1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using dominator frontiers to place PHI nodes, then traversing 13 // the function in depth-first order to rewrite loads and stores as appropriate. 14 // This is just the standard SSA construction algorithm to construct "pruned" 15 // SSA form. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "mem2reg" 20 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 21 #include "llvm/Constants.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/Function.h" 24 #include "llvm/Instructions.h" 25 #include "llvm/IntrinsicInst.h" 26 #include "llvm/Analysis/Dominators.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/CFG.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 38 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 39 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 40 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 41 42 namespace llvm { 43 template<> 44 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > { 45 typedef std::pair<BasicBlock*, unsigned> EltTy; 46 static inline EltTy getEmptyKey() { 47 return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U); 48 } 49 static inline EltTy getTombstoneKey() { 50 return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U); 51 } 52 static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) { 53 return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2; 54 } 55 static bool isEqual(const EltTy &LHS, const EltTy &RHS) { 56 return LHS == RHS; 57 } 58 static bool isPod() { return true; } 59 }; 60 } 61 62 /// isAllocaPromotable - Return true if this alloca is legal for promotion. 63 /// This is true if there are only loads and stores to the alloca. 64 /// 65 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 66 // FIXME: If the memory unit is of pointer or integer type, we can permit 67 // assignments to subsections of the memory unit. 68 69 // Only allow direct and non-volatile loads and stores... 70 for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end(); 71 UI != UE; ++UI) // Loop over all of the uses of the alloca 72 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 73 if (LI->isVolatile()) 74 return false; 75 } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 76 if (SI->getOperand(0) == AI) 77 return false; // Don't allow a store OF the AI, only INTO the AI. 78 if (SI->isVolatile()) 79 return false; 80 } else if (const BitCastInst *BC = dyn_cast<BitCastInst>(*UI)) { 81 // A bitcast that does not feed into debug info inhibits promotion. 82 if (!BC->hasOneUse() || !isa<DbgInfoIntrinsic>(*BC->use_begin())) 83 return false; 84 // If the only use is by debug info, this alloca will not exist in 85 // non-debug code, so don't try to promote; this ensures the same 86 // codegen with debug info. Otherwise, debug info should not 87 // inhibit promotion (but we must examine other uses). 88 if (AI->hasOneUse()) 89 return false; 90 } else { 91 return false; 92 } 93 94 return true; 95 } 96 97 namespace { 98 struct AllocaInfo; 99 100 // Data package used by RenamePass() 101 class RenamePassData { 102 public: 103 typedef std::vector<Value *> ValVector; 104 105 RenamePassData() {} 106 RenamePassData(BasicBlock *B, BasicBlock *P, 107 const ValVector &V) : BB(B), Pred(P), Values(V) {} 108 BasicBlock *BB; 109 BasicBlock *Pred; 110 ValVector Values; 111 112 void swap(RenamePassData &RHS) { 113 std::swap(BB, RHS.BB); 114 std::swap(Pred, RHS.Pred); 115 Values.swap(RHS.Values); 116 } 117 }; 118 119 /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of 120 /// load/store instructions in the block that directly load or store an alloca. 121 /// 122 /// This functionality is important because it avoids scanning large basic 123 /// blocks multiple times when promoting many allocas in the same block. 124 class LargeBlockInfo { 125 /// InstNumbers - For each instruction that we track, keep the index of the 126 /// instruction. The index starts out as the number of the instruction from 127 /// the start of the block. 128 DenseMap<const Instruction *, unsigned> InstNumbers; 129 public: 130 131 /// isInterestingInstruction - This code only looks at accesses to allocas. 132 static bool isInterestingInstruction(const Instruction *I) { 133 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 134 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 135 } 136 137 /// getInstructionIndex - Get or calculate the index of the specified 138 /// instruction. 139 unsigned getInstructionIndex(const Instruction *I) { 140 assert(isInterestingInstruction(I) && 141 "Not a load/store to/from an alloca?"); 142 143 // If we already have this instruction number, return it. 144 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 145 if (It != InstNumbers.end()) return It->second; 146 147 // Scan the whole block to get the instruction. This accumulates 148 // information for every interesting instruction in the block, in order to 149 // avoid gratuitus rescans. 150 const BasicBlock *BB = I->getParent(); 151 unsigned InstNo = 0; 152 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); 153 BBI != E; ++BBI) 154 if (isInterestingInstruction(BBI)) 155 InstNumbers[BBI] = InstNo++; 156 It = InstNumbers.find(I); 157 158 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 159 return It->second; 160 } 161 162 void deleteValue(const Instruction *I) { 163 InstNumbers.erase(I); 164 } 165 166 void clear() { 167 InstNumbers.clear(); 168 } 169 }; 170 171 struct PromoteMem2Reg { 172 /// Allocas - The alloca instructions being promoted. 173 /// 174 std::vector<AllocaInst*> Allocas; 175 DominatorTree &DT; 176 DominanceFrontier &DF; 177 178 /// AST - An AliasSetTracker object to update. If null, don't update it. 179 /// 180 AliasSetTracker *AST; 181 182 /// AllocaLookup - Reverse mapping of Allocas. 183 /// 184 std::map<AllocaInst*, unsigned> AllocaLookup; 185 186 /// NewPhiNodes - The PhiNodes we're adding. 187 /// 188 DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes; 189 190 /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas 191 /// it corresponds to. 192 DenseMap<PHINode*, unsigned> PhiToAllocaMap; 193 194 /// PointerAllocaValues - If we are updating an AliasSetTracker, then for 195 /// each alloca that is of pointer type, we keep track of what to copyValue 196 /// to the inserted PHI nodes here. 197 /// 198 std::vector<Value*> PointerAllocaValues; 199 200 /// Visited - The set of basic blocks the renamer has already visited. 201 /// 202 SmallPtrSet<BasicBlock*, 16> Visited; 203 204 /// BBNumbers - Contains a stable numbering of basic blocks to avoid 205 /// non-determinstic behavior. 206 DenseMap<BasicBlock*, unsigned> BBNumbers; 207 208 /// BBNumPreds - Lazily compute the number of predecessors a block has. 209 DenseMap<const BasicBlock*, unsigned> BBNumPreds; 210 public: 211 PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt, 212 DominanceFrontier &df, AliasSetTracker *ast) 213 : Allocas(A), DT(dt), DF(df), AST(ast) {} 214 215 void run(); 216 217 /// properlyDominates - Return true if I1 properly dominates I2. 218 /// 219 bool properlyDominates(Instruction *I1, Instruction *I2) const { 220 if (InvokeInst *II = dyn_cast<InvokeInst>(I1)) 221 I1 = II->getNormalDest()->begin(); 222 return DT.properlyDominates(I1->getParent(), I2->getParent()); 223 } 224 225 /// dominates - Return true if BB1 dominates BB2 using the DominatorTree. 226 /// 227 bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { 228 return DT.dominates(BB1, BB2); 229 } 230 231 private: 232 void RemoveFromAllocasList(unsigned &AllocaIdx) { 233 Allocas[AllocaIdx] = Allocas.back(); 234 Allocas.pop_back(); 235 --AllocaIdx; 236 } 237 238 unsigned getNumPreds(const BasicBlock *BB) { 239 unsigned &NP = BBNumPreds[BB]; 240 if (NP == 0) 241 NP = std::distance(pred_begin(BB), pred_end(BB))+1; 242 return NP-1; 243 } 244 245 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 246 AllocaInfo &Info); 247 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 248 const SmallPtrSet<BasicBlock*, 32> &DefBlocks, 249 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks); 250 251 void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 252 LargeBlockInfo &LBI); 253 void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, 254 LargeBlockInfo &LBI); 255 256 257 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 258 RenamePassData::ValVector &IncVals, 259 std::vector<RenamePassData> &Worklist); 260 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version, 261 SmallPtrSet<PHINode*, 16> &InsertedPHINodes); 262 }; 263 264 struct AllocaInfo { 265 std::vector<BasicBlock*> DefiningBlocks; 266 std::vector<BasicBlock*> UsingBlocks; 267 268 StoreInst *OnlyStore; 269 BasicBlock *OnlyBlock; 270 bool OnlyUsedInOneBlock; 271 272 Value *AllocaPointerVal; 273 274 void clear() { 275 DefiningBlocks.clear(); 276 UsingBlocks.clear(); 277 OnlyStore = 0; 278 OnlyBlock = 0; 279 OnlyUsedInOneBlock = true; 280 AllocaPointerVal = 0; 281 } 282 283 /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our 284 /// ivars. 285 void AnalyzeAlloca(AllocaInst *AI) { 286 clear(); 287 288 // As we scan the uses of the alloca instruction, keep track of stores, 289 // and decide whether all of the loads and stores to the alloca are within 290 // the same basic block. 291 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 292 UI != E;) { 293 Instruction *User = cast<Instruction>(*UI++); 294 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { 295 // Remove any uses of this alloca in DbgInfoInstrinsics. 296 assert(BC->hasOneUse() && "Unexpected alloca uses!"); 297 DbgInfoIntrinsic *DI = cast<DbgInfoIntrinsic>(*BC->use_begin()); 298 DI->eraseFromParent(); 299 BC->eraseFromParent(); 300 continue; 301 } 302 303 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 304 // Remember the basic blocks which define new values for the alloca 305 DefiningBlocks.push_back(SI->getParent()); 306 AllocaPointerVal = SI->getOperand(0); 307 OnlyStore = SI; 308 } else { 309 LoadInst *LI = cast<LoadInst>(User); 310 // Otherwise it must be a load instruction, keep track of variable 311 // reads. 312 UsingBlocks.push_back(LI->getParent()); 313 AllocaPointerVal = LI; 314 } 315 316 if (OnlyUsedInOneBlock) { 317 if (OnlyBlock == 0) 318 OnlyBlock = User->getParent(); 319 else if (OnlyBlock != User->getParent()) 320 OnlyUsedInOneBlock = false; 321 } 322 } 323 } 324 }; 325 } // end of anonymous namespace 326 327 328 void PromoteMem2Reg::run() { 329 Function &F = *DF.getRoot()->getParent(); 330 331 if (AST) PointerAllocaValues.resize(Allocas.size()); 332 333 AllocaInfo Info; 334 LargeBlockInfo LBI; 335 336 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 337 AllocaInst *AI = Allocas[AllocaNum]; 338 339 assert(isAllocaPromotable(AI) && 340 "Cannot promote non-promotable alloca!"); 341 assert(AI->getParent()->getParent() == &F && 342 "All allocas should be in the same function, which is same as DF!"); 343 344 if (AI->use_empty()) { 345 // If there are no uses of the alloca, just delete it now. 346 if (AST) AST->deleteValue(AI); 347 AI->eraseFromParent(); 348 349 // Remove the alloca from the Allocas list, since it has been processed 350 RemoveFromAllocasList(AllocaNum); 351 ++NumDeadAlloca; 352 continue; 353 } 354 355 // Calculate the set of read and write-locations for each alloca. This is 356 // analogous to finding the 'uses' and 'definitions' of each variable. 357 Info.AnalyzeAlloca(AI); 358 359 // If there is only a single store to this value, replace any loads of 360 // it that are directly dominated by the definition with the value stored. 361 if (Info.DefiningBlocks.size() == 1) { 362 RewriteSingleStoreAlloca(AI, Info, LBI); 363 364 // Finally, after the scan, check to see if the store is all that is left. 365 if (Info.UsingBlocks.empty()) { 366 // Remove the (now dead) store and alloca. 367 Info.OnlyStore->eraseFromParent(); 368 LBI.deleteValue(Info.OnlyStore); 369 370 if (AST) AST->deleteValue(AI); 371 AI->eraseFromParent(); 372 LBI.deleteValue(AI); 373 374 // The alloca has been processed, move on. 375 RemoveFromAllocasList(AllocaNum); 376 377 ++NumSingleStore; 378 continue; 379 } 380 } 381 382 // If the alloca is only read and written in one basic block, just perform a 383 // linear sweep over the block to eliminate it. 384 if (Info.OnlyUsedInOneBlock) { 385 PromoteSingleBlockAlloca(AI, Info, LBI); 386 387 // Finally, after the scan, check to see if the stores are all that is 388 // left. 389 if (Info.UsingBlocks.empty()) { 390 391 // Remove the (now dead) stores and alloca. 392 while (!AI->use_empty()) { 393 StoreInst *SI = cast<StoreInst>(AI->use_back()); 394 SI->eraseFromParent(); 395 LBI.deleteValue(SI); 396 } 397 398 if (AST) AST->deleteValue(AI); 399 AI->eraseFromParent(); 400 LBI.deleteValue(AI); 401 402 // The alloca has been processed, move on. 403 RemoveFromAllocasList(AllocaNum); 404 405 ++NumLocalPromoted; 406 continue; 407 } 408 } 409 410 // If we haven't computed a numbering for the BB's in the function, do so 411 // now. 412 if (BBNumbers.empty()) { 413 unsigned ID = 0; 414 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 415 BBNumbers[I] = ID++; 416 } 417 418 // If we have an AST to keep updated, remember some pointer value that is 419 // stored into the alloca. 420 if (AST) 421 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; 422 423 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 424 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 425 426 // At this point, we're committed to promoting the alloca using IDF's, and 427 // the standard SSA construction algorithm. Determine which blocks need PHI 428 // nodes and see if we can optimize out some work by avoiding insertion of 429 // dead phi nodes. 430 DetermineInsertionPoint(AI, AllocaNum, Info); 431 } 432 433 if (Allocas.empty()) 434 return; // All of the allocas must have been trivial! 435 436 LBI.clear(); 437 438 439 // Set the incoming values for the basic block to be null values for all of 440 // the alloca's. We do this in case there is a load of a value that has not 441 // been stored yet. In this case, it will get this null value. 442 // 443 RenamePassData::ValVector Values(Allocas.size()); 444 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 445 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 446 447 // Walks all basic blocks in the function performing the SSA rename algorithm 448 // and inserting the phi nodes we marked as necessary 449 // 450 std::vector<RenamePassData> RenamePassWorkList; 451 RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); 452 while (!RenamePassWorkList.empty()) { 453 RenamePassData RPD; 454 RPD.swap(RenamePassWorkList.back()); 455 RenamePassWorkList.pop_back(); 456 // RenamePass may add new worklist entries. 457 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 458 } 459 460 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 461 Visited.clear(); 462 463 // Remove the allocas themselves from the function. 464 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 465 Instruction *A = Allocas[i]; 466 467 // If there are any uses of the alloca instructions left, they must be in 468 // sections of dead code that were not processed on the dominance frontier. 469 // Just delete the users now. 470 // 471 if (!A->use_empty()) 472 A->replaceAllUsesWith(UndefValue::get(A->getType())); 473 if (AST) AST->deleteValue(A); 474 A->eraseFromParent(); 475 } 476 477 478 // Loop over all of the PHI nodes and see if there are any that we can get 479 // rid of because they merge all of the same incoming values. This can 480 // happen due to undef values coming into the PHI nodes. This process is 481 // iterative, because eliminating one PHI node can cause others to be removed. 482 bool EliminatedAPHI = true; 483 while (EliminatedAPHI) { 484 EliminatedAPHI = false; 485 486 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I = 487 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { 488 PHINode *PN = I->second; 489 490 // If this PHI node merges one value and/or undefs, get the value. 491 if (Value *V = PN->hasConstantValue(&DT)) { 492 if (AST && isa<PointerType>(PN->getType())) 493 AST->deleteValue(PN); 494 PN->replaceAllUsesWith(V); 495 PN->eraseFromParent(); 496 NewPhiNodes.erase(I++); 497 EliminatedAPHI = true; 498 continue; 499 } 500 ++I; 501 } 502 } 503 504 // At this point, the renamer has added entries to PHI nodes for all reachable 505 // code. Unfortunately, there may be unreachable blocks which the renamer 506 // hasn't traversed. If this is the case, the PHI nodes may not 507 // have incoming values for all predecessors. Loop over all PHI nodes we have 508 // created, inserting undef values if they are missing any incoming values. 509 // 510 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I = 511 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { 512 // We want to do this once per basic block. As such, only process a block 513 // when we find the PHI that is the first entry in the block. 514 PHINode *SomePHI = I->second; 515 BasicBlock *BB = SomePHI->getParent(); 516 if (&BB->front() != SomePHI) 517 continue; 518 519 // Only do work here if there the PHI nodes are missing incoming values. We 520 // know that all PHI nodes that were inserted in a block will have the same 521 // number of incoming values, so we can just check any of them. 522 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 523 continue; 524 525 // Get the preds for BB. 526 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 527 528 // Ok, now we know that all of the PHI nodes are missing entries for some 529 // basic blocks. Start by sorting the incoming predecessors for efficient 530 // access. 531 std::sort(Preds.begin(), Preds.end()); 532 533 // Now we loop through all BB's which have entries in SomePHI and remove 534 // them from the Preds list. 535 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 536 // Do a log(n) search of the Preds list for the entry we want. 537 SmallVector<BasicBlock*, 16>::iterator EntIt = 538 std::lower_bound(Preds.begin(), Preds.end(), 539 SomePHI->getIncomingBlock(i)); 540 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& 541 "PHI node has entry for a block which is not a predecessor!"); 542 543 // Remove the entry 544 Preds.erase(EntIt); 545 } 546 547 // At this point, the blocks left in the preds list must have dummy 548 // entries inserted into every PHI nodes for the block. Update all the phi 549 // nodes in this block that we are inserting (there could be phis before 550 // mem2reg runs). 551 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 552 BasicBlock::iterator BBI = BB->begin(); 553 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 554 SomePHI->getNumIncomingValues() == NumBadPreds) { 555 Value *UndefVal = UndefValue::get(SomePHI->getType()); 556 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) 557 SomePHI->addIncoming(UndefVal, Preds[pred]); 558 } 559 } 560 561 NewPhiNodes.clear(); 562 } 563 564 565 /// ComputeLiveInBlocks - Determine which blocks the value is live in. These 566 /// are blocks which lead to uses. Knowing this allows us to avoid inserting 567 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes 568 /// would be dead). 569 void PromoteMem2Reg:: 570 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 571 const SmallPtrSet<BasicBlock*, 32> &DefBlocks, 572 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) { 573 574 // To determine liveness, we must iterate through the predecessors of blocks 575 // where the def is live. Blocks are added to the worklist if we need to 576 // check their predecessors. Start with all the using blocks. 577 SmallVector<BasicBlock*, 64> LiveInBlockWorklist; 578 LiveInBlockWorklist.insert(LiveInBlockWorklist.end(), 579 Info.UsingBlocks.begin(), Info.UsingBlocks.end()); 580 581 // If any of the using blocks is also a definition block, check to see if the 582 // definition occurs before or after the use. If it happens before the use, 583 // the value isn't really live-in. 584 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 585 BasicBlock *BB = LiveInBlockWorklist[i]; 586 if (!DefBlocks.count(BB)) continue; 587 588 // Okay, this is a block that both uses and defines the value. If the first 589 // reference to the alloca is a def (store), then we know it isn't live-in. 590 for (BasicBlock::iterator I = BB->begin(); ; ++I) { 591 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 592 if (SI->getOperand(1) != AI) continue; 593 594 // We found a store to the alloca before a load. The alloca is not 595 // actually live-in here. 596 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 597 LiveInBlockWorklist.pop_back(); 598 --i, --e; 599 break; 600 } 601 602 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 603 if (LI->getOperand(0) != AI) continue; 604 605 // Okay, we found a load before a store to the alloca. It is actually 606 // live into this block. 607 break; 608 } 609 } 610 } 611 612 // Now that we have a set of blocks where the phi is live-in, recursively add 613 // their predecessors until we find the full region the value is live. 614 while (!LiveInBlockWorklist.empty()) { 615 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 616 617 // The block really is live in here, insert it into the set. If already in 618 // the set, then it has already been processed. 619 if (!LiveInBlocks.insert(BB)) 620 continue; 621 622 // Since the value is live into BB, it is either defined in a predecessor or 623 // live into it to. Add the preds to the worklist unless they are a 624 // defining block. 625 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 626 BasicBlock *P = *PI; 627 628 // The value is not live into a predecessor if it defines the value. 629 if (DefBlocks.count(P)) 630 continue; 631 632 // Otherwise it is, add to the worklist. 633 LiveInBlockWorklist.push_back(P); 634 } 635 } 636 } 637 638 /// DetermineInsertionPoint - At this point, we're committed to promoting the 639 /// alloca using IDF's, and the standard SSA construction algorithm. Determine 640 /// which blocks need phi nodes and see if we can optimize out some work by 641 /// avoiding insertion of dead phi nodes. 642 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, 643 AllocaInfo &Info) { 644 645 // Unique the set of defining blocks for efficient lookup. 646 SmallPtrSet<BasicBlock*, 32> DefBlocks; 647 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 648 649 // Determine which blocks the value is live in. These are blocks which lead 650 // to uses. 651 SmallPtrSet<BasicBlock*, 32> LiveInBlocks; 652 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 653 654 // Compute the locations where PhiNodes need to be inserted. Look at the 655 // dominance frontier of EACH basic-block we have a write in. 656 unsigned CurrentVersion = 0; 657 SmallPtrSet<PHINode*, 16> InsertedPHINodes; 658 std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks; 659 while (!Info.DefiningBlocks.empty()) { 660 BasicBlock *BB = Info.DefiningBlocks.back(); 661 Info.DefiningBlocks.pop_back(); 662 663 // Look up the DF for this write, add it to defining blocks. 664 DominanceFrontier::const_iterator it = DF.find(BB); 665 if (it == DF.end()) continue; 666 667 const DominanceFrontier::DomSetType &S = it->second; 668 669 // In theory we don't need the indirection through the DFBlocks vector. 670 // In practice, the order of calling QueuePhiNode would depend on the 671 // (unspecified) ordering of basic blocks in the dominance frontier, 672 // which would give PHI nodes non-determinstic subscripts. Fix this by 673 // processing blocks in order of the occurance in the function. 674 for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), 675 PE = S.end(); P != PE; ++P) { 676 // If the frontier block is not in the live-in set for the alloca, don't 677 // bother processing it. 678 if (!LiveInBlocks.count(*P)) 679 continue; 680 681 DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P)); 682 } 683 684 // Sort by which the block ordering in the function. 685 if (DFBlocks.size() > 1) 686 std::sort(DFBlocks.begin(), DFBlocks.end()); 687 688 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) { 689 BasicBlock *BB = DFBlocks[i].second; 690 if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes)) 691 Info.DefiningBlocks.push_back(BB); 692 } 693 DFBlocks.clear(); 694 } 695 } 696 697 /// RewriteSingleStoreAlloca - If there is only a single store to this value, 698 /// replace any loads of it that are directly dominated by the definition with 699 /// the value stored. 700 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, 701 AllocaInfo &Info, 702 LargeBlockInfo &LBI) { 703 StoreInst *OnlyStore = Info.OnlyStore; 704 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 705 BasicBlock *StoreBB = OnlyStore->getParent(); 706 int StoreIndex = -1; 707 708 // Clear out UsingBlocks. We will reconstruct it here if needed. 709 Info.UsingBlocks.clear(); 710 711 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { 712 Instruction *UserInst = cast<Instruction>(*UI++); 713 if (!isa<LoadInst>(UserInst)) { 714 assert(UserInst == OnlyStore && "Should only have load/stores"); 715 continue; 716 } 717 LoadInst *LI = cast<LoadInst>(UserInst); 718 719 // Okay, if we have a load from the alloca, we want to replace it with the 720 // only value stored to the alloca. We can do this if the value is 721 // dominated by the store. If not, we use the rest of the mem2reg machinery 722 // to insert the phi nodes as needed. 723 if (!StoringGlobalVal) { // Non-instructions are always dominated. 724 if (LI->getParent() == StoreBB) { 725 // If we have a use that is in the same block as the store, compare the 726 // indices of the two instructions to see which one came first. If the 727 // load came before the store, we can't handle it. 728 if (StoreIndex == -1) 729 StoreIndex = LBI.getInstructionIndex(OnlyStore); 730 731 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 732 // Can't handle this load, bail out. 733 Info.UsingBlocks.push_back(StoreBB); 734 continue; 735 } 736 737 } else if (LI->getParent() != StoreBB && 738 !dominates(StoreBB, LI->getParent())) { 739 // If the load and store are in different blocks, use BB dominance to 740 // check their relationships. If the store doesn't dom the use, bail 741 // out. 742 Info.UsingBlocks.push_back(LI->getParent()); 743 continue; 744 } 745 } 746 747 // Otherwise, we *can* safely rewrite this load. 748 Value *ReplVal = OnlyStore->getOperand(0); 749 // If the replacement value is the load, this must occur in unreachable 750 // code. 751 if (ReplVal == LI) 752 ReplVal = UndefValue::get(LI->getType()); 753 LI->replaceAllUsesWith(ReplVal); 754 if (AST && isa<PointerType>(LI->getType())) 755 AST->deleteValue(LI); 756 LI->eraseFromParent(); 757 LBI.deleteValue(LI); 758 } 759 } 760 761 namespace { 762 763 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the 764 /// first element of a pair. 765 struct StoreIndexSearchPredicate { 766 bool operator()(const std::pair<unsigned, StoreInst*> &LHS, 767 const std::pair<unsigned, StoreInst*> &RHS) { 768 return LHS.first < RHS.first; 769 } 770 }; 771 772 } 773 774 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic 775 /// block. If this is the case, avoid traversing the CFG and inserting a lot of 776 /// potentially useless PHI nodes by just performing a single linear pass over 777 /// the basic block using the Alloca. 778 /// 779 /// If we cannot promote this alloca (because it is read before it is written), 780 /// return true. This is necessary in cases where, due to control flow, the 781 /// alloca is potentially undefined on some control flow paths. e.g. code like 782 /// this is potentially correct: 783 /// 784 /// for (...) { if (c) { A = undef; undef = B; } } 785 /// 786 /// ... so long as A is not used before undef is set. 787 /// 788 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, 789 LargeBlockInfo &LBI) { 790 // The trickiest case to handle is when we have large blocks. Because of this, 791 // this code is optimized assuming that large blocks happen. This does not 792 // significantly pessimize the small block case. This uses LargeBlockInfo to 793 // make it efficient to get the index of various operations in the block. 794 795 // Clear out UsingBlocks. We will reconstruct it here if needed. 796 Info.UsingBlocks.clear(); 797 798 // Walk the use-def list of the alloca, getting the locations of all stores. 799 typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy; 800 StoresByIndexTy StoresByIndex; 801 802 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 803 UI != E; ++UI) 804 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 805 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 806 807 // If there are no stores to the alloca, just replace any loads with undef. 808 if (StoresByIndex.empty()) { 809 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) 810 if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) { 811 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 812 if (AST && isa<PointerType>(LI->getType())) 813 AST->deleteValue(LI); 814 LBI.deleteValue(LI); 815 LI->eraseFromParent(); 816 } 817 return; 818 } 819 820 // Sort the stores by their index, making it efficient to do a lookup with a 821 // binary search. 822 std::sort(StoresByIndex.begin(), StoresByIndex.end()); 823 824 // Walk all of the loads from this alloca, replacing them with the nearest 825 // store above them, if any. 826 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { 827 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 828 if (!LI) continue; 829 830 unsigned LoadIdx = LBI.getInstructionIndex(LI); 831 832 // Find the nearest store that has a lower than this load. 833 StoresByIndexTy::iterator I = 834 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 835 std::pair<unsigned, StoreInst*>(LoadIdx, 0), 836 StoreIndexSearchPredicate()); 837 838 // If there is no store before this load, then we can't promote this load. 839 if (I == StoresByIndex.begin()) { 840 // Can't handle this load, bail out. 841 Info.UsingBlocks.push_back(LI->getParent()); 842 continue; 843 } 844 845 // Otherwise, there was a store before this load, the load takes its value. 846 --I; 847 LI->replaceAllUsesWith(I->second->getOperand(0)); 848 if (AST && isa<PointerType>(LI->getType())) 849 AST->deleteValue(LI); 850 LI->eraseFromParent(); 851 LBI.deleteValue(LI); 852 } 853 } 854 855 856 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific 857 // Alloca returns true if there wasn't already a phi-node for that variable 858 // 859 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 860 unsigned &Version, 861 SmallPtrSet<PHINode*, 16> &InsertedPHINodes) { 862 // Look up the basic-block in question. 863 PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)]; 864 865 // If the BB already has a phi node added for the i'th alloca then we're done! 866 if (PN) return false; 867 868 // Create a PhiNode using the dereferenced type... and add the phi-node to the 869 // BasicBlock. 870 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), 871 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 872 BB->begin()); 873 ++NumPHIInsert; 874 PhiToAllocaMap[PN] = AllocaNo; 875 PN->reserveOperandSpace(getNumPreds(BB)); 876 877 InsertedPHINodes.insert(PN); 878 879 if (AST && isa<PointerType>(PN->getType())) 880 AST->copyValue(PointerAllocaValues[AllocaNo], PN); 881 882 return true; 883 } 884 885 // RenamePass - Recursively traverse the CFG of the function, renaming loads and 886 // stores to the allocas which we are promoting. IncomingVals indicates what 887 // value each Alloca contains on exit from the predecessor block Pred. 888 // 889 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 890 RenamePassData::ValVector &IncomingVals, 891 std::vector<RenamePassData> &Worklist) { 892 NextIteration: 893 // If we are inserting any phi nodes into this BB, they will already be in the 894 // block. 895 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 896 // If we have PHI nodes to update, compute the number of edges from Pred to 897 // BB. 898 if (PhiToAllocaMap.count(APN)) { 899 // We want to be able to distinguish between PHI nodes being inserted by 900 // this invocation of mem2reg from those phi nodes that already existed in 901 // the IR before mem2reg was run. We determine that APN is being inserted 902 // because it is missing incoming edges. All other PHI nodes being 903 // inserted by this pass of mem2reg will have the same number of incoming 904 // operands so far. Remember this count. 905 unsigned NewPHINumOperands = APN->getNumOperands(); 906 907 unsigned NumEdges = 0; 908 for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I) 909 if (*I == BB) 910 ++NumEdges; 911 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 912 913 // Add entries for all the phis. 914 BasicBlock::iterator PNI = BB->begin(); 915 do { 916 unsigned AllocaNo = PhiToAllocaMap[APN]; 917 918 // Add N incoming values to the PHI node. 919 for (unsigned i = 0; i != NumEdges; ++i) 920 APN->addIncoming(IncomingVals[AllocaNo], Pred); 921 922 // The currently active variable for this block is now the PHI. 923 IncomingVals[AllocaNo] = APN; 924 925 // Get the next phi node. 926 ++PNI; 927 APN = dyn_cast<PHINode>(PNI); 928 if (APN == 0) break; 929 930 // Verify that it is missing entries. If not, it is not being inserted 931 // by this mem2reg invocation so we want to ignore it. 932 } while (APN->getNumOperands() == NewPHINumOperands); 933 } 934 } 935 936 // Don't revisit blocks. 937 if (!Visited.insert(BB)) return; 938 939 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) { 940 Instruction *I = II++; // get the instruction, increment iterator 941 942 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 943 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 944 if (!Src) continue; 945 946 std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src); 947 if (AI == AllocaLookup.end()) continue; 948 949 Value *V = IncomingVals[AI->second]; 950 951 // Anything using the load now uses the current value. 952 LI->replaceAllUsesWith(V); 953 if (AST && isa<PointerType>(LI->getType())) 954 AST->deleteValue(LI); 955 BB->getInstList().erase(LI); 956 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 957 // Delete this instruction and mark the name as the current holder of the 958 // value 959 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 960 if (!Dest) continue; 961 962 std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 963 if (ai == AllocaLookup.end()) 964 continue; 965 966 // what value were we writing? 967 IncomingVals[ai->second] = SI->getOperand(0); 968 BB->getInstList().erase(SI); 969 } 970 } 971 972 // 'Recurse' to our successors. 973 succ_iterator I = succ_begin(BB), E = succ_end(BB); 974 if (I == E) return; 975 976 // Keep track of the successors so we don't visit the same successor twice 977 SmallPtrSet<BasicBlock*, 8> VisitedSuccs; 978 979 // Handle the first successor without using the worklist. 980 VisitedSuccs.insert(*I); 981 Pred = BB; 982 BB = *I; 983 ++I; 984 985 for (; I != E; ++I) 986 if (VisitedSuccs.insert(*I)) 987 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); 988 989 goto NextIteration; 990 } 991 992 /// PromoteMemToReg - Promote the specified list of alloca instructions into 993 /// scalar registers, inserting PHI nodes as appropriate. This function makes 994 /// use of DominanceFrontier information. This function does not modify the CFG 995 /// of the function at all. All allocas must be from the same function. 996 /// 997 /// If AST is specified, the specified tracker is updated to reflect changes 998 /// made to the IR. 999 /// 1000 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas, 1001 DominatorTree &DT, DominanceFrontier &DF, 1002 AliasSetTracker *AST) { 1003 // If there is nothing to do, bail out... 1004 if (Allocas.empty()) return; 1005 1006 PromoteMem2Reg(Allocas, DT, DF, AST).run(); 1007 } 1008