1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references.  It promotes
11 // alloca instructions which only have loads and stores as uses.  An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasSetTracker.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
42 #include <algorithm>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "mem2reg"
46 
47 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
48 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
49 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
50 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
51 
52 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
53   // FIXME: If the memory unit is of pointer or integer type, we can permit
54   // assignments to subsections of the memory unit.
55   unsigned AS = AI->getType()->getAddressSpace();
56 
57   // Only allow direct and non-volatile loads and stores...
58   for (const User *U : AI->users()) {
59     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
60       // Note that atomic loads can be transformed; atomic semantics do
61       // not have any meaning for a local alloca.
62       if (LI->isVolatile())
63         return false;
64     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
65       if (SI->getOperand(0) == AI)
66         return false; // Don't allow a store OF the AI, only INTO the AI.
67       // Note that atomic stores can be transformed; atomic semantics do
68       // not have any meaning for a local alloca.
69       if (SI->isVolatile())
70         return false;
71     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
72       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
73           II->getIntrinsicID() != Intrinsic::lifetime_end)
74         return false;
75     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
76       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
77         return false;
78       if (!onlyUsedByLifetimeMarkers(BCI))
79         return false;
80     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
81       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
82         return false;
83       if (!GEPI->hasAllZeroIndices())
84         return false;
85       if (!onlyUsedByLifetimeMarkers(GEPI))
86         return false;
87     } else {
88       return false;
89     }
90   }
91 
92   return true;
93 }
94 
95 namespace {
96 
97 struct AllocaInfo {
98   SmallVector<BasicBlock *, 32> DefiningBlocks;
99   SmallVector<BasicBlock *, 32> UsingBlocks;
100 
101   StoreInst *OnlyStore;
102   BasicBlock *OnlyBlock;
103   bool OnlyUsedInOneBlock;
104 
105   Value *AllocaPointerVal;
106   DbgDeclareInst *DbgDeclare;
107 
108   void clear() {
109     DefiningBlocks.clear();
110     UsingBlocks.clear();
111     OnlyStore = nullptr;
112     OnlyBlock = nullptr;
113     OnlyUsedInOneBlock = true;
114     AllocaPointerVal = nullptr;
115     DbgDeclare = nullptr;
116   }
117 
118   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
119   /// by the rest of the pass to reason about the uses of this alloca.
120   void AnalyzeAlloca(AllocaInst *AI) {
121     clear();
122 
123     // As we scan the uses of the alloca instruction, keep track of stores,
124     // and decide whether all of the loads and stores to the alloca are within
125     // the same basic block.
126     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
127       Instruction *User = cast<Instruction>(*UI++);
128 
129       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
130         // Remember the basic blocks which define new values for the alloca
131         DefiningBlocks.push_back(SI->getParent());
132         AllocaPointerVal = SI->getOperand(0);
133         OnlyStore = SI;
134       } else {
135         LoadInst *LI = cast<LoadInst>(User);
136         // Otherwise it must be a load instruction, keep track of variable
137         // reads.
138         UsingBlocks.push_back(LI->getParent());
139         AllocaPointerVal = LI;
140       }
141 
142       if (OnlyUsedInOneBlock) {
143         if (!OnlyBlock)
144           OnlyBlock = User->getParent();
145         else if (OnlyBlock != User->getParent())
146           OnlyUsedInOneBlock = false;
147       }
148     }
149 
150     DbgDeclare = FindAllocaDbgDeclare(AI);
151   }
152 };
153 
154 // Data package used by RenamePass()
155 class RenamePassData {
156 public:
157   typedef std::vector<Value *> ValVector;
158 
159   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V)
160       : BB(B), Pred(P), Values(std::move(V)) {}
161   BasicBlock *BB;
162   BasicBlock *Pred;
163   ValVector Values;
164 };
165 
166 /// \brief This assigns and keeps a per-bb relative ordering of load/store
167 /// instructions in the block that directly load or store an alloca.
168 ///
169 /// This functionality is important because it avoids scanning large basic
170 /// blocks multiple times when promoting many allocas in the same block.
171 class LargeBlockInfo {
172   /// \brief For each instruction that we track, keep the index of the
173   /// instruction.
174   ///
175   /// The index starts out as the number of the instruction from the start of
176   /// the block.
177   DenseMap<const Instruction *, unsigned> InstNumbers;
178 
179 public:
180 
181   /// This code only looks at accesses to allocas.
182   static bool isInterestingInstruction(const Instruction *I) {
183     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
184            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
185   }
186 
187   /// Get or calculate the index of the specified instruction.
188   unsigned getInstructionIndex(const Instruction *I) {
189     assert(isInterestingInstruction(I) &&
190            "Not a load/store to/from an alloca?");
191 
192     // If we already have this instruction number, return it.
193     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
194     if (It != InstNumbers.end())
195       return It->second;
196 
197     // Scan the whole block to get the instruction.  This accumulates
198     // information for every interesting instruction in the block, in order to
199     // avoid gratuitus rescans.
200     const BasicBlock *BB = I->getParent();
201     unsigned InstNo = 0;
202     for (const Instruction &BBI : *BB)
203       if (isInterestingInstruction(&BBI))
204         InstNumbers[&BBI] = InstNo++;
205     It = InstNumbers.find(I);
206 
207     assert(It != InstNumbers.end() && "Didn't insert instruction?");
208     return It->second;
209   }
210 
211   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
212 
213   void clear() { InstNumbers.clear(); }
214 };
215 
216 struct PromoteMem2Reg {
217   /// The alloca instructions being promoted.
218   std::vector<AllocaInst *> Allocas;
219   DominatorTree &DT;
220   DIBuilder DIB;
221   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
222   AssumptionCache *AC;
223 
224   const SimplifyQuery SQ;
225   /// Reverse mapping of Allocas.
226   DenseMap<AllocaInst *, unsigned> AllocaLookup;
227 
228   /// \brief The PhiNodes we're adding.
229   ///
230   /// That map is used to simplify some Phi nodes as we iterate over it, so
231   /// it should have deterministic iterators.  We could use a MapVector, but
232   /// since we already maintain a map from BasicBlock* to a stable numbering
233   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
234   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
235 
236   /// For each PHI node, keep track of which entry in Allocas it corresponds
237   /// to.
238   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
239 
240   /// If we are updating an AliasSetTracker, then for each alloca that is of
241   /// pointer type, we keep track of what to copyValue to the inserted PHI
242   /// nodes here.
243   std::vector<Value *> PointerAllocaValues;
244 
245   /// For each alloca, we keep track of the dbg.declare intrinsic that
246   /// describes it, if any, so that we can convert it to a dbg.value
247   /// intrinsic if the alloca gets promoted.
248   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
249 
250   /// The set of basic blocks the renamer has already visited.
251   ///
252   SmallPtrSet<BasicBlock *, 16> Visited;
253 
254   /// Contains a stable numbering of basic blocks to avoid non-determinstic
255   /// behavior.
256   DenseMap<BasicBlock *, unsigned> BBNumbers;
257 
258   /// Lazily compute the number of predecessors a block has.
259   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
260 
261 public:
262   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
263                  AssumptionCache *AC)
264       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
265         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
266         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
267                    nullptr, &DT, AC) {}
268 
269   void run();
270 
271 private:
272   void RemoveFromAllocasList(unsigned &AllocaIdx) {
273     Allocas[AllocaIdx] = Allocas.back();
274     Allocas.pop_back();
275     --AllocaIdx;
276   }
277 
278   unsigned getNumPreds(const BasicBlock *BB) {
279     unsigned &NP = BBNumPreds[BB];
280     if (NP == 0)
281       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
282     return NP - 1;
283   }
284 
285   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
286                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
287                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
288   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
289                   RenamePassData::ValVector &IncVals,
290                   std::vector<RenamePassData> &Worklist);
291   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
292 };
293 
294 } // end of anonymous namespace
295 
296 /// Given a LoadInst LI this adds assume(LI != null) after it.
297 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
298   Function *AssumeIntrinsic =
299       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
300   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
301                                        Constant::getNullValue(LI->getType()));
302   LoadNotNull->insertAfter(LI);
303   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
304   CI->insertAfter(LoadNotNull);
305   AC->registerAssumption(CI);
306 }
307 
308 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
309   // Knowing that this alloca is promotable, we know that it's safe to kill all
310   // instructions except for load and store.
311 
312   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
313     Instruction *I = cast<Instruction>(*UI);
314     ++UI;
315     if (isa<LoadInst>(I) || isa<StoreInst>(I))
316       continue;
317 
318     if (!I->getType()->isVoidTy()) {
319       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
320       // Follow the use/def chain to erase them now instead of leaving it for
321       // dead code elimination later.
322       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
323         Instruction *Inst = cast<Instruction>(*UUI);
324         ++UUI;
325         Inst->eraseFromParent();
326       }
327     }
328     I->eraseFromParent();
329   }
330 }
331 
332 /// \brief Rewrite as many loads as possible given a single store.
333 ///
334 /// When there is only a single store, we can use the domtree to trivially
335 /// replace all of the dominated loads with the stored value. Do so, and return
336 /// true if this has successfully promoted the alloca entirely. If this returns
337 /// false there were some loads which were not dominated by the single store
338 /// and thus must be phi-ed with undef. We fall back to the standard alloca
339 /// promotion algorithm in that case.
340 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
341                                      LargeBlockInfo &LBI, DominatorTree &DT,
342                                      AssumptionCache *AC) {
343   StoreInst *OnlyStore = Info.OnlyStore;
344   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
345   BasicBlock *StoreBB = OnlyStore->getParent();
346   int StoreIndex = -1;
347 
348   // Clear out UsingBlocks.  We will reconstruct it here if needed.
349   Info.UsingBlocks.clear();
350 
351   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
352     Instruction *UserInst = cast<Instruction>(*UI++);
353     if (!isa<LoadInst>(UserInst)) {
354       assert(UserInst == OnlyStore && "Should only have load/stores");
355       continue;
356     }
357     LoadInst *LI = cast<LoadInst>(UserInst);
358 
359     // Okay, if we have a load from the alloca, we want to replace it with the
360     // only value stored to the alloca.  We can do this if the value is
361     // dominated by the store.  If not, we use the rest of the mem2reg machinery
362     // to insert the phi nodes as needed.
363     if (!StoringGlobalVal) { // Non-instructions are always dominated.
364       if (LI->getParent() == StoreBB) {
365         // If we have a use that is in the same block as the store, compare the
366         // indices of the two instructions to see which one came first.  If the
367         // load came before the store, we can't handle it.
368         if (StoreIndex == -1)
369           StoreIndex = LBI.getInstructionIndex(OnlyStore);
370 
371         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
372           // Can't handle this load, bail out.
373           Info.UsingBlocks.push_back(StoreBB);
374           continue;
375         }
376 
377       } else if (LI->getParent() != StoreBB &&
378                  !DT.dominates(StoreBB, LI->getParent())) {
379         // If the load and store are in different blocks, use BB dominance to
380         // check their relationships.  If the store doesn't dom the use, bail
381         // out.
382         Info.UsingBlocks.push_back(LI->getParent());
383         continue;
384       }
385     }
386 
387     // Otherwise, we *can* safely rewrite this load.
388     Value *ReplVal = OnlyStore->getOperand(0);
389     // If the replacement value is the load, this must occur in unreachable
390     // code.
391     if (ReplVal == LI)
392       ReplVal = UndefValue::get(LI->getType());
393 
394     // If the load was marked as nonnull we don't want to lose
395     // that information when we erase this Load. So we preserve
396     // it with an assume.
397     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
398         !llvm::isKnownNonNullAt(ReplVal, LI, &DT))
399       addAssumeNonNull(AC, LI);
400 
401     LI->replaceAllUsesWith(ReplVal);
402     LI->eraseFromParent();
403     LBI.deleteValue(LI);
404   }
405 
406   // Finally, after the scan, check to see if the store is all that is left.
407   if (!Info.UsingBlocks.empty())
408     return false; // If not, we'll have to fall back for the remainder.
409 
410   // Record debuginfo for the store and remove the declaration's
411   // debuginfo.
412   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
413     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
414     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
415     DDI->eraseFromParent();
416     LBI.deleteValue(DDI);
417   }
418   // Remove the (now dead) store and alloca.
419   Info.OnlyStore->eraseFromParent();
420   LBI.deleteValue(Info.OnlyStore);
421 
422   AI->eraseFromParent();
423   LBI.deleteValue(AI);
424   return true;
425 }
426 
427 /// Many allocas are only used within a single basic block.  If this is the
428 /// case, avoid traversing the CFG and inserting a lot of potentially useless
429 /// PHI nodes by just performing a single linear pass over the basic block
430 /// using the Alloca.
431 ///
432 /// If we cannot promote this alloca (because it is read before it is written),
433 /// return false.  This is necessary in cases where, due to control flow, the
434 /// alloca is undefined only on some control flow paths.  e.g. code like
435 /// this is correct in LLVM IR:
436 ///  // A is an alloca with no stores so far
437 ///  for (...) {
438 ///    int t = *A;
439 ///    if (!first_iteration)
440 ///      use(t);
441 ///    *A = 42;
442 ///  }
443 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
444                                      LargeBlockInfo &LBI,
445                                      DominatorTree &DT,
446                                      AssumptionCache *AC) {
447   // The trickiest case to handle is when we have large blocks. Because of this,
448   // this code is optimized assuming that large blocks happen.  This does not
449   // significantly pessimize the small block case.  This uses LargeBlockInfo to
450   // make it efficient to get the index of various operations in the block.
451 
452   // Walk the use-def list of the alloca, getting the locations of all stores.
453   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
454   StoresByIndexTy StoresByIndex;
455 
456   for (User *U : AI->users())
457     if (StoreInst *SI = dyn_cast<StoreInst>(U))
458       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
459 
460   // Sort the stores by their index, making it efficient to do a lookup with a
461   // binary search.
462   std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
463 
464   // Walk all of the loads from this alloca, replacing them with the nearest
465   // store above them, if any.
466   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
467     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
468     if (!LI)
469       continue;
470 
471     unsigned LoadIdx = LBI.getInstructionIndex(LI);
472 
473     // Find the nearest store that has a lower index than this load.
474     StoresByIndexTy::iterator I =
475         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
476                          std::make_pair(LoadIdx,
477                                         static_cast<StoreInst *>(nullptr)),
478                          less_first());
479     if (I == StoresByIndex.begin()) {
480       if (StoresByIndex.empty())
481         // If there are no stores, the load takes the undef value.
482         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
483       else
484         // There is no store before this load, bail out (load may be affected
485         // by the following stores - see main comment).
486         return false;
487     } else {
488       // Otherwise, there was a store before this load, the load takes its value.
489       // Note, if the load was marked as nonnull we don't want to lose that
490       // information when we erase it. So we preserve it with an assume.
491       Value *ReplVal = std::prev(I)->second->getOperand(0);
492       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
493           !llvm::isKnownNonNullAt(ReplVal, LI, &DT))
494         addAssumeNonNull(AC, LI);
495 
496       LI->replaceAllUsesWith(ReplVal);
497     }
498 
499     LI->eraseFromParent();
500     LBI.deleteValue(LI);
501   }
502 
503   // Remove the (now dead) stores and alloca.
504   while (!AI->use_empty()) {
505     StoreInst *SI = cast<StoreInst>(AI->user_back());
506     // Record debuginfo for the store before removing it.
507     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
508       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
509       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
510     }
511     SI->eraseFromParent();
512     LBI.deleteValue(SI);
513   }
514 
515   AI->eraseFromParent();
516   LBI.deleteValue(AI);
517 
518   // The alloca's debuginfo can be removed as well.
519   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
520     DDI->eraseFromParent();
521     LBI.deleteValue(DDI);
522   }
523 
524   ++NumLocalPromoted;
525   return true;
526 }
527 
528 void PromoteMem2Reg::run() {
529   Function &F = *DT.getRoot()->getParent();
530 
531   AllocaDbgDeclares.resize(Allocas.size());
532 
533   AllocaInfo Info;
534   LargeBlockInfo LBI;
535   ForwardIDFCalculator IDF(DT);
536 
537   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
538     AllocaInst *AI = Allocas[AllocaNum];
539 
540     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
541     assert(AI->getParent()->getParent() == &F &&
542            "All allocas should be in the same function, which is same as DF!");
543 
544     removeLifetimeIntrinsicUsers(AI);
545 
546     if (AI->use_empty()) {
547       // If there are no uses of the alloca, just delete it now.
548       AI->eraseFromParent();
549 
550       // Remove the alloca from the Allocas list, since it has been processed
551       RemoveFromAllocasList(AllocaNum);
552       ++NumDeadAlloca;
553       continue;
554     }
555 
556     // Calculate the set of read and write-locations for each alloca.  This is
557     // analogous to finding the 'uses' and 'definitions' of each variable.
558     Info.AnalyzeAlloca(AI);
559 
560     // If there is only a single store to this value, replace any loads of
561     // it that are directly dominated by the definition with the value stored.
562     if (Info.DefiningBlocks.size() == 1) {
563       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AC)) {
564         // The alloca has been processed, move on.
565         RemoveFromAllocasList(AllocaNum);
566         ++NumSingleStore;
567         continue;
568       }
569     }
570 
571     // If the alloca is only read and written in one basic block, just perform a
572     // linear sweep over the block to eliminate it.
573     if (Info.OnlyUsedInOneBlock &&
574         promoteSingleBlockAlloca(AI, Info, LBI, DT, AC)) {
575       // The alloca has been processed, move on.
576       RemoveFromAllocasList(AllocaNum);
577       continue;
578     }
579 
580     // If we haven't computed a numbering for the BB's in the function, do so
581     // now.
582     if (BBNumbers.empty()) {
583       unsigned ID = 0;
584       for (auto &BB : F)
585         BBNumbers[&BB] = ID++;
586     }
587 
588     // Remember the dbg.declare intrinsic describing this alloca, if any.
589     if (Info.DbgDeclare)
590       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
591 
592     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
593     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
594 
595     // At this point, we're committed to promoting the alloca using IDF's, and
596     // the standard SSA construction algorithm.  Determine which blocks need PHI
597     // nodes and see if we can optimize out some work by avoiding insertion of
598     // dead phi nodes.
599 
600 
601     // Unique the set of defining blocks for efficient lookup.
602     SmallPtrSet<BasicBlock *, 32> DefBlocks;
603     DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
604 
605     // Determine which blocks the value is live in.  These are blocks which lead
606     // to uses.
607     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
608     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
609 
610     // At this point, we're committed to promoting the alloca using IDF's, and
611     // the standard SSA construction algorithm.  Determine which blocks need phi
612     // nodes and see if we can optimize out some work by avoiding insertion of
613     // dead phi nodes.
614     IDF.setLiveInBlocks(LiveInBlocks);
615     IDF.setDefiningBlocks(DefBlocks);
616     SmallVector<BasicBlock *, 32> PHIBlocks;
617     IDF.calculate(PHIBlocks);
618     if (PHIBlocks.size() > 1)
619       std::sort(PHIBlocks.begin(), PHIBlocks.end(),
620                 [this](BasicBlock *A, BasicBlock *B) {
621                   return BBNumbers.lookup(A) < BBNumbers.lookup(B);
622                 });
623 
624     unsigned CurrentVersion = 0;
625     for (BasicBlock *BB : PHIBlocks)
626       QueuePhiNode(BB, AllocaNum, CurrentVersion);
627   }
628 
629   if (Allocas.empty())
630     return; // All of the allocas must have been trivial!
631 
632   LBI.clear();
633 
634   // Set the incoming values for the basic block to be null values for all of
635   // the alloca's.  We do this in case there is a load of a value that has not
636   // been stored yet.  In this case, it will get this null value.
637   //
638   RenamePassData::ValVector Values(Allocas.size());
639   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
640     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
641 
642   // Walks all basic blocks in the function performing the SSA rename algorithm
643   // and inserting the phi nodes we marked as necessary
644   //
645   std::vector<RenamePassData> RenamePassWorkList;
646   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values));
647   do {
648     RenamePassData RPD = std::move(RenamePassWorkList.back());
649     RenamePassWorkList.pop_back();
650     // RenamePass may add new worklist entries.
651     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
652   } while (!RenamePassWorkList.empty());
653 
654   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
655   Visited.clear();
656 
657   // Remove the allocas themselves from the function.
658   for (Instruction *A : Allocas) {
659     // If there are any uses of the alloca instructions left, they must be in
660     // unreachable basic blocks that were not processed by walking the dominator
661     // tree. Just delete the users now.
662     if (!A->use_empty())
663       A->replaceAllUsesWith(UndefValue::get(A->getType()));
664     A->eraseFromParent();
665   }
666 
667   // Remove alloca's dbg.declare instrinsics from the function.
668   for (DbgDeclareInst *DDI : AllocaDbgDeclares)
669     if (DDI)
670       DDI->eraseFromParent();
671 
672   // Loop over all of the PHI nodes and see if there are any that we can get
673   // rid of because they merge all of the same incoming values.  This can
674   // happen due to undef values coming into the PHI nodes.  This process is
675   // iterative, because eliminating one PHI node can cause others to be removed.
676   bool EliminatedAPHI = true;
677   while (EliminatedAPHI) {
678     EliminatedAPHI = false;
679 
680     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
681     // simplify and RAUW them as we go.  If it was not, we could add uses to
682     // the values we replace with in a non-deterministic order, thus creating
683     // non-deterministic def->use chains.
684     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
685              I = NewPhiNodes.begin(),
686              E = NewPhiNodes.end();
687          I != E;) {
688       PHINode *PN = I->second;
689 
690       // If this PHI node merges one value and/or undefs, get the value.
691       if (Value *V = SimplifyInstruction(PN, SQ)) {
692         PN->replaceAllUsesWith(V);
693         PN->eraseFromParent();
694         NewPhiNodes.erase(I++);
695         EliminatedAPHI = true;
696         continue;
697       }
698       ++I;
699     }
700   }
701 
702   // At this point, the renamer has added entries to PHI nodes for all reachable
703   // code.  Unfortunately, there may be unreachable blocks which the renamer
704   // hasn't traversed.  If this is the case, the PHI nodes may not
705   // have incoming values for all predecessors.  Loop over all PHI nodes we have
706   // created, inserting undef values if they are missing any incoming values.
707   //
708   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
709            I = NewPhiNodes.begin(),
710            E = NewPhiNodes.end();
711        I != E; ++I) {
712     // We want to do this once per basic block.  As such, only process a block
713     // when we find the PHI that is the first entry in the block.
714     PHINode *SomePHI = I->second;
715     BasicBlock *BB = SomePHI->getParent();
716     if (&BB->front() != SomePHI)
717       continue;
718 
719     // Only do work here if there the PHI nodes are missing incoming values.  We
720     // know that all PHI nodes that were inserted in a block will have the same
721     // number of incoming values, so we can just check any of them.
722     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
723       continue;
724 
725     // Get the preds for BB.
726     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
727 
728     // Ok, now we know that all of the PHI nodes are missing entries for some
729     // basic blocks.  Start by sorting the incoming predecessors for efficient
730     // access.
731     std::sort(Preds.begin(), Preds.end());
732 
733     // Now we loop through all BB's which have entries in SomePHI and remove
734     // them from the Preds list.
735     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
736       // Do a log(n) search of the Preds list for the entry we want.
737       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
738           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
739       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
740              "PHI node has entry for a block which is not a predecessor!");
741 
742       // Remove the entry
743       Preds.erase(EntIt);
744     }
745 
746     // At this point, the blocks left in the preds list must have dummy
747     // entries inserted into every PHI nodes for the block.  Update all the phi
748     // nodes in this block that we are inserting (there could be phis before
749     // mem2reg runs).
750     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
751     BasicBlock::iterator BBI = BB->begin();
752     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
753            SomePHI->getNumIncomingValues() == NumBadPreds) {
754       Value *UndefVal = UndefValue::get(SomePHI->getType());
755       for (BasicBlock *Pred : Preds)
756         SomePHI->addIncoming(UndefVal, Pred);
757     }
758   }
759 
760   NewPhiNodes.clear();
761 }
762 
763 /// \brief Determine which blocks the value is live in.
764 ///
765 /// These are blocks which lead to uses.  Knowing this allows us to avoid
766 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
767 /// inserted phi nodes would be dead).
768 void PromoteMem2Reg::ComputeLiveInBlocks(
769     AllocaInst *AI, AllocaInfo &Info,
770     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
771     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
772 
773   // To determine liveness, we must iterate through the predecessors of blocks
774   // where the def is live.  Blocks are added to the worklist if we need to
775   // check their predecessors.  Start with all the using blocks.
776   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
777                                                     Info.UsingBlocks.end());
778 
779   // If any of the using blocks is also a definition block, check to see if the
780   // definition occurs before or after the use.  If it happens before the use,
781   // the value isn't really live-in.
782   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
783     BasicBlock *BB = LiveInBlockWorklist[i];
784     if (!DefBlocks.count(BB))
785       continue;
786 
787     // Okay, this is a block that both uses and defines the value.  If the first
788     // reference to the alloca is a def (store), then we know it isn't live-in.
789     for (BasicBlock::iterator I = BB->begin();; ++I) {
790       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
791         if (SI->getOperand(1) != AI)
792           continue;
793 
794         // We found a store to the alloca before a load.  The alloca is not
795         // actually live-in here.
796         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
797         LiveInBlockWorklist.pop_back();
798         --i;
799         --e;
800         break;
801       }
802 
803       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
804         if (LI->getOperand(0) != AI)
805           continue;
806 
807         // Okay, we found a load before a store to the alloca.  It is actually
808         // live into this block.
809         break;
810       }
811     }
812   }
813 
814   // Now that we have a set of blocks where the phi is live-in, recursively add
815   // their predecessors until we find the full region the value is live.
816   while (!LiveInBlockWorklist.empty()) {
817     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
818 
819     // The block really is live in here, insert it into the set.  If already in
820     // the set, then it has already been processed.
821     if (!LiveInBlocks.insert(BB).second)
822       continue;
823 
824     // Since the value is live into BB, it is either defined in a predecessor or
825     // live into it to.  Add the preds to the worklist unless they are a
826     // defining block.
827     for (BasicBlock *P : predecessors(BB)) {
828       // The value is not live into a predecessor if it defines the value.
829       if (DefBlocks.count(P))
830         continue;
831 
832       // Otherwise it is, add to the worklist.
833       LiveInBlockWorklist.push_back(P);
834     }
835   }
836 }
837 
838 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
839 ///
840 /// Returns true if there wasn't already a phi-node for that variable
841 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
842                                   unsigned &Version) {
843   // Look up the basic-block in question.
844   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
845 
846   // If the BB already has a phi node added for the i'th alloca then we're done!
847   if (PN)
848     return false;
849 
850   // Create a PhiNode using the dereferenced type... and add the phi-node to the
851   // BasicBlock.
852   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
853                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
854                        &BB->front());
855   ++NumPHIInsert;
856   PhiToAllocaMap[PN] = AllocaNo;
857   return true;
858 }
859 
860 /// \brief Recursively traverse the CFG of the function, renaming loads and
861 /// stores to the allocas which we are promoting.
862 ///
863 /// IncomingVals indicates what value each Alloca contains on exit from the
864 /// predecessor block Pred.
865 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
866                                 RenamePassData::ValVector &IncomingVals,
867                                 std::vector<RenamePassData> &Worklist) {
868 NextIteration:
869   // If we are inserting any phi nodes into this BB, they will already be in the
870   // block.
871   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
872     // If we have PHI nodes to update, compute the number of edges from Pred to
873     // BB.
874     if (PhiToAllocaMap.count(APN)) {
875       // We want to be able to distinguish between PHI nodes being inserted by
876       // this invocation of mem2reg from those phi nodes that already existed in
877       // the IR before mem2reg was run.  We determine that APN is being inserted
878       // because it is missing incoming edges.  All other PHI nodes being
879       // inserted by this pass of mem2reg will have the same number of incoming
880       // operands so far.  Remember this count.
881       unsigned NewPHINumOperands = APN->getNumOperands();
882 
883       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
884       assert(NumEdges && "Must be at least one edge from Pred to BB!");
885 
886       // Add entries for all the phis.
887       BasicBlock::iterator PNI = BB->begin();
888       do {
889         unsigned AllocaNo = PhiToAllocaMap[APN];
890 
891         // Add N incoming values to the PHI node.
892         for (unsigned i = 0; i != NumEdges; ++i)
893           APN->addIncoming(IncomingVals[AllocaNo], Pred);
894 
895         // The currently active variable for this block is now the PHI.
896         IncomingVals[AllocaNo] = APN;
897         if (DbgDeclareInst *DDI = AllocaDbgDeclares[AllocaNo])
898           ConvertDebugDeclareToDebugValue(DDI, APN, DIB);
899 
900         // Get the next phi node.
901         ++PNI;
902         APN = dyn_cast<PHINode>(PNI);
903         if (!APN)
904           break;
905 
906         // Verify that it is missing entries.  If not, it is not being inserted
907         // by this mem2reg invocation so we want to ignore it.
908       } while (APN->getNumOperands() == NewPHINumOperands);
909     }
910   }
911 
912   // Don't revisit blocks.
913   if (!Visited.insert(BB).second)
914     return;
915 
916   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
917     Instruction *I = &*II++; // get the instruction, increment iterator
918 
919     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
920       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
921       if (!Src)
922         continue;
923 
924       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
925       if (AI == AllocaLookup.end())
926         continue;
927 
928       Value *V = IncomingVals[AI->second];
929 
930       // If the load was marked as nonnull we don't want to lose
931       // that information when we erase this Load. So we preserve
932       // it with an assume.
933       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
934           !llvm::isKnownNonNullAt(V, LI, &DT))
935         addAssumeNonNull(AC, LI);
936 
937       // Anything using the load now uses the current value.
938       LI->replaceAllUsesWith(V);
939       BB->getInstList().erase(LI);
940     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
941       // Delete this instruction and mark the name as the current holder of the
942       // value
943       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
944       if (!Dest)
945         continue;
946 
947       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
948       if (ai == AllocaLookup.end())
949         continue;
950 
951       // what value were we writing?
952       IncomingVals[ai->second] = SI->getOperand(0);
953       // Record debuginfo for the store before removing it.
954       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
955         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
956       BB->getInstList().erase(SI);
957     }
958   }
959 
960   // 'Recurse' to our successors.
961   succ_iterator I = succ_begin(BB), E = succ_end(BB);
962   if (I == E)
963     return;
964 
965   // Keep track of the successors so we don't visit the same successor twice
966   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
967 
968   // Handle the first successor without using the worklist.
969   VisitedSuccs.insert(*I);
970   Pred = BB;
971   BB = *I;
972   ++I;
973 
974   for (; I != E; ++I)
975     if (VisitedSuccs.insert(*I).second)
976       Worklist.emplace_back(*I, Pred, IncomingVals);
977 
978   goto NextIteration;
979 }
980 
981 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
982                            AssumptionCache *AC) {
983   // If there is nothing to do, bail out...
984   if (Allocas.empty())
985     return;
986 
987   PromoteMem2Reg(Allocas, DT, AC).run();
988 }
989