1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/FormattedStream.h" 36 #include "llvm/Transforms/Utils.h" 37 #include <algorithm> 38 #define DEBUG_TYPE "predicateinfo" 39 using namespace llvm; 40 using namespace PatternMatch; 41 using namespace llvm::PredicateInfoClasses; 42 43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 44 "PredicateInfo Printer", false, false) 45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 48 "PredicateInfo Printer", false, false) 49 static cl::opt<bool> VerifyPredicateInfo( 50 "verify-predicateinfo", cl::init(false), cl::Hidden, 51 cl::desc("Verify PredicateInfo in legacy printer pass.")); 52 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 53 "Controls which variables are renamed with predicateinfo"); 54 55 namespace { 56 // Given a predicate info that is a type of branching terminator, get the 57 // branching block. 58 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 59 assert(isa<PredicateWithEdge>(PB) && 60 "Only branches and switches should have PHIOnly defs that " 61 "require branch blocks."); 62 return cast<PredicateWithEdge>(PB)->From; 63 } 64 65 // Given a predicate info that is a type of branching terminator, get the 66 // branching terminator. 67 static Instruction *getBranchTerminator(const PredicateBase *PB) { 68 assert(isa<PredicateWithEdge>(PB) && 69 "Not a predicate info type we know how to get a terminator from."); 70 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 71 } 72 73 // Given a predicate info that is a type of branching terminator, get the 74 // edge this predicate info represents 75 const std::pair<BasicBlock *, BasicBlock *> 76 getBlockEdge(const PredicateBase *PB) { 77 assert(isa<PredicateWithEdge>(PB) && 78 "Not a predicate info type we know how to get an edge from."); 79 const auto *PEdge = cast<PredicateWithEdge>(PB); 80 return std::make_pair(PEdge->From, PEdge->To); 81 } 82 } 83 84 namespace llvm { 85 namespace PredicateInfoClasses { 86 enum LocalNum { 87 // Operations that must appear first in the block. 88 LN_First, 89 // Operations that are somewhere in the middle of the block, and are sorted on 90 // demand. 91 LN_Middle, 92 // Operations that must appear last in a block, like successor phi node uses. 93 LN_Last 94 }; 95 96 // Associate global and local DFS info with defs and uses, so we can sort them 97 // into a global domination ordering. 98 struct ValueDFS { 99 int DFSIn = 0; 100 int DFSOut = 0; 101 unsigned int LocalNum = LN_Middle; 102 // Only one of Def or Use will be set. 103 Value *Def = nullptr; 104 Use *U = nullptr; 105 // Neither PInfo nor EdgeOnly participate in the ordering 106 PredicateBase *PInfo = nullptr; 107 bool EdgeOnly = false; 108 }; 109 110 // Perform a strict weak ordering on instructions and arguments. 111 static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 112 const Value *B) { 113 auto *ArgA = dyn_cast_or_null<Argument>(A); 114 auto *ArgB = dyn_cast_or_null<Argument>(B); 115 if (ArgA && !ArgB) 116 return true; 117 if (ArgB && !ArgA) 118 return false; 119 if (ArgA && ArgB) 120 return ArgA->getArgNo() < ArgB->getArgNo(); 121 return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B)); 122 } 123 124 // This compares ValueDFS structures, creating OrderedBasicBlocks where 125 // necessary to compare uses/defs in the same block. Doing so allows us to walk 126 // the minimum number of instructions necessary to compute our def/use ordering. 127 struct ValueDFS_Compare { 128 OrderedInstructions &OI; 129 ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {} 130 131 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 132 if (&A == &B) 133 return false; 134 // The only case we can't directly compare them is when they in the same 135 // block, and both have localnum == middle. In that case, we have to use 136 // comesbefore to see what the real ordering is, because they are in the 137 // same basic block. 138 139 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 140 141 // We want to put the def that will get used for a given set of phi uses, 142 // before those phi uses. 143 // So we sort by edge, then by def. 144 // Note that only phi nodes uses and defs can come last. 145 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 146 return comparePHIRelated(A, B); 147 148 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 149 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 150 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 151 return localComesBefore(A, B); 152 } 153 154 // For a phi use, or a non-materialized def, return the edge it represents. 155 const std::pair<BasicBlock *, BasicBlock *> 156 getBlockEdge(const ValueDFS &VD) const { 157 if (!VD.Def && VD.U) { 158 auto *PHI = cast<PHINode>(VD.U->getUser()); 159 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 160 } 161 // This is really a non-materialized def. 162 return ::getBlockEdge(VD.PInfo); 163 } 164 165 // For two phi related values, return the ordering. 166 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 167 auto &ABlockEdge = getBlockEdge(A); 168 auto &BBlockEdge = getBlockEdge(B); 169 // Now sort by block edge and then defs before uses. 170 return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); 171 } 172 173 // Get the definition of an instruction that occurs in the middle of a block. 174 Value *getMiddleDef(const ValueDFS &VD) const { 175 if (VD.Def) 176 return VD.Def; 177 // It's possible for the defs and uses to be null. For branches, the local 178 // numbering will say the placed predicaeinfos should go first (IE 179 // LN_beginning), so we won't be in this function. For assumes, we will end 180 // up here, beause we need to order the def we will place relative to the 181 // assume. So for the purpose of ordering, we pretend the def is the assume 182 // because that is where we will insert the info. 183 if (!VD.U) { 184 assert(VD.PInfo && 185 "No def, no use, and no predicateinfo should not occur"); 186 assert(isa<PredicateAssume>(VD.PInfo) && 187 "Middle of block should only occur for assumes"); 188 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 189 } 190 return nullptr; 191 } 192 193 // Return either the Def, if it's not null, or the user of the Use, if the def 194 // is null. 195 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 196 if (Def) 197 return cast<Instruction>(Def); 198 return cast<Instruction>(U->getUser()); 199 } 200 201 // This performs the necessary local basic block ordering checks to tell 202 // whether A comes before B, where both are in the same basic block. 203 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 204 auto *ADef = getMiddleDef(A); 205 auto *BDef = getMiddleDef(B); 206 207 // See if we have real values or uses. If we have real values, we are 208 // guaranteed they are instructions or arguments. No matter what, we are 209 // guaranteed they are in the same block if they are instructions. 210 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 211 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 212 213 if (ArgA || ArgB) 214 return valueComesBefore(OI, ArgA, ArgB); 215 216 auto *AInst = getDefOrUser(ADef, A.U); 217 auto *BInst = getDefOrUser(BDef, B.U); 218 return valueComesBefore(OI, AInst, BInst); 219 } 220 }; 221 222 } // namespace PredicateInfoClasses 223 224 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 225 const ValueDFS &VDUse) const { 226 if (Stack.empty()) 227 return false; 228 // If it's a phi only use, make sure it's for this phi node edge, and that the 229 // use is in a phi node. If it's anything else, and the top of the stack is 230 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 231 // the defs they must go with so that we can know it's time to pop the stack 232 // when we hit the end of the phi uses for a given def. 233 if (Stack.back().EdgeOnly) { 234 if (!VDUse.U) 235 return false; 236 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 237 if (!PHI) 238 return false; 239 // Check edge 240 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 241 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 242 return false; 243 244 // Use dominates, which knows how to handle edge dominance. 245 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 246 } 247 248 return (VDUse.DFSIn >= Stack.back().DFSIn && 249 VDUse.DFSOut <= Stack.back().DFSOut); 250 } 251 252 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 253 const ValueDFS &VD) { 254 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 255 Stack.pop_back(); 256 } 257 258 // Convert the uses of Op into a vector of uses, associating global and local 259 // DFS info with each one. 260 void PredicateInfo::convertUsesToDFSOrdered( 261 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 262 for (auto &U : Op->uses()) { 263 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 264 ValueDFS VD; 265 // Put the phi node uses in the incoming block. 266 BasicBlock *IBlock; 267 if (auto *PN = dyn_cast<PHINode>(I)) { 268 IBlock = PN->getIncomingBlock(U); 269 // Make phi node users appear last in the incoming block 270 // they are from. 271 VD.LocalNum = LN_Last; 272 } else { 273 // If it's not a phi node use, it is somewhere in the middle of the 274 // block. 275 IBlock = I->getParent(); 276 VD.LocalNum = LN_Middle; 277 } 278 DomTreeNode *DomNode = DT.getNode(IBlock); 279 // It's possible our use is in an unreachable block. Skip it if so. 280 if (!DomNode) 281 continue; 282 VD.DFSIn = DomNode->getDFSNumIn(); 283 VD.DFSOut = DomNode->getDFSNumOut(); 284 VD.U = &U; 285 DFSOrderedSet.push_back(VD); 286 } 287 } 288 } 289 290 // Collect relevant operations from Comparison that we may want to insert copies 291 // for. 292 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 293 auto *Op0 = Comparison->getOperand(0); 294 auto *Op1 = Comparison->getOperand(1); 295 if (Op0 == Op1) 296 return; 297 CmpOperands.push_back(Comparison); 298 // Only want real values, not constants. Additionally, operands with one use 299 // are only being used in the comparison, which means they will not be useful 300 // for us to consider for predicateinfo. 301 // 302 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 303 CmpOperands.push_back(Op0); 304 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 305 CmpOperands.push_back(Op1); 306 } 307 308 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 309 void PredicateInfo::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 310 PredicateBase *PB) { 311 auto &OperandInfo = getOrCreateValueInfo(Op); 312 if (OperandInfo.Infos.empty()) 313 OpsToRename.push_back(Op); 314 AllInfos.push_back(PB); 315 OperandInfo.Infos.push_back(PB); 316 } 317 318 // Process an assume instruction and place relevant operations we want to rename 319 // into OpsToRename. 320 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 321 SmallVectorImpl<Value *> &OpsToRename) { 322 // See if we have a comparison we support 323 SmallVector<Value *, 8> CmpOperands; 324 SmallVector<Value *, 2> ConditionsToProcess; 325 CmpInst::Predicate Pred; 326 Value *Operand = II->getOperand(0); 327 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 328 m_Cmp(Pred, m_Value(), m_Value())) 329 .match(II->getOperand(0))) { 330 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 331 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 332 ConditionsToProcess.push_back(Operand); 333 } else if (isa<CmpInst>(Operand)) { 334 335 ConditionsToProcess.push_back(Operand); 336 } 337 for (auto Cond : ConditionsToProcess) { 338 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 339 collectCmpOps(Cmp, CmpOperands); 340 // Now add our copy infos for our operands 341 for (auto *Op : CmpOperands) { 342 auto *PA = new PredicateAssume(Op, II, Cmp); 343 addInfoFor(OpsToRename, Op, PA); 344 } 345 CmpOperands.clear(); 346 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 347 // Otherwise, it should be an AND. 348 assert(BinOp->getOpcode() == Instruction::And && 349 "Should have been an AND"); 350 auto *PA = new PredicateAssume(BinOp, II, BinOp); 351 addInfoFor(OpsToRename, BinOp, PA); 352 } else { 353 llvm_unreachable("Unknown type of condition"); 354 } 355 } 356 } 357 358 // Process a block terminating branch, and place relevant operations to be 359 // renamed into OpsToRename. 360 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 361 SmallVectorImpl<Value *> &OpsToRename) { 362 BasicBlock *FirstBB = BI->getSuccessor(0); 363 BasicBlock *SecondBB = BI->getSuccessor(1); 364 SmallVector<BasicBlock *, 2> SuccsToProcess; 365 SuccsToProcess.push_back(FirstBB); 366 SuccsToProcess.push_back(SecondBB); 367 SmallVector<Value *, 2> ConditionsToProcess; 368 369 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 370 for (auto *Succ : SuccsToProcess) { 371 // Don't try to insert on a self-edge. This is mainly because we will 372 // eliminate during renaming anyway. 373 if (Succ == BranchBB) 374 continue; 375 bool TakenEdge = (Succ == FirstBB); 376 // For and, only insert on the true edge 377 // For or, only insert on the false edge 378 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 379 continue; 380 PredicateBase *PB = 381 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 382 addInfoFor(OpsToRename, Op, PB); 383 if (!Succ->getSinglePredecessor()) 384 EdgeUsesOnly.insert({BranchBB, Succ}); 385 } 386 }; 387 388 // Match combinations of conditions. 389 CmpInst::Predicate Pred; 390 bool isAnd = false; 391 bool isOr = false; 392 SmallVector<Value *, 8> CmpOperands; 393 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 394 m_Cmp(Pred, m_Value(), m_Value()))) || 395 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 396 m_Cmp(Pred, m_Value(), m_Value())))) { 397 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 398 if (BinOp->getOpcode() == Instruction::And) 399 isAnd = true; 400 else if (BinOp->getOpcode() == Instruction::Or) 401 isOr = true; 402 ConditionsToProcess.push_back(BinOp->getOperand(0)); 403 ConditionsToProcess.push_back(BinOp->getOperand(1)); 404 ConditionsToProcess.push_back(BI->getCondition()); 405 } else if (isa<CmpInst>(BI->getCondition())) { 406 ConditionsToProcess.push_back(BI->getCondition()); 407 } 408 for (auto Cond : ConditionsToProcess) { 409 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 410 collectCmpOps(Cmp, CmpOperands); 411 // Now add our copy infos for our operands 412 for (auto *Op : CmpOperands) 413 InsertHelper(Op, isAnd, isOr, Cmp); 414 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 415 // This must be an AND or an OR. 416 assert((BinOp->getOpcode() == Instruction::And || 417 BinOp->getOpcode() == Instruction::Or) && 418 "Should have been an AND or an OR"); 419 // The actual value of the binop is not subject to the same restrictions 420 // as the comparison. It's either true or false on the true/false branch. 421 InsertHelper(BinOp, false, false, BinOp); 422 } else { 423 llvm_unreachable("Unknown type of condition"); 424 } 425 CmpOperands.clear(); 426 } 427 } 428 // Process a block terminating switch, and place relevant operations to be 429 // renamed into OpsToRename. 430 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 431 SmallVectorImpl<Value *> &OpsToRename) { 432 Value *Op = SI->getCondition(); 433 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 434 return; 435 436 // Remember how many outgoing edges there are to every successor. 437 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 438 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 439 BasicBlock *TargetBlock = SI->getSuccessor(i); 440 ++SwitchEdges[TargetBlock]; 441 } 442 443 // Now propagate info for each case value 444 for (auto C : SI->cases()) { 445 BasicBlock *TargetBlock = C.getCaseSuccessor(); 446 if (SwitchEdges.lookup(TargetBlock) == 1) { 447 PredicateSwitch *PS = new PredicateSwitch( 448 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 449 addInfoFor(OpsToRename, Op, PS); 450 if (!TargetBlock->getSinglePredecessor()) 451 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 452 } 453 } 454 } 455 456 // Build predicate info for our function 457 void PredicateInfo::buildPredicateInfo() { 458 DT.updateDFSNumbers(); 459 // Collect operands to rename from all conditional branch terminators, as well 460 // as assume statements. 461 SmallVector<Value *, 8> OpsToRename; 462 for (auto DTN : depth_first(DT.getRootNode())) { 463 BasicBlock *BranchBB = DTN->getBlock(); 464 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 465 if (!BI->isConditional()) 466 continue; 467 // Can't insert conditional information if they all go to the same place. 468 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 469 continue; 470 processBranch(BI, BranchBB, OpsToRename); 471 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 472 processSwitch(SI, BranchBB, OpsToRename); 473 } 474 } 475 for (auto &Assume : AC.assumptions()) { 476 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 477 if (DT.isReachableFromEntry(II->getParent())) 478 processAssume(II, II->getParent(), OpsToRename); 479 } 480 // Now rename all our operations. 481 renameUses(OpsToRename); 482 } 483 484 // Create a ssa_copy declaration with custom mangling, because 485 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 486 // all unnamed types get mangled to the same string. We use the pointer 487 // to the type as name here, as it guarantees unique names for different 488 // types and we remove the declarations when destroying PredicateInfo. 489 // It is a workaround for PR38117, because solving it in a fully general way is 490 // tricky (FIXME). 491 static Function *getCopyDeclaration(Module *M, Type *Ty) { 492 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 493 return cast<Function>( 494 M->getOrInsertFunction(Name, 495 getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 496 .getCallee()); 497 } 498 499 // Given the renaming stack, make all the operands currently on the stack real 500 // by inserting them into the IR. Return the last operation's value. 501 Value *PredicateInfo::materializeStack(unsigned int &Counter, 502 ValueDFSStack &RenameStack, 503 Value *OrigOp) { 504 // Find the first thing we have to materialize 505 auto RevIter = RenameStack.rbegin(); 506 for (; RevIter != RenameStack.rend(); ++RevIter) 507 if (RevIter->Def) 508 break; 509 510 size_t Start = RevIter - RenameStack.rbegin(); 511 // The maximum number of things we should be trying to materialize at once 512 // right now is 4, depending on if we had an assume, a branch, and both used 513 // and of conditions. 514 for (auto RenameIter = RenameStack.end() - Start; 515 RenameIter != RenameStack.end(); ++RenameIter) { 516 auto *Op = 517 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 518 ValueDFS &Result = *RenameIter; 519 auto *ValInfo = Result.PInfo; 520 // For edge predicates, we can just place the operand in the block before 521 // the terminator. For assume, we have to place it right before the assume 522 // to ensure we dominate all of our uses. Always insert right before the 523 // relevant instruction (terminator, assume), so that we insert in proper 524 // order in the case of multiple predicateinfo in the same block. 525 if (isa<PredicateWithEdge>(ValInfo)) { 526 IRBuilder<> B(getBranchTerminator(ValInfo)); 527 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 528 if (empty(IF->users())) 529 CreatedDeclarations.insert(IF); 530 CallInst *PIC = 531 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 532 PredicateMap.insert({PIC, ValInfo}); 533 Result.Def = PIC; 534 } else { 535 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 536 assert(PAssume && 537 "Should not have gotten here without it being an assume"); 538 IRBuilder<> B(PAssume->AssumeInst); 539 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 540 if (empty(IF->users())) 541 CreatedDeclarations.insert(IF); 542 CallInst *PIC = B.CreateCall(IF, Op); 543 PredicateMap.insert({PIC, ValInfo}); 544 Result.Def = PIC; 545 } 546 } 547 return RenameStack.back().Def; 548 } 549 550 // Instead of the standard SSA renaming algorithm, which is O(Number of 551 // instructions), and walks the entire dominator tree, we walk only the defs + 552 // uses. The standard SSA renaming algorithm does not really rely on the 553 // dominator tree except to order the stack push/pops of the renaming stacks, so 554 // that defs end up getting pushed before hitting the correct uses. This does 555 // not require the dominator tree, only the *order* of the dominator tree. The 556 // complete and correct ordering of the defs and uses, in dominator tree is 557 // contained in the DFS numbering of the dominator tree. So we sort the defs and 558 // uses into the DFS ordering, and then just use the renaming stack as per 559 // normal, pushing when we hit a def (which is a predicateinfo instruction), 560 // popping when we are out of the dfs scope for that def, and replacing any uses 561 // with top of stack if it exists. In order to handle liveness without 562 // propagating liveness info, we don't actually insert the predicateinfo 563 // instruction def until we see a use that it would dominate. Once we see such 564 // a use, we materialize the predicateinfo instruction in the right place and 565 // use it. 566 // 567 // TODO: Use this algorithm to perform fast single-variable renaming in 568 // promotememtoreg and memoryssa. 569 void PredicateInfo::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 570 ValueDFS_Compare Compare(OI); 571 // Compute liveness, and rename in O(uses) per Op. 572 for (auto *Op : OpsToRename) { 573 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 574 unsigned Counter = 0; 575 SmallVector<ValueDFS, 16> OrderedUses; 576 const auto &ValueInfo = getValueInfo(Op); 577 // Insert the possible copies into the def/use list. 578 // They will become real copies if we find a real use for them, and never 579 // created otherwise. 580 for (auto &PossibleCopy : ValueInfo.Infos) { 581 ValueDFS VD; 582 // Determine where we are going to place the copy by the copy type. 583 // The predicate info for branches always come first, they will get 584 // materialized in the split block at the top of the block. 585 // The predicate info for assumes will be somewhere in the middle, 586 // it will get materialized in front of the assume. 587 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 588 VD.LocalNum = LN_Middle; 589 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 590 if (!DomNode) 591 continue; 592 VD.DFSIn = DomNode->getDFSNumIn(); 593 VD.DFSOut = DomNode->getDFSNumOut(); 594 VD.PInfo = PossibleCopy; 595 OrderedUses.push_back(VD); 596 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 597 // If we can only do phi uses, we treat it like it's in the branch 598 // block, and handle it specially. We know that it goes last, and only 599 // dominate phi uses. 600 auto BlockEdge = getBlockEdge(PossibleCopy); 601 if (EdgeUsesOnly.count(BlockEdge)) { 602 VD.LocalNum = LN_Last; 603 auto *DomNode = DT.getNode(BlockEdge.first); 604 if (DomNode) { 605 VD.DFSIn = DomNode->getDFSNumIn(); 606 VD.DFSOut = DomNode->getDFSNumOut(); 607 VD.PInfo = PossibleCopy; 608 VD.EdgeOnly = true; 609 OrderedUses.push_back(VD); 610 } 611 } else { 612 // Otherwise, we are in the split block (even though we perform 613 // insertion in the branch block). 614 // Insert a possible copy at the split block and before the branch. 615 VD.LocalNum = LN_First; 616 auto *DomNode = DT.getNode(BlockEdge.second); 617 if (DomNode) { 618 VD.DFSIn = DomNode->getDFSNumIn(); 619 VD.DFSOut = DomNode->getDFSNumOut(); 620 VD.PInfo = PossibleCopy; 621 OrderedUses.push_back(VD); 622 } 623 } 624 } 625 } 626 627 convertUsesToDFSOrdered(Op, OrderedUses); 628 // Here we require a stable sort because we do not bother to try to 629 // assign an order to the operands the uses represent. Thus, two 630 // uses in the same instruction do not have a strict sort order 631 // currently and will be considered equal. We could get rid of the 632 // stable sort by creating one if we wanted. 633 llvm::stable_sort(OrderedUses, Compare); 634 SmallVector<ValueDFS, 8> RenameStack; 635 // For each use, sorted into dfs order, push values and replaces uses with 636 // top of stack, which will represent the reaching def. 637 for (auto &VD : OrderedUses) { 638 // We currently do not materialize copy over copy, but we should decide if 639 // we want to. 640 bool PossibleCopy = VD.PInfo != nullptr; 641 if (RenameStack.empty()) { 642 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 643 } else { 644 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 645 << RenameStack.back().DFSIn << "," 646 << RenameStack.back().DFSOut << ")\n"); 647 } 648 649 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 650 << VD.DFSOut << ")\n"); 651 652 bool ShouldPush = (VD.Def || PossibleCopy); 653 bool OutOfScope = !stackIsInScope(RenameStack, VD); 654 if (OutOfScope || ShouldPush) { 655 // Sync to our current scope. 656 popStackUntilDFSScope(RenameStack, VD); 657 if (ShouldPush) { 658 RenameStack.push_back(VD); 659 } 660 } 661 // If we get to this point, and the stack is empty we must have a use 662 // with no renaming needed, just skip it. 663 if (RenameStack.empty()) 664 continue; 665 // Skip values, only want to rename the uses 666 if (VD.Def || PossibleCopy) 667 continue; 668 if (!DebugCounter::shouldExecute(RenameCounter)) { 669 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 670 continue; 671 } 672 ValueDFS &Result = RenameStack.back(); 673 674 // If the possible copy dominates something, materialize our stack up to 675 // this point. This ensures every comparison that affects our operation 676 // ends up with predicateinfo. 677 if (!Result.Def) 678 Result.Def = materializeStack(Counter, RenameStack, Op); 679 680 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 681 << *VD.U->get() << " in " << *(VD.U->getUser()) 682 << "\n"); 683 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 684 "Predicateinfo def should have dominated this use"); 685 VD.U->set(Result.Def); 686 } 687 } 688 } 689 690 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 691 auto OIN = ValueInfoNums.find(Operand); 692 if (OIN == ValueInfoNums.end()) { 693 // This will grow it 694 ValueInfos.resize(ValueInfos.size() + 1); 695 // This will use the new size and give us a 0 based number of the info 696 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 697 assert(InsertResult.second && "Value info number already existed?"); 698 return ValueInfos[InsertResult.first->second]; 699 } 700 return ValueInfos[OIN->second]; 701 } 702 703 const PredicateInfo::ValueInfo & 704 PredicateInfo::getValueInfo(Value *Operand) const { 705 auto OINI = ValueInfoNums.lookup(Operand); 706 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 707 assert(OINI < ValueInfos.size() && 708 "Value Info Number greater than size of Value Info Table"); 709 return ValueInfos[OINI]; 710 } 711 712 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 713 AssumptionCache &AC) 714 : F(F), DT(DT), AC(AC), OI(&DT) { 715 // Push an empty operand info so that we can detect 0 as not finding one 716 ValueInfos.resize(1); 717 buildPredicateInfo(); 718 } 719 720 // Remove all declarations we created . The PredicateInfo consumers are 721 // responsible for remove the ssa_copy calls created. 722 PredicateInfo::~PredicateInfo() { 723 // Collect function pointers in set first, as SmallSet uses a SmallVector 724 // internally and we have to remove the asserting value handles first. 725 SmallPtrSet<Function *, 20> FunctionPtrs; 726 for (auto &F : CreatedDeclarations) 727 FunctionPtrs.insert(&*F); 728 CreatedDeclarations.clear(); 729 730 for (Function *F : FunctionPtrs) { 731 assert(F->user_begin() == F->user_end() && 732 "PredicateInfo consumer did not remove all SSA copies."); 733 F->eraseFromParent(); 734 } 735 } 736 737 void PredicateInfo::verifyPredicateInfo() const {} 738 739 char PredicateInfoPrinterLegacyPass::ID = 0; 740 741 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 742 : FunctionPass(ID) { 743 initializePredicateInfoPrinterLegacyPassPass( 744 *PassRegistry::getPassRegistry()); 745 } 746 747 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 748 AU.setPreservesAll(); 749 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 750 AU.addRequired<AssumptionCacheTracker>(); 751 } 752 753 // Replace ssa_copy calls created by PredicateInfo with their operand. 754 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 755 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 756 Instruction *Inst = &*I++; 757 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 758 auto *II = dyn_cast<IntrinsicInst>(Inst); 759 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 760 continue; 761 762 Inst->replaceAllUsesWith(II->getOperand(0)); 763 Inst->eraseFromParent(); 764 } 765 } 766 767 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 768 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 769 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 770 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 771 PredInfo->print(dbgs()); 772 if (VerifyPredicateInfo) 773 PredInfo->verifyPredicateInfo(); 774 775 replaceCreatedSSACopys(*PredInfo, F); 776 return false; 777 } 778 779 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 780 FunctionAnalysisManager &AM) { 781 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 782 auto &AC = AM.getResult<AssumptionAnalysis>(F); 783 OS << "PredicateInfo for function: " << F.getName() << "\n"; 784 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 785 PredInfo->print(OS); 786 787 replaceCreatedSSACopys(*PredInfo, F); 788 return PreservedAnalyses::all(); 789 } 790 791 /// An assembly annotator class to print PredicateInfo information in 792 /// comments. 793 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 794 friend class PredicateInfo; 795 const PredicateInfo *PredInfo; 796 797 public: 798 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 799 800 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 801 formatted_raw_ostream &OS) {} 802 803 virtual void emitInstructionAnnot(const Instruction *I, 804 formatted_raw_ostream &OS) { 805 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 806 OS << "; Has predicate info\n"; 807 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 808 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 809 << " Comparison:" << *PB->Condition << " Edge: ["; 810 PB->From->printAsOperand(OS); 811 OS << ","; 812 PB->To->printAsOperand(OS); 813 OS << "] }\n"; 814 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 815 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 816 << " Switch:" << *PS->Switch << " Edge: ["; 817 PS->From->printAsOperand(OS); 818 OS << ","; 819 PS->To->printAsOperand(OS); 820 OS << "] }\n"; 821 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 822 OS << "; assume predicate info {" 823 << " Comparison:" << *PA->Condition << " }\n"; 824 } 825 } 826 } 827 }; 828 829 void PredicateInfo::print(raw_ostream &OS) const { 830 PredicateInfoAnnotatedWriter Writer(this); 831 F.print(OS, &Writer); 832 } 833 834 void PredicateInfo::dump() const { 835 PredicateInfoAnnotatedWriter Writer(this); 836 F.print(dbgs(), &Writer); 837 } 838 839 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 840 FunctionAnalysisManager &AM) { 841 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 842 auto &AC = AM.getResult<AssumptionAnalysis>(F); 843 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 844 845 return PreservedAnalyses::all(); 846 } 847 } 848