of various operations in the block.
467 
468   // Walk the use-def list of the alloca, getting the locations of all stores.
469   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
470   StoresByIndexTy StoresByIndex;
471 
472   for (User *U : AI->users())
473     if (StoreInst *SI = dyn_cast<StoreInst>(U))
474       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
475 
476   // Sort the stores by their index, making it efficient to do a lookup with a
477   // binary search.
478   llvm::sort(StoresByIndex, less_first());
479 
480   // Walk all of the loads from this alloca, replacing them with the nearest
481   // store above them, if any.
482   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
483     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
484     if (!LI)
485       continue;
486 
487     unsigned LoadIdx = LBI.getInstructionIndex(LI);
488 
489     // Find the nearest store that has a lower index than this load.
490     StoresByIndexTy::iterator I =
491         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
492                          std::make_pair(LoadIdx,
493                                         static_cast<StoreInst *>(nullptr)),
494                          less_first());
495     if (I == StoresByIndex.begin()) {
496       if (StoresByIndex.empty())
497         // If there are no stores, the load takes the undef value.
498         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
499       else
500         // There is no store before this load, bail out (load may be affected
501         // by the following stores - see main comment).
502         return false;
503     } else {
504       // Otherwise, there was a store before this load, the load takes its value.
505       // Note, if the load was marked as nonnull we don't want to lose that
506       // information when we erase it. So we preserve it with an assume.
507       Value *ReplVal = std::prev(I)->second->getOperand(0);
508       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
509           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
510         addAssumeNonNull(AC, LI);
511 
512       // If the replacement value is the load, this must occur in unreachable
513       // code.
514       if (ReplVal == LI)
515         ReplVal = UndefValue::get(LI->getType());
516 
517       LI->replaceAllUsesWith(ReplVal);
518     }
519 
520     LI->eraseFromParent();
521     LBI.deleteValue(LI);
522   }
523 
524   // Remove the (now dead) stores and alloca.
525   while (!AI->use_empty()) {
526     StoreInst *SI = cast<StoreInst>(AI->user_back());
527     // Record debuginfo for the store before removing it.
528     for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
529       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
530       ConvertDebugDeclareToDebugValue(DII, SI, DIB);
531     }
532     SI->eraseFromParent();
533     LBI.deleteValue(SI);
534   }
535 
536   AI->eraseFromParent();
537   LBI.deleteValue(AI);
538 
539   // The alloca's debuginfo can be removed as well.
540   for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
541     DII->eraseFromParent();
542     LBI.deleteValue(DII);
543   }
544 
545   ++NumLocalPromoted;
546   return true;
547 }
548 
549 void PromoteMem2Reg::run() {
550   Function &F = *DT.getRoot()->getParent();
551 
552   AllocaDbgDeclares.resize(Allocas.size());
553 
554   AllocaInfo Info;
555   LargeBlockInfo LBI;
556   ForwardIDFCalculator IDF(DT);
557 
558   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
559     AllocaInst *AI = Allocas[AllocaNum];
560 
561     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
562     assert(AI->getParent()->getParent() == &F &&
563            "All allocas should be in the same function, which is same as DF!");
564 
565     removeLifetimeIntrinsicUsers(AI);
566 
567     if (AI->use_empty()) {
568       // If there are no uses of the alloca, just delete it now.
569       AI->eraseFromParent();
570 
571       // Remove the alloca from the Allocas list, since it has been processed
572       RemoveFromAllocasList(AllocaNum);
573       ++NumDeadAlloca;
574       continue;
575     }
576 
577     // Calculate the set of read and write-locations for each alloca.  This is
578     // analogous to finding the 'uses' and 'definitions' of each variable.
579     Info.AnalyzeAlloca(AI);
580 
581     // If there is only a single store to this value, replace any loads of
582     // it that are directly dominated by the definition with the value stored.
583     if (Info.DefiningBlocks.size() == 1) {
584       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
585         // The alloca has been processed, move on.
586         RemoveFromAllocasList(AllocaNum);
587         ++NumSingleStore;
588         continue;
589       }
590     }
591 
592     // If the alloca is only read and written in one basic block, just perform a
593     // linear sweep over the block to eliminate it.
594     if (Info.OnlyUsedInOneBlock &&
595         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
596       // The alloca has been processed, move on.
597       RemoveFromAllocasList(AllocaNum);
598       continue;
599     }
600 
601     // If we haven't computed a numbering for the BB's in the function, do so
602     // now.
603     if (BBNumbers.empty()) {
604       unsigned ID = 0;
605       for (auto &BB : F)
606         BBNumbers[&BB] = ID++;
607     }
608 
609     // Remember the dbg.declare intrinsic describing this alloca, if any.
610     if (!Info.DbgDeclares.empty())
611       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
612 
613     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
614     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
615 
616     // At this point, we're committed to promoting the alloca using IDF's, and
617     // the standard SSA construction algorithm.  Determine which blocks need PHI
618     // nodes and see if we can optimize out some work by avoiding insertion of
619     // dead phi nodes.
620 
621     // Unique the set of defining blocks for efficient lookup.
622     SmallPtrSet<BasicBlock *, 32> DefBlocks;
623     DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
624 
625     // Determine which blocks the value is live in.  These are blocks which lead
626     // to uses.
627     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
628     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
629 
630     // At this point, we're committed to promoting the alloca using IDF's, and
631     // the standard SSA construction algorithm.  Determine which blocks need phi
632     // nodes and see if we can optimize out some work by avoiding insertion of
633     // dead phi nodes.
634     IDF.setLiveInBlocks(LiveInBlocks);
635     IDF.setDefiningBlocks(DefBlocks);
636     SmallVector<BasicBlock *, 32> PHIBlocks;
637     IDF.calculate(PHIBlocks);
638     if (PHIBlocks.size() > 1)
639       llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
640         return BBNumbers.lookup(A) < BBNumbers.lookup(B);
641       });
642 
643     unsigned CurrentVersion = 0;
644     for (BasicBlock *BB : PHIBlocks)
645       QueuePhiNode(BB, AllocaNum, CurrentVersion);
646   }
647 
648   if (Allocas.empty())
649     return; // All of the allocas must have been trivial!
650 
651   LBI.clear();
652 
653   // Set the incoming values for the basic block to be null values for all of
654   // the alloca's.  We do this in case there is a load of a value that has not
655   // been stored yet.  In this case, it will get this null value.
656   RenamePassData::ValVector Values(Allocas.size());
657   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
658     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
659 
660   // When handling debug info, treat all incoming values as if they have unknown
661   // locations until proven otherwise.
662   RenamePassData::LocationVector Locations(Allocas.size());
663 
664   // Walks all basic blocks in the function performing the SSA rename algorithm
665   // and inserting the phi nodes we marked as necessary
666   std::vector<RenamePassData> RenamePassWorkList;
667   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
668                                   std::move(Locations));
669   do {
670     RenamePassData RPD = std::move(RenamePassWorkList.back());
671     RenamePassWorkList.pop_back();
672     // RenamePass may add new worklist entries.
673     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
674   } while (!RenamePassWorkList.empty());
675 
676   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
677   Visited.clear();
678 
679   // Remove the allocas themselves from the function.
680   for (Instruction *A : Allocas) {
681     // If there are any uses of the alloca instructions left, they must be in
682     // unreachable basic blocks that were not processed by walking the dominator
683     // tree. Just delete the users now.
684     if (!A->use_empty())
685       A->replaceAllUsesWith(UndefValue::get(A->getType()));
686     A->eraseFromParent();
687   }
688 
689   // Remove alloca's dbg.declare instrinsics from the function.
690   for (auto &Declares : AllocaDbgDeclares)
691     for (auto *DII : Declares)
692       DII->eraseFromParent();
693 
694   // Loop over all of the PHI nodes and see if there are any that we can get
695   // rid of because they merge all of the same incoming values.  This can
696   // happen due to undef values coming into the PHI nodes.  This process is
697   // iterative, because eliminating one PHI node can cause others to be removed.
698   bool EliminatedAPHI = true;
699   while (EliminatedAPHI) {
700     EliminatedAPHI = false;
701 
702     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
703     // simplify and RAUW them as we go.  If it was not, we could add uses to
704     // the values we replace with in a non-deterministic order, thus creating
705     // non-deterministic def->use chains.
706     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
707              I = NewPhiNodes.begin(),
708              E = NewPhiNodes.end();
709          I != E;) {
710       PHINode *PN = I->second;
711 
712       // If this PHI node merges one value and/or undefs, get the value.
713       if (Value *V = SimplifyInstruction(PN, SQ)) {
714         PN->replaceAllUsesWith(V);
715         PN->eraseFromParent();
716         NewPhiNodes.erase(I++);
717         EliminatedAPHI = true;
718         continue;
719       }
720       ++I;
721     }
722   }
723 
724   // At this point, the renamer has added entries to PHI nodes for all reachable
725   // code.  Unfortunately, there may be unreachable blocks which the renamer
726   // hasn't traversed.  If this is the case, the PHI nodes may not
727   // have incoming values for all predecessors.  Loop over all PHI nodes we have
728   // created, inserting undef values if they are missing any incoming values.
729   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
730            I = NewPhiNodes.begin(),
731            E = NewPhiNodes.end();
732        I != E; ++I) {
733     // We want to do this once per basic block.  As such, only process a block
734     // when we find the PHI that is the first entry in the block.
735     PHINode *SomePHI = I->second;
736     BasicBlock *BB = SomePHI->getParent();
737     if (&BB->front() != SomePHI)
738       continue;
739 
740     // Only do work here if there the PHI nodes are missing incoming values.  We
741     // know that all PHI nodes that were inserted in a block will have the same
742     // number of incoming values, so we can just check any of them.
743     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
744       continue;
745 
746     // Get the preds for BB.
747     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
748 
749     // Ok, now we know that all of the PHI nodes are missing entries for some
750     // basic blocks.  Start by sorting the incoming predecessors for efficient
751     // access.
752     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
753       return BBNumbers.lookup(A) < BBNumbers.lookup(B);
754     };
755     llvm::sort(Preds, CompareBBNumbers);
756 
757     // Now we loop through all BB's which have entries in SomePHI and remove
758     // them from the Preds list.
759     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
760       // Do a log(n) search of the Preds list for the entry we want.
761       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
762           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i),
763           CompareBBNumbers);
764       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
765              "PHI node has entry for a block which is not a predecessor!");
766 
767       // Remove the entry
768       Preds.erase(EntIt);
769     }
770 
771     // At this point, the blocks left in the preds list must have dummy
772     // entries inserted into every PHI nodes for the block.  Update all the phi
773     // nodes in this block that we are inserting (there could be phis before
774     // mem2reg runs).
775     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
776     BasicBlock::iterator BBI = BB->begin();
777     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
778            SomePHI->getNumIncomingValues() == NumBadPreds) {
779       Value *UndefVal = UndefValue::get(SomePHI->getType());
780       for (BasicBlock *Pred : Preds)
781         SomePHI->addIncoming(UndefVal, Pred);
782     }
783   }
784 
785   NewPhiNodes.clear();
786 }
787 
788 /// Determine which blocks the value is live in.
789 ///
790 /// These are blocks which lead to uses.  Knowing this allows us to avoid
791 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
792 /// inserted phi nodes would be dead).
793 void PromoteMem2Reg::ComputeLiveInBlocks(
794     AllocaInst *AI, AllocaInfo &Info,
795     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
796     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
797   // To determine liveness, we must iterate through the predecessors of blocks
798   // where the def is live.  Blocks are added to the worklist if we need to
799   // check their predecessors.  Start with all the using blocks.
800   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
801                                                     Info.UsingBlocks.end());
802 
803   // If any of the using blocks is also a definition block, check to see if the
804   // definition occurs before or after the use.  If it happens before the use,
805   // the value isn't really live-in.
806   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
807     BasicBlock *BB = LiveInBlockWorklist[i];
808     if (!DefBlocks.count(BB))
809       continue;
810 
811     // Okay, this is a block that both uses and defines the value.  If the first
812     // reference to the alloca is a def (store), then we know it isn't live-in.
813     for (BasicBlock::iterator I = BB->begin();; ++I) {
814       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
815         if (SI->getOperand(1) != AI)
816           continue;
817 
818         // We found a store to the alloca before a load.  The alloca is not
819         // actually live-in here.
820         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
821         LiveInBlockWorklist.pop_back();
822         --i;
823         --e;
824         break;
825       }
826 
827       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
828         if (LI->getOperand(0) != AI)
829           continue;
830 
831         // Okay, we found a load before a store to the alloca.  It is actually
832         // live into this block.
833         break;
834       }
835     }
836   }
837 
838   // Now that we have a set of blocks where the phi is live-in, recursively add
839   // their predecessors until we find the full region the value is live.
840   while (!LiveInBlockWorklist.empty()) {
841     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
842 
843     // The block really is live in here, insert it into the set.  If already in
844     // the set, then it has already been processed.
845     if (!LiveInBlocks.insert(BB).second)
846       continue;
847 
848     // Since the value is live into BB, it is either defined in a predecessor or
849     // live into it to.  Add the preds to the worklist unless they are a
850     // defining block.
851     for (BasicBlock *P : predecessors(BB)) {
852       // The value is not live into a predecessor if it defines the value.
853       if (DefBlocks.count(P))
854         continue;
855 
856       // Otherwise it is, add to the worklist.
857       LiveInBlockWorklist.push_back(P);
858     }
859   }
860 }
861 
862 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
863 ///
864 /// Returns true if there wasn't already a phi-node for that variable
865 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
866                                   unsigned &Version) {
867   // Look up the basic-block in question.
868   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
869 
870   // If the BB already has a phi node added for the i'th alloca then we're done!
871   if (PN)
872     return false;
873 
874   // Create a PhiNode using the dereferenced type... and add the phi-node to the
875   // BasicBlock.
876   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
877                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
878                        &BB->front());
879   ++NumPHIInsert;
880   PhiToAllocaMap[PN] = AllocaNo;
881   return true;
882 }
883 
884 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
885 /// create a merged location incorporating \p DL, or to set \p DL directly.
886 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
887                                            bool ApplyMergedLoc) {
888   if (ApplyMergedLoc)
889     PN->applyMergedLocation(PN->getDebugLoc(), DL);
890   else
891     PN->setDebugLoc(DL);
892 }
893 
894 /// Recursively traverse the CFG of the function, renaming loads and
895 /// stores to the allocas which we are promoting.
896 ///
897 /// IncomingVals indicates what value each Alloca contains on exit from the
898 /// predecessor block Pred.
899 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
900                                 RenamePassData::ValVector &IncomingVals,
901                                 RenamePassData::LocationVector &IncomingLocs,
902                                 std::vector<RenamePassData> &Worklist) {
903 NextIteration:
904   // If we are inserting any phi nodes into this BB, they will already be in the
905   // block.
906   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
907     // If we have PHI nodes to update, compute the number of edges from Pred to
908     // BB.
909     if (PhiToAllocaMap.count(APN)) {
910       // We want to be able to distinguish between PHI nodes being inserted by
911       // this invocation of mem2reg from those phi nodes that already existed in
912       // the IR before mem2reg was run.  We determine that APN is being inserted
913       // because it is missing incoming edges.  All other PHI nodes being
914       // inserted by this pass of mem2reg will have the same number of incoming
915       // operands so far.  Remember this count.
916       unsigned NewPHINumOperands = APN->getNumOperands();
917 
918       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
919       assert(NumEdges && "Must be at least one edge from Pred to BB!");
920 
921       // Add entries for all the phis.
922       BasicBlock::iterator PNI = BB->begin();
923       do {
924         unsigned AllocaNo = PhiToAllocaMap[APN];
925 
926         // Update the location of the phi node.
927         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
928                                        APN->getNumIncomingValues() > 0);
929 
930         // Add N incoming values to the PHI node.
931         for (unsigned i = 0; i != NumEdges; ++i)
932           APN->addIncoming(IncomingVals[AllocaNo], Pred);
933 
934         // The currently active variable for this block is now the PHI.
935         IncomingVals[AllocaNo] = APN;
936         for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
937           ConvertDebugDeclareToDebugValue(DII, APN, DIB);
938 
939         // Get the next phi node.
940         ++PNI;
941         APN = dyn_cast<PHINode>(PNI);
942         if (!APN)
943           break;
944 
945         // Verify that it is missing entries.  If not, it is not being inserted
946         // by this mem2reg invocation so we want to ignore it.
947       } while (APN->getNumOperands() == NewPHINumOperands);
948     }
949   }
950 
951   // Don't revisit blocks.
952   if (!Visited.insert(BB).second)
953     return;
954 
955   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
956     Instruction *I = &*II++; // get the instruction, increment iterator
957 
958     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
959       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
960       if (!Src)
961         continue;
962 
963       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
964       if (AI == AllocaLookup.end())
965         continue;
966 
967       Value *V = IncomingVals[AI->second];
968 
969       // If the load was marked as nonnull we don't want to lose
970       // that information when we erase this Load. So we preserve
971       // it with an assume.
972       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
973           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
974         addAssumeNonNull(AC, LI);
975 
976       // Anything using the load now uses the current value.
977       LI->replaceAllUsesWith(V);
978       BB->getInstList().erase(LI);
979     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
980       // Delete this instruction and mark the name as the current holder of the
981       // value
982       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
983       if (!Dest)
984         continue;
985 
986       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
987       if (ai == AllocaLookup.end())
988         continue;
989 
990       // what value were we writing?
991       unsigned AllocaNo = ai->second;
992       IncomingVals[AllocaNo] = SI->getOperand(0);
993 
994       // Record debuginfo for the store before removing it.
995       IncomingLocs[AllocaNo] = SI->getDebugLoc();
996       for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
997         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
998       BB->getInstList().erase(SI);
999     }
1000   }
1001 
1002   // 'Recurse' to our successors.
1003   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1004   if (I == E)
1005     return;
1006 
1007   // Keep track of the successors so we don't visit the same successor twice
1008   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1009 
1010   // Handle the first successor without using the worklist.
1011   VisitedSuccs.insert(*I);
1012   Pred = BB;
1013   BB = *I;
1014   ++I;
1015 
1016   for (; I != E; ++I)
1017     if (VisitedSuccs.insert(*I).second)
1018       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1019 
1020   goto NextIteration;
1021 }
1022 
1023 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1024                            AssumptionCache *AC) {
1025   // If there is nothing to do, bail out...
1026   if (Allocas.empty())
1027     return;
1028 
1029   PromoteMem2Reg(Allocas, DT, AC).run();
1030 }
1031