1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the PredicateInfo class. 11 // 12 //===----------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/PredicateInfo.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/DebugCounter.h" 34 #include "llvm/Support/FormattedStream.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/OrderedInstructions.h" 37 #include <algorithm> 38 #define DEBUG_TYPE "predicateinfo" 39 using namespace llvm; 40 using namespace PatternMatch; 41 using namespace llvm::PredicateInfoClasses; 42 43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 44 "PredicateInfo Printer", false, false) 45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 48 "PredicateInfo Printer", false, false) 49 static cl::opt<bool> VerifyPredicateInfo( 50 "verify-predicateinfo", cl::init(false), cl::Hidden, 51 cl::desc("Verify PredicateInfo in legacy printer pass.")); 52 namespace { 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo") 55 // Given a predicate info that is a type of branching terminator, get the 56 // branching block. 57 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 58 assert(isa<PredicateWithEdge>(PB) && 59 "Only branches and switches should have PHIOnly defs that " 60 "require branch blocks."); 61 return cast<PredicateWithEdge>(PB)->From; 62 } 63 64 // Given a predicate info that is a type of branching terminator, get the 65 // branching terminator. 66 static Instruction *getBranchTerminator(const PredicateBase *PB) { 67 assert(isa<PredicateWithEdge>(PB) && 68 "Not a predicate info type we know how to get a terminator from."); 69 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 70 } 71 72 // Given a predicate info that is a type of branching terminator, get the 73 // edge this predicate info represents 74 const std::pair<BasicBlock *, BasicBlock *> 75 getBlockEdge(const PredicateBase *PB) { 76 assert(isa<PredicateWithEdge>(PB) && 77 "Not a predicate info type we know how to get an edge from."); 78 const auto *PEdge = cast<PredicateWithEdge>(PB); 79 return std::make_pair(PEdge->From, PEdge->To); 80 } 81 } 82 83 namespace llvm { 84 namespace PredicateInfoClasses { 85 enum LocalNum { 86 // Operations that must appear first in the block. 87 LN_First, 88 // Operations that are somewhere in the middle of the block, and are sorted on 89 // demand. 90 LN_Middle, 91 // Operations that must appear last in a block, like successor phi node uses. 92 LN_Last 93 }; 94 95 // Associate global and local DFS info with defs and uses, so we can sort them 96 // into a global domination ordering. 97 struct ValueDFS { 98 int DFSIn = 0; 99 int DFSOut = 0; 100 unsigned int LocalNum = LN_Middle; 101 // Only one of Def or Use will be set. 102 Value *Def = nullptr; 103 Use *U = nullptr; 104 // Neither PInfo nor EdgeOnly participate in the ordering 105 PredicateBase *PInfo = nullptr; 106 bool EdgeOnly = false; 107 }; 108 109 // Perform a strict weak ordering on instructions and arguments. 110 static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 111 const Value *B) { 112 auto *ArgA = dyn_cast_or_null<Argument>(A); 113 auto *ArgB = dyn_cast_or_null<Argument>(B); 114 if (ArgA && !ArgB) 115 return true; 116 if (ArgB && !ArgA) 117 return false; 118 if (ArgA && ArgB) 119 return ArgA->getArgNo() < ArgB->getArgNo(); 120 return OI.dominates(cast<Instruction>(A), cast<Instruction>(B)); 121 } 122 123 // This compares ValueDFS structures, creating OrderedBasicBlocks where 124 // necessary to compare uses/defs in the same block. Doing so allows us to walk 125 // the minimum number of instructions necessary to compute our def/use ordering. 126 struct ValueDFS_Compare { 127 OrderedInstructions &OI; 128 ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {} 129 130 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 131 if (&A == &B) 132 return false; 133 // The only case we can't directly compare them is when they in the same 134 // block, and both have localnum == middle. In that case, we have to use 135 // comesbefore to see what the real ordering is, because they are in the 136 // same basic block. 137 138 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 139 140 // We want to put the def that will get used for a given set of phi uses, 141 // before those phi uses. 142 // So we sort by edge, then by def. 143 // Note that only phi nodes uses and defs can come last. 144 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 145 return comparePHIRelated(A, B); 146 147 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 148 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 149 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 150 return localComesBefore(A, B); 151 } 152 153 // For a phi use, or a non-materialized def, return the edge it represents. 154 const std::pair<BasicBlock *, BasicBlock *> 155 getBlockEdge(const ValueDFS &VD) const { 156 if (!VD.Def && VD.U) { 157 auto *PHI = cast<PHINode>(VD.U->getUser()); 158 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 159 } 160 // This is really a non-materialized def. 161 return ::getBlockEdge(VD.PInfo); 162 } 163 164 // For two phi related values, return the ordering. 165 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 166 auto &ABlockEdge = getBlockEdge(A); 167 auto &BBlockEdge = getBlockEdge(B); 168 // Now sort by block edge and then defs before uses. 169 return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); 170 } 171 172 // Get the definition of an instruction that occurs in the middle of a block. 173 Value *getMiddleDef(const ValueDFS &VD) const { 174 if (VD.Def) 175 return VD.Def; 176 // It's possible for the defs and uses to be null. For branches, the local 177 // numbering will say the placed predicaeinfos should go first (IE 178 // LN_beginning), so we won't be in this function. For assumes, we will end 179 // up here, beause we need to order the def we will place relative to the 180 // assume. So for the purpose of ordering, we pretend the def is the assume 181 // because that is where we will insert the info. 182 if (!VD.U) { 183 assert(VD.PInfo && 184 "No def, no use, and no predicateinfo should not occur"); 185 assert(isa<PredicateAssume>(VD.PInfo) && 186 "Middle of block should only occur for assumes"); 187 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 188 } 189 return nullptr; 190 } 191 192 // Return either the Def, if it's not null, or the user of the Use, if the def 193 // is null. 194 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 195 if (Def) 196 return cast<Instruction>(Def); 197 return cast<Instruction>(U->getUser()); 198 } 199 200 // This performs the necessary local basic block ordering checks to tell 201 // whether A comes before B, where both are in the same basic block. 202 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 203 auto *ADef = getMiddleDef(A); 204 auto *BDef = getMiddleDef(B); 205 206 // See if we have real values or uses. If we have real values, we are 207 // guaranteed they are instructions or arguments. No matter what, we are 208 // guaranteed they are in the same block if they are instructions. 209 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 210 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 211 212 if (ArgA || ArgB) 213 return valueComesBefore(OI, ArgA, ArgB); 214 215 auto *AInst = getDefOrUser(ADef, A.U); 216 auto *BInst = getDefOrUser(BDef, B.U); 217 return valueComesBefore(OI, AInst, BInst); 218 } 219 }; 220 221 } // namespace PredicateInfoClasses 222 223 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 224 const ValueDFS &VDUse) const { 225 if (Stack.empty()) 226 return false; 227 // If it's a phi only use, make sure it's for this phi node edge, and that the 228 // use is in a phi node. If it's anything else, and the top of the stack is 229 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 230 // the defs they must go with so that we can know it's time to pop the stack 231 // when we hit the end of the phi uses for a given def. 232 if (Stack.back().EdgeOnly) { 233 if (!VDUse.U) 234 return false; 235 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 236 if (!PHI) 237 return false; 238 // Check edge 239 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 240 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 241 return false; 242 243 // Use dominates, which knows how to handle edge dominance. 244 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 245 } 246 247 return (VDUse.DFSIn >= Stack.back().DFSIn && 248 VDUse.DFSOut <= Stack.back().DFSOut); 249 } 250 251 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 252 const ValueDFS &VD) { 253 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 254 Stack.pop_back(); 255 } 256 257 // Convert the uses of Op into a vector of uses, associating global and local 258 // DFS info with each one. 259 void PredicateInfo::convertUsesToDFSOrdered( 260 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 261 for (auto &U : Op->uses()) { 262 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 263 ValueDFS VD; 264 // Put the phi node uses in the incoming block. 265 BasicBlock *IBlock; 266 if (auto *PN = dyn_cast<PHINode>(I)) { 267 IBlock = PN->getIncomingBlock(U); 268 // Make phi node users appear last in the incoming block 269 // they are from. 270 VD.LocalNum = LN_Last; 271 } else { 272 // If it's not a phi node use, it is somewhere in the middle of the 273 // block. 274 IBlock = I->getParent(); 275 VD.LocalNum = LN_Middle; 276 } 277 DomTreeNode *DomNode = DT.getNode(IBlock); 278 // It's possible our use is in an unreachable block. Skip it if so. 279 if (!DomNode) 280 continue; 281 VD.DFSIn = DomNode->getDFSNumIn(); 282 VD.DFSOut = DomNode->getDFSNumOut(); 283 VD.U = &U; 284 DFSOrderedSet.push_back(VD); 285 } 286 } 287 } 288 289 // Collect relevant operations from Comparison that we may want to insert copies 290 // for. 291 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 292 auto *Op0 = Comparison->getOperand(0); 293 auto *Op1 = Comparison->getOperand(1); 294 if (Op0 == Op1) 295 return; 296 CmpOperands.push_back(Comparison); 297 // Only want real values, not constants. Additionally, operands with one use 298 // are only being used in the comparison, which means they will not be useful 299 // for us to consider for predicateinfo. 300 // 301 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 302 CmpOperands.push_back(Op0); 303 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 304 CmpOperands.push_back(Op1); 305 } 306 307 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 308 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op, 309 PredicateBase *PB) { 310 OpsToRename.insert(Op); 311 auto &OperandInfo = getOrCreateValueInfo(Op); 312 AllInfos.push_back(PB); 313 OperandInfo.Infos.push_back(PB); 314 } 315 316 // Process an assume instruction and place relevant operations we want to rename 317 // into OpsToRename. 318 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 319 SmallPtrSetImpl<Value *> &OpsToRename) { 320 // See if we have a comparison we support 321 SmallVector<Value *, 8> CmpOperands; 322 SmallVector<Value *, 2> ConditionsToProcess; 323 CmpInst::Predicate Pred; 324 Value *Operand = II->getOperand(0); 325 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 326 m_Cmp(Pred, m_Value(), m_Value())) 327 .match(II->getOperand(0))) { 328 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 329 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 330 ConditionsToProcess.push_back(Operand); 331 } else if (isa<CmpInst>(Operand)) { 332 333 ConditionsToProcess.push_back(Operand); 334 } 335 for (auto Cond : ConditionsToProcess) { 336 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 337 collectCmpOps(Cmp, CmpOperands); 338 // Now add our copy infos for our operands 339 for (auto *Op : CmpOperands) { 340 auto *PA = new PredicateAssume(Op, II, Cmp); 341 addInfoFor(OpsToRename, Op, PA); 342 } 343 CmpOperands.clear(); 344 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 345 // Otherwise, it should be an AND. 346 assert(BinOp->getOpcode() == Instruction::And && 347 "Should have been an AND"); 348 auto *PA = new PredicateAssume(BinOp, II, BinOp); 349 addInfoFor(OpsToRename, BinOp, PA); 350 } else { 351 llvm_unreachable("Unknown type of condition"); 352 } 353 } 354 } 355 356 // Process a block terminating branch, and place relevant operations to be 357 // renamed into OpsToRename. 358 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 359 SmallPtrSetImpl<Value *> &OpsToRename) { 360 BasicBlock *FirstBB = BI->getSuccessor(0); 361 BasicBlock *SecondBB = BI->getSuccessor(1); 362 SmallVector<BasicBlock *, 2> SuccsToProcess; 363 SuccsToProcess.push_back(FirstBB); 364 SuccsToProcess.push_back(SecondBB); 365 SmallVector<Value *, 2> ConditionsToProcess; 366 367 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 368 for (auto *Succ : SuccsToProcess) { 369 // Don't try to insert on a self-edge. This is mainly because we will 370 // eliminate during renaming anyway. 371 if (Succ == BranchBB) 372 continue; 373 bool TakenEdge = (Succ == FirstBB); 374 // For and, only insert on the true edge 375 // For or, only insert on the false edge 376 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 377 continue; 378 PredicateBase *PB = 379 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 380 addInfoFor(OpsToRename, Op, PB); 381 if (!Succ->getSinglePredecessor()) 382 EdgeUsesOnly.insert({BranchBB, Succ}); 383 } 384 }; 385 386 // Match combinations of conditions. 387 CmpInst::Predicate Pred; 388 bool isAnd = false; 389 bool isOr = false; 390 SmallVector<Value *, 8> CmpOperands; 391 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 392 m_Cmp(Pred, m_Value(), m_Value()))) || 393 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 394 m_Cmp(Pred, m_Value(), m_Value())))) { 395 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 396 if (BinOp->getOpcode() == Instruction::And) 397 isAnd = true; 398 else if (BinOp->getOpcode() == Instruction::Or) 399 isOr = true; 400 ConditionsToProcess.push_back(BinOp->getOperand(0)); 401 ConditionsToProcess.push_back(BinOp->getOperand(1)); 402 ConditionsToProcess.push_back(BI->getCondition()); 403 } else if (isa<CmpInst>(BI->getCondition())) { 404 ConditionsToProcess.push_back(BI->getCondition()); 405 } 406 for (auto Cond : ConditionsToProcess) { 407 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 408 collectCmpOps(Cmp, CmpOperands); 409 // Now add our copy infos for our operands 410 for (auto *Op : CmpOperands) 411 InsertHelper(Op, isAnd, isOr, Cmp); 412 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 413 // This must be an AND or an OR. 414 assert((BinOp->getOpcode() == Instruction::And || 415 BinOp->getOpcode() == Instruction::Or) && 416 "Should have been an AND or an OR"); 417 // The actual value of the binop is not subject to the same restrictions 418 // as the comparison. It's either true or false on the true/false branch. 419 InsertHelper(BinOp, false, false, BinOp); 420 } else { 421 llvm_unreachable("Unknown type of condition"); 422 } 423 CmpOperands.clear(); 424 } 425 } 426 // Process a block terminating switch, and place relevant operations to be 427 // renamed into OpsToRename. 428 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 429 SmallPtrSetImpl<Value *> &OpsToRename) { 430 Value *Op = SI->getCondition(); 431 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 432 return; 433 434 // Remember how many outgoing edges there are to every successor. 435 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 436 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 437 BasicBlock *TargetBlock = SI->getSuccessor(i); 438 ++SwitchEdges[TargetBlock]; 439 } 440 441 // Now propagate info for each case value 442 for (auto C : SI->cases()) { 443 BasicBlock *TargetBlock = C.getCaseSuccessor(); 444 if (SwitchEdges.lookup(TargetBlock) == 1) { 445 PredicateSwitch *PS = new PredicateSwitch( 446 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 447 addInfoFor(OpsToRename, Op, PS); 448 if (!TargetBlock->getSinglePredecessor()) 449 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 450 } 451 } 452 } 453 454 // Build predicate info for our function 455 void PredicateInfo::buildPredicateInfo() { 456 DT.updateDFSNumbers(); 457 // Collect operands to rename from all conditional branch terminators, as well 458 // as assume statements. 459 SmallPtrSet<Value *, 8> OpsToRename; 460 for (auto DTN : depth_first(DT.getRootNode())) { 461 BasicBlock *BranchBB = DTN->getBlock(); 462 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 463 if (!BI->isConditional()) 464 continue; 465 // Can't insert conditional information if they all go to the same place. 466 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 467 continue; 468 processBranch(BI, BranchBB, OpsToRename); 469 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 470 processSwitch(SI, BranchBB, OpsToRename); 471 } 472 } 473 for (auto &Assume : AC.assumptions()) { 474 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 475 processAssume(II, II->getParent(), OpsToRename); 476 } 477 // Now rename all our operations. 478 renameUses(OpsToRename); 479 } 480 481 // Given the renaming stack, make all the operands currently on the stack real 482 // by inserting them into the IR. Return the last operation's value. 483 Value *PredicateInfo::materializeStack(unsigned int &Counter, 484 ValueDFSStack &RenameStack, 485 Value *OrigOp) { 486 // Find the first thing we have to materialize 487 auto RevIter = RenameStack.rbegin(); 488 for (; RevIter != RenameStack.rend(); ++RevIter) 489 if (RevIter->Def) 490 break; 491 492 size_t Start = RevIter - RenameStack.rbegin(); 493 // The maximum number of things we should be trying to materialize at once 494 // right now is 4, depending on if we had an assume, a branch, and both used 495 // and of conditions. 496 for (auto RenameIter = RenameStack.end() - Start; 497 RenameIter != RenameStack.end(); ++RenameIter) { 498 auto *Op = 499 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 500 ValueDFS &Result = *RenameIter; 501 auto *ValInfo = Result.PInfo; 502 // For edge predicates, we can just place the operand in the block before 503 // the terminator. For assume, we have to place it right before the assume 504 // to ensure we dominate all of our uses. Always insert right before the 505 // relevant instruction (terminator, assume), so that we insert in proper 506 // order in the case of multiple predicateinfo in the same block. 507 if (isa<PredicateWithEdge>(ValInfo)) { 508 IRBuilder<> B(getBranchTerminator(ValInfo)); 509 Function *IF = Intrinsic::getDeclaration( 510 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 511 CallInst *PIC = 512 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 513 PredicateMap.insert({PIC, ValInfo}); 514 Result.Def = PIC; 515 } else { 516 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 517 assert(PAssume && 518 "Should not have gotten here without it being an assume"); 519 IRBuilder<> B(PAssume->AssumeInst); 520 Function *IF = Intrinsic::getDeclaration( 521 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 522 CallInst *PIC = B.CreateCall(IF, Op); 523 PredicateMap.insert({PIC, ValInfo}); 524 Result.Def = PIC; 525 } 526 } 527 return RenameStack.back().Def; 528 } 529 530 // Instead of the standard SSA renaming algorithm, which is O(Number of 531 // instructions), and walks the entire dominator tree, we walk only the defs + 532 // uses. The standard SSA renaming algorithm does not really rely on the 533 // dominator tree except to order the stack push/pops of the renaming stacks, so 534 // that defs end up getting pushed before hitting the correct uses. This does 535 // not require the dominator tree, only the *order* of the dominator tree. The 536 // complete and correct ordering of the defs and uses, in dominator tree is 537 // contained in the DFS numbering of the dominator tree. So we sort the defs and 538 // uses into the DFS ordering, and then just use the renaming stack as per 539 // normal, pushing when we hit a def (which is a predicateinfo instruction), 540 // popping when we are out of the dfs scope for that def, and replacing any uses 541 // with top of stack if it exists. In order to handle liveness without 542 // propagating liveness info, we don't actually insert the predicateinfo 543 // instruction def until we see a use that it would dominate. Once we see such 544 // a use, we materialize the predicateinfo instruction in the right place and 545 // use it. 546 // 547 // TODO: Use this algorithm to perform fast single-variable renaming in 548 // promotememtoreg and memoryssa. 549 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) { 550 // Sort OpsToRename since we are going to iterate it. 551 SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end()); 552 auto Comparator = [&](const Value *A, const Value *B) { 553 return valueComesBefore(OI, A, B); 554 }; 555 std::sort(OpsToRename.begin(), OpsToRename.end(), Comparator); 556 ValueDFS_Compare Compare(OI); 557 // Compute liveness, and rename in O(uses) per Op. 558 for (auto *Op : OpsToRename) { 559 unsigned Counter = 0; 560 SmallVector<ValueDFS, 16> OrderedUses; 561 const auto &ValueInfo = getValueInfo(Op); 562 // Insert the possible copies into the def/use list. 563 // They will become real copies if we find a real use for them, and never 564 // created otherwise. 565 for (auto &PossibleCopy : ValueInfo.Infos) { 566 ValueDFS VD; 567 // Determine where we are going to place the copy by the copy type. 568 // The predicate info for branches always come first, they will get 569 // materialized in the split block at the top of the block. 570 // The predicate info for assumes will be somewhere in the middle, 571 // it will get materialized in front of the assume. 572 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 573 VD.LocalNum = LN_Middle; 574 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 575 if (!DomNode) 576 continue; 577 VD.DFSIn = DomNode->getDFSNumIn(); 578 VD.DFSOut = DomNode->getDFSNumOut(); 579 VD.PInfo = PossibleCopy; 580 OrderedUses.push_back(VD); 581 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 582 // If we can only do phi uses, we treat it like it's in the branch 583 // block, and handle it specially. We know that it goes last, and only 584 // dominate phi uses. 585 auto BlockEdge = getBlockEdge(PossibleCopy); 586 if (EdgeUsesOnly.count(BlockEdge)) { 587 VD.LocalNum = LN_Last; 588 auto *DomNode = DT.getNode(BlockEdge.first); 589 if (DomNode) { 590 VD.DFSIn = DomNode->getDFSNumIn(); 591 VD.DFSOut = DomNode->getDFSNumOut(); 592 VD.PInfo = PossibleCopy; 593 VD.EdgeOnly = true; 594 OrderedUses.push_back(VD); 595 } 596 } else { 597 // Otherwise, we are in the split block (even though we perform 598 // insertion in the branch block). 599 // Insert a possible copy at the split block and before the branch. 600 VD.LocalNum = LN_First; 601 auto *DomNode = DT.getNode(BlockEdge.second); 602 if (DomNode) { 603 VD.DFSIn = DomNode->getDFSNumIn(); 604 VD.DFSOut = DomNode->getDFSNumOut(); 605 VD.PInfo = PossibleCopy; 606 OrderedUses.push_back(VD); 607 } 608 } 609 } 610 } 611 612 convertUsesToDFSOrdered(Op, OrderedUses); 613 std::sort(OrderedUses.begin(), OrderedUses.end(), Compare); 614 SmallVector<ValueDFS, 8> RenameStack; 615 // For each use, sorted into dfs order, push values and replaces uses with 616 // top of stack, which will represent the reaching def. 617 for (auto &VD : OrderedUses) { 618 // We currently do not materialize copy over copy, but we should decide if 619 // we want to. 620 bool PossibleCopy = VD.PInfo != nullptr; 621 if (RenameStack.empty()) { 622 DEBUG(dbgs() << "Rename Stack is empty\n"); 623 } else { 624 DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 625 << RenameStack.back().DFSIn << "," 626 << RenameStack.back().DFSOut << ")\n"); 627 } 628 629 DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 630 << VD.DFSOut << ")\n"); 631 632 bool ShouldPush = (VD.Def || PossibleCopy); 633 bool OutOfScope = !stackIsInScope(RenameStack, VD); 634 if (OutOfScope || ShouldPush) { 635 // Sync to our current scope. 636 popStackUntilDFSScope(RenameStack, VD); 637 if (ShouldPush) { 638 RenameStack.push_back(VD); 639 } 640 } 641 // If we get to this point, and the stack is empty we must have a use 642 // with no renaming needed, just skip it. 643 if (RenameStack.empty()) 644 continue; 645 // Skip values, only want to rename the uses 646 if (VD.Def || PossibleCopy) 647 continue; 648 if (!DebugCounter::shouldExecute(RenameCounter)) { 649 DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 650 continue; 651 } 652 ValueDFS &Result = RenameStack.back(); 653 654 // If the possible copy dominates something, materialize our stack up to 655 // this point. This ensures every comparison that affects our operation 656 // ends up with predicateinfo. 657 if (!Result.Def) 658 Result.Def = materializeStack(Counter, RenameStack, Op); 659 660 DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 661 << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n"); 662 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 663 "Predicateinfo def should have dominated this use"); 664 VD.U->set(Result.Def); 665 } 666 } 667 } 668 669 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 670 auto OIN = ValueInfoNums.find(Operand); 671 if (OIN == ValueInfoNums.end()) { 672 // This will grow it 673 ValueInfos.resize(ValueInfos.size() + 1); 674 // This will use the new size and give us a 0 based number of the info 675 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 676 assert(InsertResult.second && "Value info number already existed?"); 677 return ValueInfos[InsertResult.first->second]; 678 } 679 return ValueInfos[OIN->second]; 680 } 681 682 const PredicateInfo::ValueInfo & 683 PredicateInfo::getValueInfo(Value *Operand) const { 684 auto OINI = ValueInfoNums.lookup(Operand); 685 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 686 assert(OINI < ValueInfos.size() && 687 "Value Info Number greater than size of Value Info Table"); 688 return ValueInfos[OINI]; 689 } 690 691 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 692 AssumptionCache &AC) 693 : F(F), DT(DT), AC(AC), OI(&DT) { 694 // Push an empty operand info so that we can detect 0 as not finding one 695 ValueInfos.resize(1); 696 buildPredicateInfo(); 697 } 698 699 PredicateInfo::~PredicateInfo() {} 700 701 void PredicateInfo::verifyPredicateInfo() const {} 702 703 char PredicateInfoPrinterLegacyPass::ID = 0; 704 705 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 706 : FunctionPass(ID) { 707 initializePredicateInfoPrinterLegacyPassPass( 708 *PassRegistry::getPassRegistry()); 709 } 710 711 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 712 AU.setPreservesAll(); 713 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 714 AU.addRequired<AssumptionCacheTracker>(); 715 } 716 717 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 718 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 719 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 720 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 721 PredInfo->print(dbgs()); 722 if (VerifyPredicateInfo) 723 PredInfo->verifyPredicateInfo(); 724 return false; 725 } 726 727 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 728 FunctionAnalysisManager &AM) { 729 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 730 auto &AC = AM.getResult<AssumptionAnalysis>(F); 731 OS << "PredicateInfo for function: " << F.getName() << "\n"; 732 make_unique<PredicateInfo>(F, DT, AC)->print(OS); 733 734 return PreservedAnalyses::all(); 735 } 736 737 /// \brief An assembly annotator class to print PredicateInfo information in 738 /// comments. 739 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 740 friend class PredicateInfo; 741 const PredicateInfo *PredInfo; 742 743 public: 744 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 745 746 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 747 formatted_raw_ostream &OS) {} 748 749 virtual void emitInstructionAnnot(const Instruction *I, 750 formatted_raw_ostream &OS) { 751 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 752 OS << "; Has predicate info\n"; 753 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 754 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 755 << " Comparison:" << *PB->Condition << " Edge: ["; 756 PB->From->printAsOperand(OS); 757 OS << ","; 758 PB->To->printAsOperand(OS); 759 OS << "] }\n"; 760 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 761 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 762 << " Switch:" << *PS->Switch << " Edge: ["; 763 PS->From->printAsOperand(OS); 764 OS << ","; 765 PS->To->printAsOperand(OS); 766 OS << "] }\n"; 767 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 768 OS << "; assume predicate info {" 769 << " Comparison:" << *PA->Condition << " }\n"; 770 } 771 } 772 } 773 }; 774 775 void PredicateInfo::print(raw_ostream &OS) const { 776 PredicateInfoAnnotatedWriter Writer(this); 777 F.print(OS, &Writer); 778 } 779 780 void PredicateInfo::dump() const { 781 PredicateInfoAnnotatedWriter Writer(this); 782 F.print(dbgs(), &Writer); 783 } 784 785 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 786 FunctionAnalysisManager &AM) { 787 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 788 auto &AC = AM.getResult<AssumptionAnalysis>(F); 789 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 790 791 return PreservedAnalyses::all(); 792 } 793 } 794