1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the PredicateInfo class. 11 // 12 //===----------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/PredicateInfo.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/OrderedBasicBlock.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/FormattedStream.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include <algorithm> 37 #define DEBUG_TYPE "predicateinfo" 38 using namespace llvm; 39 using namespace PatternMatch; 40 using namespace llvm::PredicateInfoClasses; 41 42 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 43 "PredicateInfo Printer", false, false) 44 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 45 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 46 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 47 "PredicateInfo Printer", false, false) 48 static cl::opt<bool> VerifyPredicateInfo( 49 "verify-predicateinfo", cl::init(false), cl::Hidden, 50 cl::desc("Verify PredicateInfo in legacy printer pass.")); 51 namespace llvm { 52 namespace PredicateInfoClasses { 53 enum LocalNum { 54 // Operations that must appear first in the block. 55 LN_First, 56 // Operations that are somewhere in the middle of the block, and are sorted on 57 // demand. 58 LN_Middle, 59 // Operations that must appear last in a block, like successor phi node uses. 60 LN_Last 61 }; 62 63 // Associate global and local DFS info with defs and uses, so we can sort them 64 // into a global domination ordering. 65 struct ValueDFS { 66 int DFSIn = 0; 67 int DFSOut = 0; 68 unsigned int LocalNum = LN_Middle; 69 PredicateBase *PInfo = nullptr; 70 // Only one of Def or Use will be set. 71 Value *Def = nullptr; 72 Use *U = nullptr; 73 }; 74 75 // This compares ValueDFS structures, creating OrderedBasicBlocks where 76 // necessary to compare uses/defs in the same block. Doing so allows us to walk 77 // the minimum number of instructions necessary to compute our def/use ordering. 78 struct ValueDFS_Compare { 79 DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap; 80 ValueDFS_Compare( 81 DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap) 82 : OBBMap(OBBMap) {} 83 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 84 if (&A == &B) 85 return false; 86 // The only case we can't directly compare them is when they in the same 87 // block, and both have localnum == middle. In that case, we have to use 88 // comesbefore to see what the real ordering is, because they are in the 89 // same basic block. 90 91 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 92 93 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 94 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 95 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 96 return localComesBefore(A, B); 97 } 98 99 // Get the definition of an instruction that occurs in the middle of a block. 100 Value *getMiddleDef(const ValueDFS &VD) const { 101 if (VD.Def) 102 return VD.Def; 103 // It's possible for the defs and uses to be null. For branches, the local 104 // numbering will say the placed predicaeinfos should go first (IE 105 // LN_beginning), so we won't be in this function. For assumes, we will end 106 // up here, beause we need to order the def we will place relative to the 107 // assume. So for the purpose of ordering, we pretend the def is the assume 108 // because that is where we will insert the info. 109 if (!VD.U) { 110 assert(VD.PInfo && 111 "No def, no use, and no predicateinfo should not occur"); 112 assert(isa<PredicateAssume>(VD.PInfo) && 113 "Middle of block should only occur for assumes"); 114 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 115 } 116 return nullptr; 117 } 118 119 // Return either the Def, if it's not null, or the user of the Use, if the def 120 // is null. 121 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 122 if (Def) 123 return cast<Instruction>(Def); 124 return cast<Instruction>(U->getUser()); 125 } 126 127 // This performs the necessary local basic block ordering checks to tell 128 // whether A comes before B, where both are in the same basic block. 129 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 130 auto *ADef = getMiddleDef(A); 131 auto *BDef = getMiddleDef(B); 132 133 // See if we have real values or uses. If we have real values, we are 134 // guaranteed they are instructions or arguments. No matter what, we are 135 // guaranteed they are in the same block if they are instructions. 136 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 137 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 138 139 if (ArgA && !ArgB) 140 return true; 141 if (ArgB && !ArgA) 142 return false; 143 if (ArgA && ArgB) 144 return ArgA->getArgNo() < ArgB->getArgNo(); 145 146 auto *AInst = getDefOrUser(ADef, A.U); 147 auto *BInst = getDefOrUser(BDef, B.U); 148 149 auto *BB = AInst->getParent(); 150 auto LookupResult = OBBMap.find(BB); 151 if (LookupResult != OBBMap.end()) 152 return LookupResult->second->dominates(AInst, BInst); 153 else { 154 auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)}); 155 return Result.first->second->dominates(AInst, BInst); 156 } 157 return std::tie(ADef, A.U) < std::tie(BDef, B.U); 158 } 159 }; 160 161 } // namespace PredicateInfoClasses 162 163 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, int DFSIn, 164 int DFSOut) const { 165 if (Stack.empty()) 166 return false; 167 return DFSIn >= Stack.back().DFSIn && DFSOut <= Stack.back().DFSOut; 168 } 169 170 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, int DFSIn, 171 int DFSOut) { 172 while (!Stack.empty() && !stackIsInScope(Stack, DFSIn, DFSOut)) 173 Stack.pop_back(); 174 } 175 176 // Convert the uses of Op into a vector of uses, associating global and local 177 // DFS info with each one. 178 void PredicateInfo::convertUsesToDFSOrdered( 179 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 180 for (auto &U : Op->uses()) { 181 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 182 ValueDFS VD; 183 // Put the phi node uses in the incoming block. 184 BasicBlock *IBlock; 185 if (auto *PN = dyn_cast<PHINode>(I)) { 186 IBlock = PN->getIncomingBlock(U); 187 // Make phi node users appear last in the incoming block 188 // they are from. 189 VD.LocalNum = LN_Last; 190 } else { 191 // If it's not a phi node use, it is somewhere in the middle of the 192 // block. 193 IBlock = I->getParent(); 194 VD.LocalNum = LN_Middle; 195 } 196 DomTreeNode *DomNode = DT.getNode(IBlock); 197 // It's possible our use is in an unreachable block. Skip it if so. 198 if (!DomNode) 199 continue; 200 VD.DFSIn = DomNode->getDFSNumIn(); 201 VD.DFSOut = DomNode->getDFSNumOut(); 202 VD.U = &U; 203 DFSOrderedSet.push_back(VD); 204 } 205 } 206 } 207 208 // Collect relevant operations from Comparison that we may want to insert copies 209 // for. 210 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 211 auto *Op0 = Comparison->getOperand(0); 212 auto *Op1 = Comparison->getOperand(1); 213 if (Op0 == Op1) 214 return; 215 CmpOperands.push_back(Comparison); 216 // Only want real values, not constants. Additionally, operands with one use 217 // are only being used in the comparison, which means they will not be useful 218 // for us to consider for predicateinfo. 219 // 220 // FIXME: LLVM crashes trying to create an intrinsic declaration of some 221 // pointer to function types that return structs, so we avoid them. 222 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse() && 223 !(Op0->getType()->isPointerTy() && 224 Op0->getType()->getPointerElementType()->isFunctionTy())) 225 CmpOperands.push_back(Op0); 226 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse() && 227 !(Op1->getType()->isPointerTy() && 228 Op1->getType()->getPointerElementType()->isFunctionTy())) 229 CmpOperands.push_back(Op1); 230 } 231 232 // Process an assume instruction and place relevant operations we want to rename 233 // into OpsToRename. 234 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 235 SmallPtrSetImpl<Value *> &OpsToRename) { 236 SmallVector<Value *, 8> CmpOperands; 237 // Second, see if we have a comparison we support 238 SmallVector<Value *, 2> ComparisonsToProcess; 239 CmpInst::Predicate Pred; 240 Value *Operand = II->getOperand(0); 241 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 242 m_Cmp(Pred, m_Value(), m_Value())) 243 .match(II->getOperand(0))) { 244 ComparisonsToProcess.push_back( 245 cast<BinaryOperator>(Operand)->getOperand(0)); 246 ComparisonsToProcess.push_back( 247 cast<BinaryOperator>(Operand)->getOperand(1)); 248 } else { 249 ComparisonsToProcess.push_back(Operand); 250 } 251 for (auto Comparison : ComparisonsToProcess) { 252 if (auto *Cmp = dyn_cast<CmpInst>(Comparison)) { 253 collectCmpOps(Cmp, CmpOperands); 254 // Now add our copy infos for our operands 255 for (auto *Op : CmpOperands) { 256 OpsToRename.insert(Op); 257 auto &OperandInfo = getOrCreateValueInfo(Op); 258 PredicateBase *PB = new PredicateAssume(Op, II, Cmp); 259 AllInfos.push_back(PB); 260 OperandInfo.Infos.push_back(PB); 261 } 262 CmpOperands.clear(); 263 } 264 } 265 } 266 267 // Process a block terminating branch, and place relevant operations to be 268 // renamed into OpsToRename. 269 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 270 SmallPtrSetImpl<Value *> &OpsToRename) { 271 SmallVector<Value *, 8> CmpOperands; 272 BasicBlock *FirstBB = BI->getSuccessor(0); 273 BasicBlock *SecondBB = BI->getSuccessor(1); 274 bool FirstSinglePred = FirstBB->getSinglePredecessor(); 275 bool SecondSinglePred = SecondBB->getSinglePredecessor(); 276 SmallVector<BasicBlock *, 2> SuccsToProcess; 277 bool isAnd = false; 278 bool isOr = false; 279 // First make sure we have single preds for these successors, as we can't 280 // usefully propagate true/false info to them if there are multiple paths to 281 // them. 282 if (FirstSinglePred) 283 SuccsToProcess.push_back(FirstBB); 284 if (SecondSinglePred) 285 SuccsToProcess.push_back(SecondBB); 286 if (SuccsToProcess.empty()) 287 return; 288 // Second, see if we have a comparison we support 289 SmallVector<Value *, 2> ComparisonsToProcess; 290 CmpInst::Predicate Pred; 291 292 // Match combinations of conditions. 293 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 294 m_Cmp(Pred, m_Value(), m_Value()))) || 295 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 296 m_Cmp(Pred, m_Value(), m_Value())))) { 297 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 298 if (BinOp->getOpcode() == Instruction::And) 299 isAnd = true; 300 else if (BinOp->getOpcode() == Instruction::Or) 301 isOr = true; 302 ComparisonsToProcess.push_back(BinOp->getOperand(0)); 303 ComparisonsToProcess.push_back(BinOp->getOperand(1)); 304 } else { 305 ComparisonsToProcess.push_back(BI->getCondition()); 306 } 307 for (auto Comparison : ComparisonsToProcess) { 308 if (auto *Cmp = dyn_cast<CmpInst>(Comparison)) { 309 collectCmpOps(Cmp, CmpOperands); 310 // Now add our copy infos for our operands 311 for (auto *Op : CmpOperands) { 312 OpsToRename.insert(Op); 313 auto &OperandInfo = getOrCreateValueInfo(Op); 314 for (auto *Succ : SuccsToProcess) { 315 bool TakenEdge = (Succ == FirstBB); 316 // For and, only insert on the true edge 317 // For or, only insert on the false edge 318 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 319 continue; 320 PredicateBase *PB = 321 new PredicateBranch(Op, BranchBB, Succ, Cmp, TakenEdge); 322 AllInfos.push_back(PB); 323 OperandInfo.Infos.push_back(PB); 324 } 325 } 326 CmpOperands.clear(); 327 } 328 } 329 } 330 331 // Build predicate info for our function 332 void PredicateInfo::buildPredicateInfo() { 333 DT.updateDFSNumbers(); 334 // Collect operands to rename from all conditional branch terminators, as well 335 // as assume statements. 336 SmallPtrSet<Value *, 8> OpsToRename; 337 for (auto DTN : depth_first(DT.getRootNode())) { 338 BasicBlock *BranchBB = DTN->getBlock(); 339 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 340 if (!BI->isConditional()) 341 continue; 342 processBranch(BI, BranchBB, OpsToRename); 343 } 344 } 345 for (auto &Assume : AC.assumptions()) { 346 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 347 processAssume(II, II->getParent(), OpsToRename); 348 } 349 // Now rename all our operations. 350 renameUses(OpsToRename); 351 } 352 Value *PredicateInfo::materializeStack(unsigned int &Counter, 353 ValueDFSStack &RenameStack, 354 Value *OrigOp) { 355 // Find the first thing we have to materialize 356 auto RevIter = RenameStack.rbegin(); 357 for (; RevIter != RenameStack.rend(); ++RevIter) 358 if (RevIter->Def) 359 break; 360 361 size_t Start = RevIter - RenameStack.rbegin(); 362 // The maximum number of things we should be trying to materialize at once 363 // right now is 4, depending on if we had an assume, a branch, and both used 364 // and of conditions. 365 for (auto RenameIter = RenameStack.end() - Start; 366 RenameIter != RenameStack.end(); ++RenameIter) { 367 auto *Op = 368 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 369 ValueDFS &Result = *RenameIter; 370 auto *ValInfo = Result.PInfo; 371 // For branches, we can just place the operand in the split block. For 372 // assume, we have to place it right before the assume to ensure we dominate 373 // all of our uses. 374 if (isa<PredicateBranch>(ValInfo)) { 375 auto *PBranch = cast<PredicateBranch>(ValInfo); 376 // It's possible we are trying to insert multiple predicateinfos in the 377 // same block at the beginning of the block. When we do this, we need to 378 // insert them one after the other, not one before the other. To see if we 379 // have already inserted predicateinfo into this block, we see if Op != 380 // OrigOp && Op->getParent() == PBranch->SplitBB. Op must be an 381 // instruction we inserted if it's not the original op. 382 BasicBlock::iterator InsertPt; 383 if (Op == OrigOp || 384 cast<Instruction>(Op)->getParent() != PBranch->SplitBB) { 385 InsertPt = PBranch->SplitBB->begin(); 386 // Insert after last phi node. 387 while (isa<PHINode>(InsertPt)) 388 ++InsertPt; 389 } else { 390 // Insert after op. 391 InsertPt = ++(cast<Instruction>(Op)->getIterator()); 392 } 393 IRBuilder<> B(PBranch->SplitBB, InsertPt); 394 Function *IF = Intrinsic::getDeclaration( 395 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 396 Value *PIC = B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 397 PredicateMap.insert({PIC, ValInfo}); 398 Result.Def = PIC; 399 } else { 400 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 401 assert(PAssume && 402 "Should not have gotten here without it being an assume"); 403 // Unlike above, this should already insert in the right order when we 404 // insert multiple predicateinfos in the same block. Because we are 405 // always inserting right before the assume (instead of the beginning of a 406 // block), newer insertions will end up after older ones. 407 IRBuilder<> B(PAssume->AssumeInst->getParent(), 408 PAssume->AssumeInst->getIterator()); 409 Function *IF = Intrinsic::getDeclaration( 410 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 411 Value *PIC = B.CreateCall(IF, Op); 412 PredicateMap.insert({PIC, ValInfo}); 413 Result.Def = PIC; 414 } 415 } 416 return RenameStack.back().Def; 417 } 418 419 // Instead of the standard SSA renaming algorithm, which is O(Number of 420 // instructions), and walks the entire dominator tree, we walk only the defs + 421 // uses. The standard SSA renaming algorithm does not really rely on the 422 // dominator tree except to order the stack push/pops of the renaming stacks, so 423 // that defs end up getting pushed before hitting the correct uses. This does 424 // not require the dominator tree, only the *order* of the dominator tree. The 425 // complete and correct ordering of the defs and uses, in dominator tree is 426 // contained in the DFS numbering of the dominator tree. So we sort the defs and 427 // uses into the DFS ordering, and then just use the renaming stack as per 428 // normal, pushing when we hit a def (which is a predicateinfo instruction), 429 // popping when we are out of the dfs scope for that def, and replacing any uses 430 // with top of stack if it exists. In order to handle liveness without 431 // propagating liveness info, we don't actually insert the predicateinfo 432 // instruction def until we see a use that it would dominate. Once we see such 433 // a use, we materialize the predicateinfo instruction in the right place and 434 // use it. 435 // 436 // TODO: Use this algorithm to perform fast single-variable renaming in 437 // promotememtoreg and memoryssa. 438 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) { 439 ValueDFS_Compare Compare(OBBMap); 440 // Compute liveness, and rename in O(uses) per Op. 441 for (auto *Op : OpsToRename) { 442 unsigned Counter = 0; 443 SmallVector<ValueDFS, 16> OrderedUses; 444 const auto &ValueInfo = getValueInfo(Op); 445 // Insert the possible copies into the def/use list. 446 // They will become real copies if we find a real use for them, and never 447 // created otherwise. 448 for (auto &PossibleCopy : ValueInfo.Infos) { 449 ValueDFS VD; 450 BasicBlock *CopyBB = nullptr; 451 // Determine where we are going to place the copy by the copy type. 452 // The predicate info for branches always come first, they will get 453 // materialized in the split block at the top of the block. 454 // The predicate info for assumes will be somewhere in the middle, 455 // it will get materialized in front of the assume. 456 if (const auto *PBranch = dyn_cast<PredicateBranch>(PossibleCopy)) { 457 CopyBB = PBranch->SplitBB; 458 VD.LocalNum = LN_First; 459 } else if (const auto *PAssume = 460 dyn_cast<PredicateAssume>(PossibleCopy)) { 461 CopyBB = PAssume->AssumeInst->getParent(); 462 VD.LocalNum = LN_Middle; 463 } else 464 llvm_unreachable("Unhandled predicate info type"); 465 DomTreeNode *DomNode = DT.getNode(CopyBB); 466 if (!DomNode) 467 continue; 468 VD.DFSIn = DomNode->getDFSNumIn(); 469 VD.DFSOut = DomNode->getDFSNumOut(); 470 VD.PInfo = PossibleCopy; 471 OrderedUses.push_back(VD); 472 } 473 474 convertUsesToDFSOrdered(Op, OrderedUses); 475 std::sort(OrderedUses.begin(), OrderedUses.end(), Compare); 476 SmallVector<ValueDFS, 8> RenameStack; 477 // For each use, sorted into dfs order, push values and replaces uses with 478 // top of stack, which will represent the reaching def. 479 for (auto &VD : OrderedUses) { 480 // We currently do not materialize copy over copy, but we should decide if 481 // we want to. 482 bool PossibleCopy = VD.PInfo != nullptr; 483 if (RenameStack.empty()) { 484 DEBUG(dbgs() << "Rename Stack is empty\n"); 485 } else { 486 DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 487 << RenameStack.back().DFSIn << "," 488 << RenameStack.back().DFSOut << ")\n"); 489 } 490 491 DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 492 << VD.DFSOut << ")\n"); 493 494 bool ShouldPush = (VD.Def || PossibleCopy); 495 bool OutOfScope = !stackIsInScope(RenameStack, VD.DFSIn, VD.DFSOut); 496 if (OutOfScope || ShouldPush) { 497 // Sync to our current scope. 498 popStackUntilDFSScope(RenameStack, VD.DFSIn, VD.DFSOut); 499 ShouldPush |= (VD.Def || PossibleCopy); 500 if (ShouldPush) { 501 RenameStack.push_back(VD); 502 } 503 } 504 // If we get to this point, and the stack is empty we must have a use 505 // with no renaming needed, just skip it. 506 if (RenameStack.empty()) 507 continue; 508 // Skip values, only want to rename the uses 509 if (VD.Def || PossibleCopy) 510 continue; 511 ValueDFS &Result = RenameStack.back(); 512 513 // If the possible copy dominates something, materialize our stack up to 514 // this point. This ensures every comparison that affects our operation 515 // ends up with predicateinfo. 516 if (!Result.Def) 517 Result.Def = materializeStack(Counter, RenameStack, Op); 518 519 DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 520 << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n"); 521 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 522 "Predicateinfo def should have dominated this use"); 523 VD.U->set(Result.Def); 524 } 525 } 526 } 527 528 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 529 auto OIN = ValueInfoNums.find(Operand); 530 if (OIN == ValueInfoNums.end()) { 531 // This will grow it 532 ValueInfos.resize(ValueInfos.size() + 1); 533 // This will use the new size and give us a 0 based number of the info 534 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 535 assert(InsertResult.second && "Value info number already existed?"); 536 return ValueInfos[InsertResult.first->second]; 537 } 538 return ValueInfos[OIN->second]; 539 } 540 541 const PredicateInfo::ValueInfo & 542 PredicateInfo::getValueInfo(Value *Operand) const { 543 auto OINI = ValueInfoNums.lookup(Operand); 544 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 545 assert(OINI < ValueInfos.size() && 546 "Value Info Number greater than size of Value Info Table"); 547 return ValueInfos[OINI]; 548 } 549 550 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 551 AssumptionCache &AC) 552 : F(F), DT(DT), AC(AC) { 553 // Push an empty operand info so that we can detect 0 as not finding one 554 ValueInfos.resize(1); 555 buildPredicateInfo(); 556 } 557 558 PredicateInfo::~PredicateInfo() {} 559 560 void PredicateInfo::verifyPredicateInfo() const {} 561 562 char PredicateInfoPrinterLegacyPass::ID = 0; 563 564 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 565 : FunctionPass(ID) { 566 initializePredicateInfoPrinterLegacyPassPass( 567 *PassRegistry::getPassRegistry()); 568 } 569 570 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 571 AU.setPreservesAll(); 572 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 573 AU.addRequired<AssumptionCacheTracker>(); 574 } 575 576 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 577 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 578 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 579 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 580 PredInfo->print(dbgs()); 581 if (VerifyPredicateInfo) 582 PredInfo->verifyPredicateInfo(); 583 return false; 584 } 585 586 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 587 FunctionAnalysisManager &AM) { 588 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 589 auto &AC = AM.getResult<AssumptionAnalysis>(F); 590 OS << "PredicateInfo for function: " << F.getName() << "\n"; 591 make_unique<PredicateInfo>(F, DT, AC)->print(OS); 592 593 return PreservedAnalyses::all(); 594 } 595 596 /// \brief An assembly annotator class to print PredicateInfo information in 597 /// comments. 598 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 599 friend class PredicateInfo; 600 const PredicateInfo *PredInfo; 601 602 public: 603 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 604 605 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 606 formatted_raw_ostream &OS) {} 607 608 virtual void emitInstructionAnnot(const Instruction *I, 609 formatted_raw_ostream &OS) { 610 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 611 OS << "; Has predicate info\n"; 612 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) 613 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 614 << " Comparison:" << *PB->Comparison << " }\n"; 615 else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) 616 OS << "; assume predicate info {" 617 << " Comparison:" << *PA->Comparison << " }\n"; 618 } 619 } 620 }; 621 622 void PredicateInfo::print(raw_ostream &OS) const { 623 PredicateInfoAnnotatedWriter Writer(this); 624 F.print(OS, &Writer); 625 } 626 627 void PredicateInfo::dump() const { 628 PredicateInfoAnnotatedWriter Writer(this); 629 F.print(dbgs(), &Writer); 630 } 631 632 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 633 FunctionAnalysisManager &AM) { 634 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 635 auto &AC = AM.getResult<AssumptionAnalysis>(F); 636 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 637 638 return PreservedAnalyses::all(); 639 } 640 } 641