1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references.  It promotes
11 // alloca instructions which only have loads and stores as uses.  An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasSetTracker.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
42 #include <algorithm>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "mem2reg"
46 
47 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
48 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
49 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
50 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
51 
52 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
53   // FIXME: If the memory unit is of pointer or integer type, we can permit
54   // assignments to subsections of the memory unit.
55   unsigned AS = AI->getType()->getAddressSpace();
56 
57   // Only allow direct and non-volatile loads and stores...
58   for (const User *U : AI->users()) {
59     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
60       // Note that atomic loads can be transformed; atomic semantics do
61       // not have any meaning for a local alloca.
62       if (LI->isVolatile())
63         return false;
64     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
65       if (SI->getOperand(0) == AI)
66         return false; // Don't allow a store OF the AI, only INTO the AI.
67       // Note that atomic stores can be transformed; atomic semantics do
68       // not have any meaning for a local alloca.
69       if (SI->isVolatile())
70         return false;
71     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
72       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
73           II->getIntrinsicID() != Intrinsic::lifetime_end)
74         return false;
75     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
76       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
77         return false;
78       if (!onlyUsedByLifetimeMarkers(BCI))
79         return false;
80     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
81       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
82         return false;
83       if (!GEPI->hasAllZeroIndices())
84         return false;
85       if (!onlyUsedByLifetimeMarkers(GEPI))
86         return false;
87     } else {
88       return false;
89     }
90   }
91 
92   return true;
93 }
94 
95 namespace {
96 
97 struct AllocaInfo {
98   SmallVector<BasicBlock *, 32> DefiningBlocks;
99   SmallVector<BasicBlock *, 32> UsingBlocks;
100 
101   StoreInst *OnlyStore;
102   BasicBlock *OnlyBlock;
103   bool OnlyUsedInOneBlock;
104 
105   Value *AllocaPointerVal;
106   DbgDeclareInst *DbgDeclare;
107 
108   void clear() {
109     DefiningBlocks.clear();
110     UsingBlocks.clear();
111     OnlyStore = nullptr;
112     OnlyBlock = nullptr;
113     OnlyUsedInOneBlock = true;
114     AllocaPointerVal = nullptr;
115     DbgDeclare = nullptr;
116   }
117 
118   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
119   /// by the rest of the pass to reason about the uses of this alloca.
120   void AnalyzeAlloca(AllocaInst *AI) {
121     clear();
122 
123     // As we scan the uses of the alloca instruction, keep track of stores,
124     // and decide whether all of the loads and stores to the alloca are within
125     // the same basic block.
126     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
127       Instruction *User = cast<Instruction>(*UI++);
128 
129       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
130         // Remember the basic blocks which define new values for the alloca
131         DefiningBlocks.push_back(SI->getParent());
132         AllocaPointerVal = SI->getOperand(0);
133         OnlyStore = SI;
134       } else {
135         LoadInst *LI = cast<LoadInst>(User);
136         // Otherwise it must be a load instruction, keep track of variable
137         // reads.
138         UsingBlocks.push_back(LI->getParent());
139         AllocaPointerVal = LI;
140       }
141 
142       if (OnlyUsedInOneBlock) {
143         if (!OnlyBlock)
144           OnlyBlock = User->getParent();
145         else if (OnlyBlock != User->getParent())
146           OnlyUsedInOneBlock = false;
147       }
148     }
149 
150     DbgDeclare = FindAllocaDbgDeclare(AI);
151   }
152 };
153 
154 // Data package used by RenamePass()
155 class RenamePassData {
156 public:
157   typedef std::vector<Value *> ValVector;
158 
159   RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
160   RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
161       : BB(B), Pred(P), Values(V) {}
162   BasicBlock *BB;
163   BasicBlock *Pred;
164   ValVector Values;
165 
166   void swap(RenamePassData &RHS) {
167     std::swap(BB, RHS.BB);
168     std::swap(Pred, RHS.Pred);
169     Values.swap(RHS.Values);
170   }
171 };
172 
173 /// \brief This assigns and keeps a per-bb relative ordering of load/store
174 /// instructions in the block that directly load or store an alloca.
175 ///
176 /// This functionality is important because it avoids scanning large basic
177 /// blocks multiple times when promoting many allocas in the same block.
178 class LargeBlockInfo {
179   /// \brief For each instruction that we track, keep the index of the
180   /// instruction.
181   ///
182   /// The index starts out as the number of the instruction from the start of
183   /// the block.
184   DenseMap<const Instruction *, unsigned> InstNumbers;
185 
186 public:
187 
188   /// This code only looks at accesses to allocas.
189   static bool isInterestingInstruction(const Instruction *I) {
190     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
191            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
192   }
193 
194   /// Get or calculate the index of the specified instruction.
195   unsigned getInstructionIndex(const Instruction *I) {
196     assert(isInterestingInstruction(I) &&
197            "Not a load/store to/from an alloca?");
198 
199     // If we already have this instruction number, return it.
200     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
201     if (It != InstNumbers.end())
202       return It->second;
203 
204     // Scan the whole block to get the instruction.  This accumulates
205     // information for every interesting instruction in the block, in order to
206     // avoid gratuitus rescans.
207     const BasicBlock *BB = I->getParent();
208     unsigned InstNo = 0;
209     for (const Instruction &BBI : *BB)
210       if (isInterestingInstruction(&BBI))
211         InstNumbers[&BBI] = InstNo++;
212     It = InstNumbers.find(I);
213 
214     assert(It != InstNumbers.end() && "Didn't insert instruction?");
215     return It->second;
216   }
217 
218   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
219 
220   void clear() { InstNumbers.clear(); }
221 };
222 
223 struct PromoteMem2Reg {
224   /// The alloca instructions being promoted.
225   std::vector<AllocaInst *> Allocas;
226   DominatorTree &DT;
227   DIBuilder DIB;
228 
229   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
230   AssumptionCache *AC;
231 
232   /// Reverse mapping of Allocas.
233   DenseMap<AllocaInst *, unsigned> AllocaLookup;
234 
235   /// \brief The PhiNodes we're adding.
236   ///
237   /// That map is used to simplify some Phi nodes as we iterate over it, so
238   /// it should have deterministic iterators.  We could use a MapVector, but
239   /// since we already maintain a map from BasicBlock* to a stable numbering
240   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
241   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
242 
243   /// For each PHI node, keep track of which entry in Allocas it corresponds
244   /// to.
245   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
246 
247   /// If we are updating an AliasSetTracker, then for each alloca that is of
248   /// pointer type, we keep track of what to copyValue to the inserted PHI
249   /// nodes here.
250   std::vector<Value *> PointerAllocaValues;
251 
252   /// For each alloca, we keep track of the dbg.declare intrinsic that
253   /// describes it, if any, so that we can convert it to a dbg.value
254   /// intrinsic if the alloca gets promoted.
255   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
256 
257   /// The set of basic blocks the renamer has already visited.
258   ///
259   SmallPtrSet<BasicBlock *, 16> Visited;
260 
261   /// Contains a stable numbering of basic blocks to avoid non-determinstic
262   /// behavior.
263   DenseMap<BasicBlock *, unsigned> BBNumbers;
264 
265   /// Lazily compute the number of predecessors a block has.
266   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
267 
268 public:
269   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
270                  AssumptionCache *AC)
271       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
272         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
273         AC(AC) {}
274 
275   void run();
276 
277 private:
278   void RemoveFromAllocasList(unsigned &AllocaIdx) {
279     Allocas[AllocaIdx] = Allocas.back();
280     Allocas.pop_back();
281     --AllocaIdx;
282   }
283 
284   unsigned getNumPreds(const BasicBlock *BB) {
285     unsigned &NP = BBNumPreds[BB];
286     if (NP == 0)
287       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
288     return NP - 1;
289   }
290 
291   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
292                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
293                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
294   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
295                   RenamePassData::ValVector &IncVals,
296                   std::vector<RenamePassData> &Worklist);
297   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
298 };
299 
300 } // end of anonymous namespace
301 
302 /// Given a LoadInst LI this adds assume(LI != null) after it.
303 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
304   Function *AssumeIntrinsic =
305       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
306   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
307                                        Constant::getNullValue(LI->getType()));
308   LoadNotNull->insertAfter(LI);
309   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
310   CI->insertAfter(LoadNotNull);
311   AC->registerAssumption(CI);
312 }
313 
314 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
315   // Knowing that this alloca is promotable, we know that it's safe to kill all
316   // instructions except for load and store.
317 
318   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
319     Instruction *I = cast<Instruction>(*UI);
320     ++UI;
321     if (isa<LoadInst>(I) || isa<StoreInst>(I))
322       continue;
323 
324     if (!I->getType()->isVoidTy()) {
325       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
326       // Follow the use/def chain to erase them now instead of leaving it for
327       // dead code elimination later.
328       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
329         Instruction *Inst = cast<Instruction>(*UUI);
330         ++UUI;
331         Inst->eraseFromParent();
332       }
333     }
334     I->eraseFromParent();
335   }
336 }
337 
338 /// \brief Rewrite as many loads as possible given a single store.
339 ///
340 /// When there is only a single store, we can use the domtree to trivially
341 /// replace all of the dominated loads with the stored value. Do so, and return
342 /// true if this has successfully promoted the alloca entirely. If this returns
343 /// false there were some loads which were not dominated by the single store
344 /// and thus must be phi-ed with undef. We fall back to the standard alloca
345 /// promotion algorithm in that case.
346 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
347                                      LargeBlockInfo &LBI, DominatorTree &DT,
348                                      AssumptionCache *AC) {
349   StoreInst *OnlyStore = Info.OnlyStore;
350   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
351   BasicBlock *StoreBB = OnlyStore->getParent();
352   int StoreIndex = -1;
353 
354   // Clear out UsingBlocks.  We will reconstruct it here if needed.
355   Info.UsingBlocks.clear();
356 
357   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
358     Instruction *UserInst = cast<Instruction>(*UI++);
359     if (!isa<LoadInst>(UserInst)) {
360       assert(UserInst == OnlyStore && "Should only have load/stores");
361       continue;
362     }
363     LoadInst *LI = cast<LoadInst>(UserInst);
364 
365     // Okay, if we have a load from the alloca, we want to replace it with the
366     // only value stored to the alloca.  We can do this if the value is
367     // dominated by the store.  If not, we use the rest of the mem2reg machinery
368     // to insert the phi nodes as needed.
369     if (!StoringGlobalVal) { // Non-instructions are always dominated.
370       if (LI->getParent() == StoreBB) {
371         // If we have a use that is in the same block as the store, compare the
372         // indices of the two instructions to see which one came first.  If the
373         // load came before the store, we can't handle it.
374         if (StoreIndex == -1)
375           StoreIndex = LBI.getInstructionIndex(OnlyStore);
376 
377         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
378           // Can't handle this load, bail out.
379           Info.UsingBlocks.push_back(StoreBB);
380           continue;
381         }
382 
383       } else if (LI->getParent() != StoreBB &&
384                  !DT.dominates(StoreBB, LI->getParent())) {
385         // If the load and store are in different blocks, use BB dominance to
386         // check their relationships.  If the store doesn't dom the use, bail
387         // out.
388         Info.UsingBlocks.push_back(LI->getParent());
389         continue;
390       }
391     }
392 
393     // Otherwise, we *can* safely rewrite this load.
394     Value *ReplVal = OnlyStore->getOperand(0);
395     // If the replacement value is the load, this must occur in unreachable
396     // code.
397     if (ReplVal == LI)
398       ReplVal = UndefValue::get(LI->getType());
399 
400     // If the load was marked as nonnull we don't want to lose
401     // that information when we erase this Load. So we preserve
402     // it with an assume.
403     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
404         !llvm::isKnownNonNullAt(ReplVal, LI, &DT))
405       addAssumeNonNull(AC, LI);
406 
407     LI->replaceAllUsesWith(ReplVal);
408     LI->eraseFromParent();
409     LBI.deleteValue(LI);
410   }
411 
412   // Finally, after the scan, check to see if the store is all that is left.
413   if (!Info.UsingBlocks.empty())
414     return false; // If not, we'll have to fall back for the remainder.
415 
416   // Record debuginfo for the store and remove the declaration's
417   // debuginfo.
418   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
419     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
420     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
421     DDI->eraseFromParent();
422     LBI.deleteValue(DDI);
423   }
424   // Remove the (now dead) store and alloca.
425   Info.OnlyStore->eraseFromParent();
426   LBI.deleteValue(Info.OnlyStore);
427 
428   AI->eraseFromParent();
429   LBI.deleteValue(AI);
430   return true;
431 }
432 
433 /// Many allocas are only used within a single basic block.  If this is the
434 /// case, avoid traversing the CFG and inserting a lot of potentially useless
435 /// PHI nodes by just performing a single linear pass over the basic block
436 /// using the Alloca.
437 ///
438 /// If we cannot promote this alloca (because it is read before it is written),
439 /// return false.  This is necessary in cases where, due to control flow, the
440 /// alloca is undefined only on some control flow paths.  e.g. code like
441 /// this is correct in LLVM IR:
442 ///  // A is an alloca with no stores so far
443 ///  for (...) {
444 ///    int t = *A;
445 ///    if (!first_iteration)
446 ///      use(t);
447 ///    *A = 42;
448 ///  }
449 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
450                                      LargeBlockInfo &LBI,
451                                      DominatorTree &DT,
452                                      AssumptionCache *AC) {
453   // The trickiest case to handle is when we have large blocks. Because of this,
454   // this code is optimized assuming that large blocks happen.  This does not
455   // significantly pessimize the small block case.  This uses LargeBlockInfo to
456   // make it efficient to get the index of various operations in the block.
457 
458   // Walk the use-def list of the alloca, getting the locations of all stores.
459   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
460   StoresByIndexTy StoresByIndex;
461 
462   for (User *U : AI->users())
463     if (StoreInst *SI = dyn_cast<StoreInst>(U))
464       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
465 
466   // Sort the stores by their index, making it efficient to do a lookup with a
467   // binary search.
468   std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
469 
470   // Walk all of the loads from this alloca, replacing them with the nearest
471   // store above them, if any.
472   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
473     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
474     if (!LI)
475       continue;
476 
477     unsigned LoadIdx = LBI.getInstructionIndex(LI);
478 
479     // Find the nearest store that has a lower index than this load.
480     StoresByIndexTy::iterator I =
481         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
482                          std::make_pair(LoadIdx,
483                                         static_cast<StoreInst *>(nullptr)),
484                          less_first());
485     if (I == StoresByIndex.begin()) {
486       if (StoresByIndex.empty())
487         // If there are no stores, the load takes the undef value.
488         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
489       else
490         // There is no store before this load, bail out (load may be affected
491         // by the following stores - see main comment).
492         return false;
493     } else {
494       // Otherwise, there was a store before this load, the load takes its value.
495       // Note, if the load was marked as nonnull we don't want to lose that
496       // information when we erase it. So we preserve it with an assume.
497       Value *ReplVal = std::prev(I)->second->getOperand(0);
498       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
499           !llvm::isKnownNonNullAt(ReplVal, LI, &DT))
500         addAssumeNonNull(AC, LI);
501 
502       LI->replaceAllUsesWith(ReplVal);
503     }
504 
505     LI->eraseFromParent();
506     LBI.deleteValue(LI);
507   }
508 
509   // Remove the (now dead) stores and alloca.
510   while (!AI->use_empty()) {
511     StoreInst *SI = cast<StoreInst>(AI->user_back());
512     // Record debuginfo for the store before removing it.
513     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
514       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
515       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
516     }
517     SI->eraseFromParent();
518     LBI.deleteValue(SI);
519   }
520 
521   AI->eraseFromParent();
522   LBI.deleteValue(AI);
523 
524   // The alloca's debuginfo can be removed as well.
525   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
526     DDI->eraseFromParent();
527     LBI.deleteValue(DDI);
528   }
529 
530   ++NumLocalPromoted;
531   return true;
532 }
533 
534 void PromoteMem2Reg::run() {
535   Function &F = *DT.getRoot()->getParent();
536 
537   AllocaDbgDeclares.resize(Allocas.size());
538 
539   AllocaInfo Info;
540   LargeBlockInfo LBI;
541   ForwardIDFCalculator IDF(DT);
542 
543   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
544     AllocaInst *AI = Allocas[AllocaNum];
545 
546     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
547     assert(AI->getParent()->getParent() == &F &&
548            "All allocas should be in the same function, which is same as DF!");
549 
550     removeLifetimeIntrinsicUsers(AI);
551 
552     if (AI->use_empty()) {
553       // If there are no uses of the alloca, just delete it now.
554       AI->eraseFromParent();
555 
556       // Remove the alloca from the Allocas list, since it has been processed
557       RemoveFromAllocasList(AllocaNum);
558       ++NumDeadAlloca;
559       continue;
560     }
561 
562     // Calculate the set of read and write-locations for each alloca.  This is
563     // analogous to finding the 'uses' and 'definitions' of each variable.
564     Info.AnalyzeAlloca(AI);
565 
566     // If there is only a single store to this value, replace any loads of
567     // it that are directly dominated by the definition with the value stored.
568     if (Info.DefiningBlocks.size() == 1) {
569       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AC)) {
570         // The alloca has been processed, move on.
571         RemoveFromAllocasList(AllocaNum);
572         ++NumSingleStore;
573         continue;
574       }
575     }
576 
577     // If the alloca is only read and written in one basic block, just perform a
578     // linear sweep over the block to eliminate it.
579     if (Info.OnlyUsedInOneBlock &&
580         promoteSingleBlockAlloca(AI, Info, LBI, DT, AC)) {
581       // The alloca has been processed, move on.
582       RemoveFromAllocasList(AllocaNum);
583       continue;
584     }
585 
586     // If we haven't computed a numbering for the BB's in the function, do so
587     // now.
588     if (BBNumbers.empty()) {
589       unsigned ID = 0;
590       for (auto &BB : F)
591         BBNumbers[&BB] = ID++;
592     }
593 
594     // Remember the dbg.declare intrinsic describing this alloca, if any.
595     if (Info.DbgDeclare)
596       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
597 
598     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
599     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
600 
601     // At this point, we're committed to promoting the alloca using IDF's, and
602     // the standard SSA construction algorithm.  Determine which blocks need PHI
603     // nodes and see if we can optimize out some work by avoiding insertion of
604     // dead phi nodes.
605 
606 
607     // Unique the set of defining blocks for efficient lookup.
608     SmallPtrSet<BasicBlock *, 32> DefBlocks;
609     DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
610 
611     // Determine which blocks the value is live in.  These are blocks which lead
612     // to uses.
613     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
614     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
615 
616     // At this point, we're committed to promoting the alloca using IDF's, and
617     // the standard SSA construction algorithm.  Determine which blocks need phi
618     // nodes and see if we can optimize out some work by avoiding insertion of
619     // dead phi nodes.
620     IDF.setLiveInBlocks(LiveInBlocks);
621     IDF.setDefiningBlocks(DefBlocks);
622     SmallVector<BasicBlock *, 32> PHIBlocks;
623     IDF.calculate(PHIBlocks);
624     if (PHIBlocks.size() > 1)
625       std::sort(PHIBlocks.begin(), PHIBlocks.end(),
626                 [this](BasicBlock *A, BasicBlock *B) {
627                   return BBNumbers.lookup(A) < BBNumbers.lookup(B);
628                 });
629 
630     unsigned CurrentVersion = 0;
631     for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i)
632       QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion);
633   }
634 
635   if (Allocas.empty())
636     return; // All of the allocas must have been trivial!
637 
638   LBI.clear();
639 
640   // Set the incoming values for the basic block to be null values for all of
641   // the alloca's.  We do this in case there is a load of a value that has not
642   // been stored yet.  In this case, it will get this null value.
643   //
644   RenamePassData::ValVector Values(Allocas.size());
645   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
646     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
647 
648   // Walks all basic blocks in the function performing the SSA rename algorithm
649   // and inserting the phi nodes we marked as necessary
650   //
651   std::vector<RenamePassData> RenamePassWorkList;
652   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values));
653   do {
654     RenamePassData RPD;
655     RPD.swap(RenamePassWorkList.back());
656     RenamePassWorkList.pop_back();
657     // RenamePass may add new worklist entries.
658     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
659   } while (!RenamePassWorkList.empty());
660 
661   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
662   Visited.clear();
663 
664   // Remove the allocas themselves from the function.
665   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
666     Instruction *A = Allocas[i];
667 
668     // If there are any uses of the alloca instructions left, they must be in
669     // unreachable basic blocks that were not processed by walking the dominator
670     // tree. Just delete the users now.
671     if (!A->use_empty())
672       A->replaceAllUsesWith(UndefValue::get(A->getType()));
673     A->eraseFromParent();
674   }
675 
676   const DataLayout &DL = F.getParent()->getDataLayout();
677 
678   // Remove alloca's dbg.declare instrinsics from the function.
679   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
680     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
681       DDI->eraseFromParent();
682 
683   // Loop over all of the PHI nodes and see if there are any that we can get
684   // rid of because they merge all of the same incoming values.  This can
685   // happen due to undef values coming into the PHI nodes.  This process is
686   // iterative, because eliminating one PHI node can cause others to be removed.
687   bool EliminatedAPHI = true;
688   while (EliminatedAPHI) {
689     EliminatedAPHI = false;
690 
691     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
692     // simplify and RAUW them as we go.  If it was not, we could add uses to
693     // the values we replace with in a non-deterministic order, thus creating
694     // non-deterministic def->use chains.
695     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
696              I = NewPhiNodes.begin(),
697              E = NewPhiNodes.end();
698          I != E;) {
699       PHINode *PN = I->second;
700 
701       // If this PHI node merges one value and/or undefs, get the value.
702       if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) {
703         PN->replaceAllUsesWith(V);
704         PN->eraseFromParent();
705         NewPhiNodes.erase(I++);
706         EliminatedAPHI = true;
707         continue;
708       }
709       ++I;
710     }
711   }
712 
713   // At this point, the renamer has added entries to PHI nodes for all reachable
714   // code.  Unfortunately, there may be unreachable blocks which the renamer
715   // hasn't traversed.  If this is the case, the PHI nodes may not
716   // have incoming values for all predecessors.  Loop over all PHI nodes we have
717   // created, inserting undef values if they are missing any incoming values.
718   //
719   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
720            I = NewPhiNodes.begin(),
721            E = NewPhiNodes.end();
722        I != E; ++I) {
723     // We want to do this once per basic block.  As such, only process a block
724     // when we find the PHI that is the first entry in the block.
725     PHINode *SomePHI = I->second;
726     BasicBlock *BB = SomePHI->getParent();
727     if (&BB->front() != SomePHI)
728       continue;
729 
730     // Only do work here if there the PHI nodes are missing incoming values.  We
731     // know that all PHI nodes that were inserted in a block will have the same
732     // number of incoming values, so we can just check any of them.
733     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
734       continue;
735 
736     // Get the preds for BB.
737     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
738 
739     // Ok, now we know that all of the PHI nodes are missing entries for some
740     // basic blocks.  Start by sorting the incoming predecessors for efficient
741     // access.
742     std::sort(Preds.begin(), Preds.end());
743 
744     // Now we loop through all BB's which have entries in SomePHI and remove
745     // them from the Preds list.
746     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
747       // Do a log(n) search of the Preds list for the entry we want.
748       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
749           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
750       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
751              "PHI node has entry for a block which is not a predecessor!");
752 
753       // Remove the entry
754       Preds.erase(EntIt);
755     }
756 
757     // At this point, the blocks left in the preds list must have dummy
758     // entries inserted into every PHI nodes for the block.  Update all the phi
759     // nodes in this block that we are inserting (there could be phis before
760     // mem2reg runs).
761     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
762     BasicBlock::iterator BBI = BB->begin();
763     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
764            SomePHI->getNumIncomingValues() == NumBadPreds) {
765       Value *UndefVal = UndefValue::get(SomePHI->getType());
766       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
767         SomePHI->addIncoming(UndefVal, Preds[pred]);
768     }
769   }
770 
771   NewPhiNodes.clear();
772 }
773 
774 /// \brief Determine which blocks the value is live in.
775 ///
776 /// These are blocks which lead to uses.  Knowing this allows us to avoid
777 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
778 /// inserted phi nodes would be dead).
779 void PromoteMem2Reg::ComputeLiveInBlocks(
780     AllocaInst *AI, AllocaInfo &Info,
781     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
782     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
783 
784   // To determine liveness, we must iterate through the predecessors of blocks
785   // where the def is live.  Blocks are added to the worklist if we need to
786   // check their predecessors.  Start with all the using blocks.
787   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
788                                                     Info.UsingBlocks.end());
789 
790   // If any of the using blocks is also a definition block, check to see if the
791   // definition occurs before or after the use.  If it happens before the use,
792   // the value isn't really live-in.
793   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
794     BasicBlock *BB = LiveInBlockWorklist[i];
795     if (!DefBlocks.count(BB))
796       continue;
797 
798     // Okay, this is a block that both uses and defines the value.  If the first
799     // reference to the alloca is a def (store), then we know it isn't live-in.
800     for (BasicBlock::iterator I = BB->begin();; ++I) {
801       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
802         if (SI->getOperand(1) != AI)
803           continue;
804 
805         // We found a store to the alloca before a load.  The alloca is not
806         // actually live-in here.
807         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
808         LiveInBlockWorklist.pop_back();
809         --i;
810         --e;
811         break;
812       }
813 
814       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
815         if (LI->getOperand(0) != AI)
816           continue;
817 
818         // Okay, we found a load before a store to the alloca.  It is actually
819         // live into this block.
820         break;
821       }
822     }
823   }
824 
825   // Now that we have a set of blocks where the phi is live-in, recursively add
826   // their predecessors until we find the full region the value is live.
827   while (!LiveInBlockWorklist.empty()) {
828     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
829 
830     // The block really is live in here, insert it into the set.  If already in
831     // the set, then it has already been processed.
832     if (!LiveInBlocks.insert(BB).second)
833       continue;
834 
835     // Since the value is live into BB, it is either defined in a predecessor or
836     // live into it to.  Add the preds to the worklist unless they are a
837     // defining block.
838     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
839       BasicBlock *P = *PI;
840 
841       // The value is not live into a predecessor if it defines the value.
842       if (DefBlocks.count(P))
843         continue;
844 
845       // Otherwise it is, add to the worklist.
846       LiveInBlockWorklist.push_back(P);
847     }
848   }
849 }
850 
851 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
852 ///
853 /// Returns true if there wasn't already a phi-node for that variable
854 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
855                                   unsigned &Version) {
856   // Look up the basic-block in question.
857   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
858 
859   // If the BB already has a phi node added for the i'th alloca then we're done!
860   if (PN)
861     return false;
862 
863   // Create a PhiNode using the dereferenced type... and add the phi-node to the
864   // BasicBlock.
865   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
866                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
867                        &BB->front());
868   ++NumPHIInsert;
869   PhiToAllocaMap[PN] = AllocaNo;
870   return true;
871 }
872 
873 /// \brief Recursively traverse the CFG of the function, renaming loads and
874 /// stores to the allocas which we are promoting.
875 ///
876 /// IncomingVals indicates what value each Alloca contains on exit from the
877 /// predecessor block Pred.
878 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
879                                 RenamePassData::ValVector &IncomingVals,
880                                 std::vector<RenamePassData> &Worklist) {
881 NextIteration:
882   // If we are inserting any phi nodes into this BB, they will already be in the
883   // block.
884   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
885     // If we have PHI nodes to update, compute the number of edges from Pred to
886     // BB.
887     if (PhiToAllocaMap.count(APN)) {
888       // We want to be able to distinguish between PHI nodes being inserted by
889       // this invocation of mem2reg from those phi nodes that already existed in
890       // the IR before mem2reg was run.  We determine that APN is being inserted
891       // because it is missing incoming edges.  All other PHI nodes being
892       // inserted by this pass of mem2reg will have the same number of incoming
893       // operands so far.  Remember this count.
894       unsigned NewPHINumOperands = APN->getNumOperands();
895 
896       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
897       assert(NumEdges && "Must be at least one edge from Pred to BB!");
898 
899       // Add entries for all the phis.
900       BasicBlock::iterator PNI = BB->begin();
901       do {
902         unsigned AllocaNo = PhiToAllocaMap[APN];
903 
904         // Add N incoming values to the PHI node.
905         for (unsigned i = 0; i != NumEdges; ++i)
906           APN->addIncoming(IncomingVals[AllocaNo], Pred);
907 
908         // The currently active variable for this block is now the PHI.
909         IncomingVals[AllocaNo] = APN;
910         if (DbgDeclareInst *DDI = AllocaDbgDeclares[AllocaNo])
911           ConvertDebugDeclareToDebugValue(DDI, APN, DIB);
912 
913         // Get the next phi node.
914         ++PNI;
915         APN = dyn_cast<PHINode>(PNI);
916         if (!APN)
917           break;
918 
919         // Verify that it is missing entries.  If not, it is not being inserted
920         // by this mem2reg invocation so we want to ignore it.
921       } while (APN->getNumOperands() == NewPHINumOperands);
922     }
923   }
924 
925   // Don't revisit blocks.
926   if (!Visited.insert(BB).second)
927     return;
928 
929   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
930     Instruction *I = &*II++; // get the instruction, increment iterator
931 
932     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
933       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
934       if (!Src)
935         continue;
936 
937       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
938       if (AI == AllocaLookup.end())
939         continue;
940 
941       Value *V = IncomingVals[AI->second];
942 
943       // If the load was marked as nonnull we don't want to lose
944       // that information when we erase this Load. So we preserve
945       // it with an assume.
946       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
947           !llvm::isKnownNonNullAt(V, LI, &DT))
948         addAssumeNonNull(AC, LI);
949 
950       // Anything using the load now uses the current value.
951       LI->replaceAllUsesWith(V);
952       BB->getInstList().erase(LI);
953     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
954       // Delete this instruction and mark the name as the current holder of the
955       // value
956       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
957       if (!Dest)
958         continue;
959 
960       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
961       if (ai == AllocaLookup.end())
962         continue;
963 
964       // what value were we writing?
965       IncomingVals[ai->second] = SI->getOperand(0);
966       // Record debuginfo for the store before removing it.
967       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
968         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
969       BB->getInstList().erase(SI);
970     }
971   }
972 
973   // 'Recurse' to our successors.
974   succ_iterator I = succ_begin(BB), E = succ_end(BB);
975   if (I == E)
976     return;
977 
978   // Keep track of the successors so we don't visit the same successor twice
979   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
980 
981   // Handle the first successor without using the worklist.
982   VisitedSuccs.insert(*I);
983   Pred = BB;
984   BB = *I;
985   ++I;
986 
987   for (; I != E; ++I)
988     if (VisitedSuccs.insert(*I).second)
989       Worklist.emplace_back(*I, Pred, IncomingVals);
990 
991   goto NextIteration;
992 }
993 
994 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
995                            AssumptionCache *AC) {
996   // If there is nothing to do, bail out...
997   if (Allocas.empty())
998     return;
999 
1000   PromoteMem2Reg(Allocas, DT, AC).run();
1001 }
1002