1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/OrderedInstructions.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/FormattedStream.h" 38 #include "llvm/Transforms/Utils.h" 39 #include <algorithm> 40 #define DEBUG_TYPE "predicateinfo" 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 45 "PredicateInfo Printer", false, false) 46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 49 "PredicateInfo Printer", false, false) 50 static cl::opt<bool> VerifyPredicateInfo( 51 "verify-predicateinfo", cl::init(false), cl::Hidden, 52 cl::desc("Verify PredicateInfo in legacy printer pass.")); 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo"); 55 56 namespace { 57 // Given a predicate info that is a type of branching terminator, get the 58 // branching block. 59 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 60 assert(isa<PredicateWithEdge>(PB) && 61 "Only branches and switches should have PHIOnly defs that " 62 "require branch blocks."); 63 return cast<PredicateWithEdge>(PB)->From; 64 } 65 66 // Given a predicate info that is a type of branching terminator, get the 67 // branching terminator. 68 static Instruction *getBranchTerminator(const PredicateBase *PB) { 69 assert(isa<PredicateWithEdge>(PB) && 70 "Not a predicate info type we know how to get a terminator from."); 71 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 72 } 73 74 // Given a predicate info that is a type of branching terminator, get the 75 // edge this predicate info represents 76 const std::pair<BasicBlock *, BasicBlock *> 77 getBlockEdge(const PredicateBase *PB) { 78 assert(isa<PredicateWithEdge>(PB) && 79 "Not a predicate info type we know how to get an edge from."); 80 const auto *PEdge = cast<PredicateWithEdge>(PB); 81 return std::make_pair(PEdge->From, PEdge->To); 82 } 83 } 84 85 namespace llvm { 86 enum LocalNum { 87 // Operations that must appear first in the block. 88 LN_First, 89 // Operations that are somewhere in the middle of the block, and are sorted on 90 // demand. 91 LN_Middle, 92 // Operations that must appear last in a block, like successor phi node uses. 93 LN_Last 94 }; 95 96 // Associate global and local DFS info with defs and uses, so we can sort them 97 // into a global domination ordering. 98 struct ValueDFS { 99 int DFSIn = 0; 100 int DFSOut = 0; 101 unsigned int LocalNum = LN_Middle; 102 // Only one of Def or Use will be set. 103 Value *Def = nullptr; 104 Use *U = nullptr; 105 // Neither PInfo nor EdgeOnly participate in the ordering 106 PredicateBase *PInfo = nullptr; 107 bool EdgeOnly = false; 108 }; 109 110 // Perform a strict weak ordering on instructions and arguments. 111 static bool valueComesBefore(OrderedInstructions &OI, const Value *A, 112 const Value *B) { 113 auto *ArgA = dyn_cast_or_null<Argument>(A); 114 auto *ArgB = dyn_cast_or_null<Argument>(B); 115 if (ArgA && !ArgB) 116 return true; 117 if (ArgB && !ArgA) 118 return false; 119 if (ArgA && ArgB) 120 return ArgA->getArgNo() < ArgB->getArgNo(); 121 return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B)); 122 } 123 124 // This compares ValueDFS structures, creating OrderedBasicBlocks where 125 // necessary to compare uses/defs in the same block. Doing so allows us to walk 126 // the minimum number of instructions necessary to compute our def/use ordering. 127 struct ValueDFS_Compare { 128 DominatorTree &DT; 129 OrderedInstructions &OI; 130 ValueDFS_Compare(DominatorTree &DT, OrderedInstructions &OI) 131 : DT(DT), OI(OI) {} 132 133 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 134 if (&A == &B) 135 return false; 136 // The only case we can't directly compare them is when they in the same 137 // block, and both have localnum == middle. In that case, we have to use 138 // comesbefore to see what the real ordering is, because they are in the 139 // same basic block. 140 141 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 142 "Equal DFS-in numbers imply equal out numbers"); 143 bool SameBlock = A.DFSIn == B.DFSIn; 144 145 // We want to put the def that will get used for a given set of phi uses, 146 // before those phi uses. 147 // So we sort by edge, then by def. 148 // Note that only phi nodes uses and defs can come last. 149 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 150 return comparePHIRelated(A, B); 151 152 bool isADef = A.Def; 153 bool isBDef = B.Def; 154 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 155 return std::tie(A.DFSIn, A.LocalNum, isADef) < 156 std::tie(B.DFSIn, B.LocalNum, isBDef); 157 return localComesBefore(A, B); 158 } 159 160 // For a phi use, or a non-materialized def, return the edge it represents. 161 const std::pair<BasicBlock *, BasicBlock *> 162 getBlockEdge(const ValueDFS &VD) const { 163 if (!VD.Def && VD.U) { 164 auto *PHI = cast<PHINode>(VD.U->getUser()); 165 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 166 } 167 // This is really a non-materialized def. 168 return ::getBlockEdge(VD.PInfo); 169 } 170 171 // For two phi related values, return the ordering. 172 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 173 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 174 std::tie(ASrc, ADest) = getBlockEdge(A); 175 std::tie(BSrc, BDest) = getBlockEdge(B); 176 177 #ifndef NDEBUG 178 // This function should only be used for values in the same BB, check that. 179 DomTreeNode *DomASrc = DT.getNode(ASrc); 180 DomTreeNode *DomBSrc = DT.getNode(BSrc); 181 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 182 "DFS numbers for A should match the ones of the source block"); 183 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 184 "DFS numbers for B should match the ones of the source block"); 185 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 186 #endif 187 (void)ASrc; 188 (void)BSrc; 189 190 // Use DFS numbers to compare destination blocks, to guarantee a 191 // deterministic order. 192 DomTreeNode *DomADest = DT.getNode(ADest); 193 DomTreeNode *DomBDest = DT.getNode(BDest); 194 unsigned AIn = DomADest->getDFSNumIn(); 195 unsigned BIn = DomBDest->getDFSNumIn(); 196 bool isADef = A.Def; 197 bool isBDef = B.Def; 198 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 199 "Def and U cannot be set at the same time"); 200 // Now sort by edge destination and then defs before uses. 201 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 202 } 203 204 // Get the definition of an instruction that occurs in the middle of a block. 205 Value *getMiddleDef(const ValueDFS &VD) const { 206 if (VD.Def) 207 return VD.Def; 208 // It's possible for the defs and uses to be null. For branches, the local 209 // numbering will say the placed predicaeinfos should go first (IE 210 // LN_beginning), so we won't be in this function. For assumes, we will end 211 // up here, beause we need to order the def we will place relative to the 212 // assume. So for the purpose of ordering, we pretend the def is the assume 213 // because that is where we will insert the info. 214 if (!VD.U) { 215 assert(VD.PInfo && 216 "No def, no use, and no predicateinfo should not occur"); 217 assert(isa<PredicateAssume>(VD.PInfo) && 218 "Middle of block should only occur for assumes"); 219 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 220 } 221 return nullptr; 222 } 223 224 // Return either the Def, if it's not null, or the user of the Use, if the def 225 // is null. 226 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 227 if (Def) 228 return cast<Instruction>(Def); 229 return cast<Instruction>(U->getUser()); 230 } 231 232 // This performs the necessary local basic block ordering checks to tell 233 // whether A comes before B, where both are in the same basic block. 234 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 235 auto *ADef = getMiddleDef(A); 236 auto *BDef = getMiddleDef(B); 237 238 // See if we have real values or uses. If we have real values, we are 239 // guaranteed they are instructions or arguments. No matter what, we are 240 // guaranteed they are in the same block if they are instructions. 241 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 242 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 243 244 if (ArgA || ArgB) 245 return valueComesBefore(OI, ArgA, ArgB); 246 247 auto *AInst = getDefOrUser(ADef, A.U); 248 auto *BInst = getDefOrUser(BDef, B.U); 249 return valueComesBefore(OI, AInst, BInst); 250 } 251 }; 252 253 class PredicateInfoBuilder { 254 // Used to store information about each value we might rename. 255 struct ValueInfo { 256 SmallVector<PredicateBase *, 4> Infos; 257 }; 258 259 PredicateInfo &PI; 260 Function &F; 261 DominatorTree &DT; 262 AssumptionCache &AC; 263 OrderedInstructions OI; 264 265 // This stores info about each operand or comparison result we make copies 266 // of. The real ValueInfos start at index 1, index 0 is unused so that we 267 // can more easily detect invalid indexing. 268 SmallVector<ValueInfo, 32> ValueInfos; 269 270 // This gives the index into the ValueInfos array for a given Value. Because 271 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 272 // whether it returned a valid result. 273 DenseMap<Value *, unsigned int> ValueInfoNums; 274 275 // The set of edges along which we can only handle phi uses, due to critical 276 // edges. 277 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 278 279 ValueInfo &getOrCreateValueInfo(Value *); 280 const ValueInfo &getValueInfo(Value *) const; 281 282 void processAssume(IntrinsicInst *, BasicBlock *, 283 SmallVectorImpl<Value *> &OpsToRename); 284 void processBranch(BranchInst *, BasicBlock *, 285 SmallVectorImpl<Value *> &OpsToRename); 286 void processSwitch(SwitchInst *, BasicBlock *, 287 SmallVectorImpl<Value *> &OpsToRename); 288 void renameUses(SmallVectorImpl<Value *> &OpsToRename); 289 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 290 PredicateBase *PB); 291 292 typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 293 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 294 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 295 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 296 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 297 298 public: 299 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 300 AssumptionCache &AC) 301 : PI(PI), F(F), DT(DT), AC(AC), OI(&DT) { 302 // Push an empty operand info so that we can detect 0 as not finding one 303 ValueInfos.resize(1); 304 } 305 306 void buildPredicateInfo(); 307 }; 308 309 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 310 const ValueDFS &VDUse) const { 311 if (Stack.empty()) 312 return false; 313 // If it's a phi only use, make sure it's for this phi node edge, and that the 314 // use is in a phi node. If it's anything else, and the top of the stack is 315 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 316 // the defs they must go with so that we can know it's time to pop the stack 317 // when we hit the end of the phi uses for a given def. 318 if (Stack.back().EdgeOnly) { 319 if (!VDUse.U) 320 return false; 321 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 322 if (!PHI) 323 return false; 324 // Check edge 325 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 326 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 327 return false; 328 329 // Use dominates, which knows how to handle edge dominance. 330 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 331 } 332 333 return (VDUse.DFSIn >= Stack.back().DFSIn && 334 VDUse.DFSOut <= Stack.back().DFSOut); 335 } 336 337 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 338 const ValueDFS &VD) { 339 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 340 Stack.pop_back(); 341 } 342 343 // Convert the uses of Op into a vector of uses, associating global and local 344 // DFS info with each one. 345 void PredicateInfoBuilder::convertUsesToDFSOrdered( 346 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 347 for (auto &U : Op->uses()) { 348 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 349 ValueDFS VD; 350 // Put the phi node uses in the incoming block. 351 BasicBlock *IBlock; 352 if (auto *PN = dyn_cast<PHINode>(I)) { 353 IBlock = PN->getIncomingBlock(U); 354 // Make phi node users appear last in the incoming block 355 // they are from. 356 VD.LocalNum = LN_Last; 357 } else { 358 // If it's not a phi node use, it is somewhere in the middle of the 359 // block. 360 IBlock = I->getParent(); 361 VD.LocalNum = LN_Middle; 362 } 363 DomTreeNode *DomNode = DT.getNode(IBlock); 364 // It's possible our use is in an unreachable block. Skip it if so. 365 if (!DomNode) 366 continue; 367 VD.DFSIn = DomNode->getDFSNumIn(); 368 VD.DFSOut = DomNode->getDFSNumOut(); 369 VD.U = &U; 370 DFSOrderedSet.push_back(VD); 371 } 372 } 373 } 374 375 // Collect relevant operations from Comparison that we may want to insert copies 376 // for. 377 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 378 auto *Op0 = Comparison->getOperand(0); 379 auto *Op1 = Comparison->getOperand(1); 380 if (Op0 == Op1) 381 return; 382 CmpOperands.push_back(Comparison); 383 // Only want real values, not constants. Additionally, operands with one use 384 // are only being used in the comparison, which means they will not be useful 385 // for us to consider for predicateinfo. 386 // 387 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 388 CmpOperands.push_back(Op0); 389 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 390 CmpOperands.push_back(Op1); 391 } 392 393 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 394 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 395 Value *Op, PredicateBase *PB) { 396 auto &OperandInfo = getOrCreateValueInfo(Op); 397 if (OperandInfo.Infos.empty()) 398 OpsToRename.push_back(Op); 399 PI.AllInfos.push_back(PB); 400 OperandInfo.Infos.push_back(PB); 401 } 402 403 // Process an assume instruction and place relevant operations we want to rename 404 // into OpsToRename. 405 void PredicateInfoBuilder::processAssume( 406 IntrinsicInst *II, BasicBlock *AssumeBB, 407 SmallVectorImpl<Value *> &OpsToRename) { 408 // See if we have a comparison we support 409 SmallVector<Value *, 8> CmpOperands; 410 SmallVector<Value *, 2> ConditionsToProcess; 411 CmpInst::Predicate Pred; 412 Value *Operand = II->getOperand(0); 413 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 414 m_Cmp(Pred, m_Value(), m_Value())) 415 .match(II->getOperand(0))) { 416 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 417 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 418 ConditionsToProcess.push_back(Operand); 419 } else if (isa<CmpInst>(Operand)) { 420 421 ConditionsToProcess.push_back(Operand); 422 } 423 for (auto Cond : ConditionsToProcess) { 424 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 425 collectCmpOps(Cmp, CmpOperands); 426 // Now add our copy infos for our operands 427 for (auto *Op : CmpOperands) { 428 auto *PA = new PredicateAssume(Op, II, Cmp); 429 addInfoFor(OpsToRename, Op, PA); 430 } 431 CmpOperands.clear(); 432 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 433 // Otherwise, it should be an AND. 434 assert(BinOp->getOpcode() == Instruction::And && 435 "Should have been an AND"); 436 auto *PA = new PredicateAssume(BinOp, II, BinOp); 437 addInfoFor(OpsToRename, BinOp, PA); 438 } else { 439 llvm_unreachable("Unknown type of condition"); 440 } 441 } 442 } 443 444 // Process a block terminating branch, and place relevant operations to be 445 // renamed into OpsToRename. 446 void PredicateInfoBuilder::processBranch( 447 BranchInst *BI, BasicBlock *BranchBB, 448 SmallVectorImpl<Value *> &OpsToRename) { 449 BasicBlock *FirstBB = BI->getSuccessor(0); 450 BasicBlock *SecondBB = BI->getSuccessor(1); 451 SmallVector<BasicBlock *, 2> SuccsToProcess; 452 SuccsToProcess.push_back(FirstBB); 453 SuccsToProcess.push_back(SecondBB); 454 SmallVector<Value *, 2> ConditionsToProcess; 455 456 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 457 for (auto *Succ : SuccsToProcess) { 458 // Don't try to insert on a self-edge. This is mainly because we will 459 // eliminate during renaming anyway. 460 if (Succ == BranchBB) 461 continue; 462 bool TakenEdge = (Succ == FirstBB); 463 // For and, only insert on the true edge 464 // For or, only insert on the false edge 465 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 466 continue; 467 PredicateBase *PB = 468 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 469 addInfoFor(OpsToRename, Op, PB); 470 if (!Succ->getSinglePredecessor()) 471 EdgeUsesOnly.insert({BranchBB, Succ}); 472 } 473 }; 474 475 // Match combinations of conditions. 476 CmpInst::Predicate Pred; 477 bool isAnd = false; 478 bool isOr = false; 479 SmallVector<Value *, 8> CmpOperands; 480 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 481 m_Cmp(Pred, m_Value(), m_Value()))) || 482 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 483 m_Cmp(Pred, m_Value(), m_Value())))) { 484 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 485 if (BinOp->getOpcode() == Instruction::And) 486 isAnd = true; 487 else if (BinOp->getOpcode() == Instruction::Or) 488 isOr = true; 489 ConditionsToProcess.push_back(BinOp->getOperand(0)); 490 ConditionsToProcess.push_back(BinOp->getOperand(1)); 491 ConditionsToProcess.push_back(BI->getCondition()); 492 } else if (isa<CmpInst>(BI->getCondition())) { 493 ConditionsToProcess.push_back(BI->getCondition()); 494 } 495 for (auto Cond : ConditionsToProcess) { 496 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 497 collectCmpOps(Cmp, CmpOperands); 498 // Now add our copy infos for our operands 499 for (auto *Op : CmpOperands) 500 InsertHelper(Op, isAnd, isOr, Cmp); 501 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 502 // This must be an AND or an OR. 503 assert((BinOp->getOpcode() == Instruction::And || 504 BinOp->getOpcode() == Instruction::Or) && 505 "Should have been an AND or an OR"); 506 // The actual value of the binop is not subject to the same restrictions 507 // as the comparison. It's either true or false on the true/false branch. 508 InsertHelper(BinOp, false, false, BinOp); 509 } else { 510 llvm_unreachable("Unknown type of condition"); 511 } 512 CmpOperands.clear(); 513 } 514 } 515 // Process a block terminating switch, and place relevant operations to be 516 // renamed into OpsToRename. 517 void PredicateInfoBuilder::processSwitch( 518 SwitchInst *SI, BasicBlock *BranchBB, 519 SmallVectorImpl<Value *> &OpsToRename) { 520 Value *Op = SI->getCondition(); 521 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 522 return; 523 524 // Remember how many outgoing edges there are to every successor. 525 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 526 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 527 BasicBlock *TargetBlock = SI->getSuccessor(i); 528 ++SwitchEdges[TargetBlock]; 529 } 530 531 // Now propagate info for each case value 532 for (auto C : SI->cases()) { 533 BasicBlock *TargetBlock = C.getCaseSuccessor(); 534 if (SwitchEdges.lookup(TargetBlock) == 1) { 535 PredicateSwitch *PS = new PredicateSwitch( 536 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 537 addInfoFor(OpsToRename, Op, PS); 538 if (!TargetBlock->getSinglePredecessor()) 539 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 540 } 541 } 542 } 543 544 // Build predicate info for our function 545 void PredicateInfoBuilder::buildPredicateInfo() { 546 DT.updateDFSNumbers(); 547 // Collect operands to rename from all conditional branch terminators, as well 548 // as assume statements. 549 SmallVector<Value *, 8> OpsToRename; 550 for (auto DTN : depth_first(DT.getRootNode())) { 551 BasicBlock *BranchBB = DTN->getBlock(); 552 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 553 if (!BI->isConditional()) 554 continue; 555 // Can't insert conditional information if they all go to the same place. 556 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 557 continue; 558 processBranch(BI, BranchBB, OpsToRename); 559 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 560 processSwitch(SI, BranchBB, OpsToRename); 561 } 562 } 563 for (auto &Assume : AC.assumptions()) { 564 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 565 if (DT.isReachableFromEntry(II->getParent())) 566 processAssume(II, II->getParent(), OpsToRename); 567 } 568 // Now rename all our operations. 569 renameUses(OpsToRename); 570 } 571 572 // Create a ssa_copy declaration with custom mangling, because 573 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 574 // all unnamed types get mangled to the same string. We use the pointer 575 // to the type as name here, as it guarantees unique names for different 576 // types and we remove the declarations when destroying PredicateInfo. 577 // It is a workaround for PR38117, because solving it in a fully general way is 578 // tricky (FIXME). 579 static Function *getCopyDeclaration(Module *M, Type *Ty) { 580 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 581 return cast<Function>( 582 M->getOrInsertFunction(Name, 583 getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 584 .getCallee()); 585 } 586 587 // Given the renaming stack, make all the operands currently on the stack real 588 // by inserting them into the IR. Return the last operation's value. 589 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 590 ValueDFSStack &RenameStack, 591 Value *OrigOp) { 592 // Find the first thing we have to materialize 593 auto RevIter = RenameStack.rbegin(); 594 for (; RevIter != RenameStack.rend(); ++RevIter) 595 if (RevIter->Def) 596 break; 597 598 size_t Start = RevIter - RenameStack.rbegin(); 599 // The maximum number of things we should be trying to materialize at once 600 // right now is 4, depending on if we had an assume, a branch, and both used 601 // and of conditions. 602 for (auto RenameIter = RenameStack.end() - Start; 603 RenameIter != RenameStack.end(); ++RenameIter) { 604 auto *Op = 605 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 606 ValueDFS &Result = *RenameIter; 607 auto *ValInfo = Result.PInfo; 608 // For edge predicates, we can just place the operand in the block before 609 // the terminator. For assume, we have to place it right before the assume 610 // to ensure we dominate all of our uses. Always insert right before the 611 // relevant instruction (terminator, assume), so that we insert in proper 612 // order in the case of multiple predicateinfo in the same block. 613 if (isa<PredicateWithEdge>(ValInfo)) { 614 IRBuilder<> B(getBranchTerminator(ValInfo)); 615 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 616 if (IF->users().empty()) 617 PI.CreatedDeclarations.insert(IF); 618 CallInst *PIC = 619 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 620 PI.PredicateMap.insert({PIC, ValInfo}); 621 Result.Def = PIC; 622 } else { 623 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 624 assert(PAssume && 625 "Should not have gotten here without it being an assume"); 626 IRBuilder<> B(PAssume->AssumeInst); 627 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 628 if (IF->users().empty()) 629 PI.CreatedDeclarations.insert(IF); 630 CallInst *PIC = B.CreateCall(IF, Op); 631 PI.PredicateMap.insert({PIC, ValInfo}); 632 Result.Def = PIC; 633 } 634 } 635 return RenameStack.back().Def; 636 } 637 638 // Instead of the standard SSA renaming algorithm, which is O(Number of 639 // instructions), and walks the entire dominator tree, we walk only the defs + 640 // uses. The standard SSA renaming algorithm does not really rely on the 641 // dominator tree except to order the stack push/pops of the renaming stacks, so 642 // that defs end up getting pushed before hitting the correct uses. This does 643 // not require the dominator tree, only the *order* of the dominator tree. The 644 // complete and correct ordering of the defs and uses, in dominator tree is 645 // contained in the DFS numbering of the dominator tree. So we sort the defs and 646 // uses into the DFS ordering, and then just use the renaming stack as per 647 // normal, pushing when we hit a def (which is a predicateinfo instruction), 648 // popping when we are out of the dfs scope for that def, and replacing any uses 649 // with top of stack if it exists. In order to handle liveness without 650 // propagating liveness info, we don't actually insert the predicateinfo 651 // instruction def until we see a use that it would dominate. Once we see such 652 // a use, we materialize the predicateinfo instruction in the right place and 653 // use it. 654 // 655 // TODO: Use this algorithm to perform fast single-variable renaming in 656 // promotememtoreg and memoryssa. 657 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 658 ValueDFS_Compare Compare(DT, OI); 659 // Compute liveness, and rename in O(uses) per Op. 660 for (auto *Op : OpsToRename) { 661 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 662 unsigned Counter = 0; 663 SmallVector<ValueDFS, 16> OrderedUses; 664 const auto &ValueInfo = getValueInfo(Op); 665 // Insert the possible copies into the def/use list. 666 // They will become real copies if we find a real use for them, and never 667 // created otherwise. 668 for (auto &PossibleCopy : ValueInfo.Infos) { 669 ValueDFS VD; 670 // Determine where we are going to place the copy by the copy type. 671 // The predicate info for branches always come first, they will get 672 // materialized in the split block at the top of the block. 673 // The predicate info for assumes will be somewhere in the middle, 674 // it will get materialized in front of the assume. 675 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 676 VD.LocalNum = LN_Middle; 677 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 678 if (!DomNode) 679 continue; 680 VD.DFSIn = DomNode->getDFSNumIn(); 681 VD.DFSOut = DomNode->getDFSNumOut(); 682 VD.PInfo = PossibleCopy; 683 OrderedUses.push_back(VD); 684 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 685 // If we can only do phi uses, we treat it like it's in the branch 686 // block, and handle it specially. We know that it goes last, and only 687 // dominate phi uses. 688 auto BlockEdge = getBlockEdge(PossibleCopy); 689 if (EdgeUsesOnly.count(BlockEdge)) { 690 VD.LocalNum = LN_Last; 691 auto *DomNode = DT.getNode(BlockEdge.first); 692 if (DomNode) { 693 VD.DFSIn = DomNode->getDFSNumIn(); 694 VD.DFSOut = DomNode->getDFSNumOut(); 695 VD.PInfo = PossibleCopy; 696 VD.EdgeOnly = true; 697 OrderedUses.push_back(VD); 698 } 699 } else { 700 // Otherwise, we are in the split block (even though we perform 701 // insertion in the branch block). 702 // Insert a possible copy at the split block and before the branch. 703 VD.LocalNum = LN_First; 704 auto *DomNode = DT.getNode(BlockEdge.second); 705 if (DomNode) { 706 VD.DFSIn = DomNode->getDFSNumIn(); 707 VD.DFSOut = DomNode->getDFSNumOut(); 708 VD.PInfo = PossibleCopy; 709 OrderedUses.push_back(VD); 710 } 711 } 712 } 713 } 714 715 convertUsesToDFSOrdered(Op, OrderedUses); 716 // Here we require a stable sort because we do not bother to try to 717 // assign an order to the operands the uses represent. Thus, two 718 // uses in the same instruction do not have a strict sort order 719 // currently and will be considered equal. We could get rid of the 720 // stable sort by creating one if we wanted. 721 llvm::stable_sort(OrderedUses, Compare); 722 SmallVector<ValueDFS, 8> RenameStack; 723 // For each use, sorted into dfs order, push values and replaces uses with 724 // top of stack, which will represent the reaching def. 725 for (auto &VD : OrderedUses) { 726 // We currently do not materialize copy over copy, but we should decide if 727 // we want to. 728 bool PossibleCopy = VD.PInfo != nullptr; 729 if (RenameStack.empty()) { 730 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 731 } else { 732 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 733 << RenameStack.back().DFSIn << "," 734 << RenameStack.back().DFSOut << ")\n"); 735 } 736 737 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 738 << VD.DFSOut << ")\n"); 739 740 bool ShouldPush = (VD.Def || PossibleCopy); 741 bool OutOfScope = !stackIsInScope(RenameStack, VD); 742 if (OutOfScope || ShouldPush) { 743 // Sync to our current scope. 744 popStackUntilDFSScope(RenameStack, VD); 745 if (ShouldPush) { 746 RenameStack.push_back(VD); 747 } 748 } 749 // If we get to this point, and the stack is empty we must have a use 750 // with no renaming needed, just skip it. 751 if (RenameStack.empty()) 752 continue; 753 // Skip values, only want to rename the uses 754 if (VD.Def || PossibleCopy) 755 continue; 756 if (!DebugCounter::shouldExecute(RenameCounter)) { 757 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 758 continue; 759 } 760 ValueDFS &Result = RenameStack.back(); 761 762 // If the possible copy dominates something, materialize our stack up to 763 // this point. This ensures every comparison that affects our operation 764 // ends up with predicateinfo. 765 if (!Result.Def) 766 Result.Def = materializeStack(Counter, RenameStack, Op); 767 768 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 769 << *VD.U->get() << " in " << *(VD.U->getUser()) 770 << "\n"); 771 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 772 "Predicateinfo def should have dominated this use"); 773 VD.U->set(Result.Def); 774 } 775 } 776 } 777 778 PredicateInfoBuilder::ValueInfo & 779 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 780 auto OIN = ValueInfoNums.find(Operand); 781 if (OIN == ValueInfoNums.end()) { 782 // This will grow it 783 ValueInfos.resize(ValueInfos.size() + 1); 784 // This will use the new size and give us a 0 based number of the info 785 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 786 assert(InsertResult.second && "Value info number already existed?"); 787 return ValueInfos[InsertResult.first->second]; 788 } 789 return ValueInfos[OIN->second]; 790 } 791 792 const PredicateInfoBuilder::ValueInfo & 793 PredicateInfoBuilder::getValueInfo(Value *Operand) const { 794 auto OINI = ValueInfoNums.lookup(Operand); 795 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 796 assert(OINI < ValueInfos.size() && 797 "Value Info Number greater than size of Value Info Table"); 798 return ValueInfos[OINI]; 799 } 800 801 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 802 AssumptionCache &AC) 803 : F(F) { 804 PredicateInfoBuilder Builder(*this, F, DT, AC); 805 Builder.buildPredicateInfo(); 806 } 807 808 // Remove all declarations we created . The PredicateInfo consumers are 809 // responsible for remove the ssa_copy calls created. 810 PredicateInfo::~PredicateInfo() { 811 // Collect function pointers in set first, as SmallSet uses a SmallVector 812 // internally and we have to remove the asserting value handles first. 813 SmallPtrSet<Function *, 20> FunctionPtrs; 814 for (auto &F : CreatedDeclarations) 815 FunctionPtrs.insert(&*F); 816 CreatedDeclarations.clear(); 817 818 for (Function *F : FunctionPtrs) { 819 assert(F->user_begin() == F->user_end() && 820 "PredicateInfo consumer did not remove all SSA copies."); 821 F->eraseFromParent(); 822 } 823 } 824 825 void PredicateInfo::verifyPredicateInfo() const {} 826 827 char PredicateInfoPrinterLegacyPass::ID = 0; 828 829 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 830 : FunctionPass(ID) { 831 initializePredicateInfoPrinterLegacyPassPass( 832 *PassRegistry::getPassRegistry()); 833 } 834 835 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 836 AU.setPreservesAll(); 837 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 838 AU.addRequired<AssumptionCacheTracker>(); 839 } 840 841 // Replace ssa_copy calls created by PredicateInfo with their operand. 842 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 843 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 844 Instruction *Inst = &*I++; 845 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 846 auto *II = dyn_cast<IntrinsicInst>(Inst); 847 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 848 continue; 849 850 Inst->replaceAllUsesWith(II->getOperand(0)); 851 Inst->eraseFromParent(); 852 } 853 } 854 855 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 856 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 857 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 858 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 859 PredInfo->print(dbgs()); 860 if (VerifyPredicateInfo) 861 PredInfo->verifyPredicateInfo(); 862 863 replaceCreatedSSACopys(*PredInfo, F); 864 return false; 865 } 866 867 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 868 FunctionAnalysisManager &AM) { 869 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 870 auto &AC = AM.getResult<AssumptionAnalysis>(F); 871 OS << "PredicateInfo for function: " << F.getName() << "\n"; 872 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 873 PredInfo->print(OS); 874 875 replaceCreatedSSACopys(*PredInfo, F); 876 return PreservedAnalyses::all(); 877 } 878 879 /// An assembly annotator class to print PredicateInfo information in 880 /// comments. 881 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 882 friend class PredicateInfo; 883 const PredicateInfo *PredInfo; 884 885 public: 886 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 887 888 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 889 formatted_raw_ostream &OS) {} 890 891 virtual void emitInstructionAnnot(const Instruction *I, 892 formatted_raw_ostream &OS) { 893 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 894 OS << "; Has predicate info\n"; 895 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 896 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 897 << " Comparison:" << *PB->Condition << " Edge: ["; 898 PB->From->printAsOperand(OS); 899 OS << ","; 900 PB->To->printAsOperand(OS); 901 OS << "] }\n"; 902 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 903 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 904 << " Switch:" << *PS->Switch << " Edge: ["; 905 PS->From->printAsOperand(OS); 906 OS << ","; 907 PS->To->printAsOperand(OS); 908 OS << "] }\n"; 909 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 910 OS << "; assume predicate info {" 911 << " Comparison:" << *PA->Condition << " }\n"; 912 } 913 } 914 } 915 }; 916 917 void PredicateInfo::print(raw_ostream &OS) const { 918 PredicateInfoAnnotatedWriter Writer(this); 919 F.print(OS, &Writer); 920 } 921 922 void PredicateInfo::dump() const { 923 PredicateInfoAnnotatedWriter Writer(this); 924 F.print(dbgs(), &Writer); 925 } 926 927 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 928 FunctionAnalysisManager &AM) { 929 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 930 auto &AC = AM.getResult<AssumptionAnalysis>(F); 931 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 932 933 return PreservedAnalyses::all(); 934 } 935 } 936