1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------===//
9 //
10 // This file implements the PredicateInfo class.
11 //
12 //===----------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/PredicateInfo.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/OrderedBasicBlock.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include <algorithm>
38 #define DEBUG_TYPE "predicateinfo"
39 using namespace llvm;
40 using namespace PatternMatch;
41 using namespace llvm::PredicateInfoClasses;
42 
43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
44                       "PredicateInfo Printer", false, false)
45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
48                     "PredicateInfo Printer", false, false)
49 static cl::opt<bool> VerifyPredicateInfo(
50     "verify-predicateinfo", cl::init(false), cl::Hidden,
51     cl::desc("Verify PredicateInfo in legacy printer pass."));
52 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
53               "Controls which variables are renamed with predicateinfo")
54 
55 namespace llvm {
56 namespace PredicateInfoClasses {
57 enum LocalNum {
58   // Operations that must appear first in the block.
59   LN_First,
60   // Operations that are somewhere in the middle of the block, and are sorted on
61   // demand.
62   LN_Middle,
63   // Operations that must appear last in a block, like successor phi node uses.
64   LN_Last
65 };
66 
67 // Associate global and local DFS info with defs and uses, so we can sort them
68 // into a global domination ordering.
69 struct ValueDFS {
70   int DFSIn = 0;
71   int DFSOut = 0;
72   unsigned int LocalNum = LN_Middle;
73   // Only one of Def or Use will be set.
74   Value *Def = nullptr;
75   Use *U = nullptr;
76   // Neither PInfo nor EdgeOnly participate in the ordering
77   PredicateBase *PInfo = nullptr;
78   bool EdgeOnly = false;
79 };
80 
81 // This compares ValueDFS structures, creating OrderedBasicBlocks where
82 // necessary to compare uses/defs in the same block.  Doing so allows us to walk
83 // the minimum number of instructions necessary to compute our def/use ordering.
84 struct ValueDFS_Compare {
85   DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap;
86   ValueDFS_Compare(
87       DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap)
88       : OBBMap(OBBMap) {}
89   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
90     if (&A == &B)
91       return false;
92     // The only case we can't directly compare them is when they in the same
93     // block, and both have localnum == middle.  In that case, we have to use
94     // comesbefore to see what the real ordering is, because they are in the
95     // same basic block.
96 
97     bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
98 
99     // We want to put the def that will get used for a given set of phi uses,
100     // before those phi uses.
101     // So we sort by edge, then by def.
102     // Note that only phi nodes uses and defs can come last.
103     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
104       return comparePHIRelated(A, B);
105 
106     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
107       return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
108              std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
109     return localComesBefore(A, B);
110   }
111 
112   // For a phi use, or a non-materialized def, return the edge it represents.
113   const std::pair<const BasicBlock *, const BasicBlock *>
114   getBlockEdge(const ValueDFS &VD) const {
115     if (!VD.Def && VD.U) {
116       auto *PHI = cast<PHINode>(VD.U->getUser());
117       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
118     }
119     // This is really a non-materialized def.
120     auto *PBranch = cast<PredicateBranch>(VD.PInfo);
121     return std::make_pair(PBranch->BranchBB, PBranch->SplitBB);
122   }
123 
124   // For two phi related values, return the ordering.
125   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
126     auto &ABlockEdge = getBlockEdge(A);
127     auto &BBlockEdge = getBlockEdge(B);
128     // Now sort by block edge and then defs before uses.
129     return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
130   }
131 
132   // Get the definition of an instruction that occurs in the middle of a block.
133   Value *getMiddleDef(const ValueDFS &VD) const {
134     if (VD.Def)
135       return VD.Def;
136     // It's possible for the defs and uses to be null.  For branches, the local
137     // numbering will say the placed predicaeinfos should go first (IE
138     // LN_beginning), so we won't be in this function. For assumes, we will end
139     // up here, beause we need to order the def we will place relative to the
140     // assume.  So for the purpose of ordering, we pretend the def is the assume
141     // because that is where we will insert the info.
142     if (!VD.U) {
143       assert(VD.PInfo &&
144              "No def, no use, and no predicateinfo should not occur");
145       assert(isa<PredicateAssume>(VD.PInfo) &&
146              "Middle of block should only occur for assumes");
147       return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
148     }
149     return nullptr;
150   }
151 
152   // Return either the Def, if it's not null, or the user of the Use, if the def
153   // is null.
154   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
155     if (Def)
156       return cast<Instruction>(Def);
157     return cast<Instruction>(U->getUser());
158   }
159 
160   // This performs the necessary local basic block ordering checks to tell
161   // whether A comes before B, where both are in the same basic block.
162   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
163     auto *ADef = getMiddleDef(A);
164     auto *BDef = getMiddleDef(B);
165 
166     // See if we have real values or uses. If we have real values, we are
167     // guaranteed they are instructions or arguments. No matter what, we are
168     // guaranteed they are in the same block if they are instructions.
169     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
170     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
171 
172     if (ArgA && !ArgB)
173       return true;
174     if (ArgB && !ArgA)
175       return false;
176     if (ArgA && ArgB)
177       return ArgA->getArgNo() < ArgB->getArgNo();
178 
179     auto *AInst = getDefOrUser(ADef, A.U);
180     auto *BInst = getDefOrUser(BDef, B.U);
181 
182     auto *BB = AInst->getParent();
183     auto LookupResult = OBBMap.find(BB);
184     if (LookupResult != OBBMap.end())
185       return LookupResult->second->dominates(AInst, BInst);
186     else {
187       auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)});
188       return Result.first->second->dominates(AInst, BInst);
189     }
190     return std::tie(ADef, A.U) < std::tie(BDef, B.U);
191   }
192 };
193 
194 } // namespace PredicateInfoClasses
195 
196 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
197                                    const ValueDFS &VDUse) const {
198   if (Stack.empty())
199     return false;
200   // If it's a phi only use, make sure it's for this phi node edge, and that the
201   // use is in a phi node.  If it's anything else, and the top of the stack is
202   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
203   // the defs they must go with so that we can know it's time to pop the stack
204   // when we hit the end of the phi uses for a given def.
205   if (Stack.back().EdgeOnly) {
206     if (!VDUse.U)
207       return false;
208     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
209     if (!PHI)
210       return false;
211     // The only EdgeOnly defs should be branch info.
212     auto *PBranch = dyn_cast<PredicateBranch>(Stack.back().PInfo);
213     assert(PBranch && "Only branches should have EdgeOnly defs");
214     // Check edge matches us.
215     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
216     if (EdgePred != PBranch->BranchBB)
217       return false;
218 
219     // Use dominates, which knows how to handle edge dominance.
220     return DT.dominates(BasicBlockEdge(PBranch->BranchBB, PBranch->SplitBB),
221                         *VDUse.U);
222   }
223 
224   return (VDUse.DFSIn >= Stack.back().DFSIn &&
225           VDUse.DFSOut <= Stack.back().DFSOut);
226 }
227 
228 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
229                                           const ValueDFS &VD) {
230   while (!Stack.empty() && !stackIsInScope(Stack, VD))
231     Stack.pop_back();
232 }
233 
234 // Convert the uses of Op into a vector of uses, associating global and local
235 // DFS info with each one.
236 void PredicateInfo::convertUsesToDFSOrdered(
237     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
238   for (auto &U : Op->uses()) {
239     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
240       ValueDFS VD;
241       // Put the phi node uses in the incoming block.
242       BasicBlock *IBlock;
243       if (auto *PN = dyn_cast<PHINode>(I)) {
244         IBlock = PN->getIncomingBlock(U);
245         // Make phi node users appear last in the incoming block
246         // they are from.
247         VD.LocalNum = LN_Last;
248       } else {
249         // If it's not a phi node use, it is somewhere in the middle of the
250         // block.
251         IBlock = I->getParent();
252         VD.LocalNum = LN_Middle;
253       }
254       DomTreeNode *DomNode = DT.getNode(IBlock);
255       // It's possible our use is in an unreachable block. Skip it if so.
256       if (!DomNode)
257         continue;
258       VD.DFSIn = DomNode->getDFSNumIn();
259       VD.DFSOut = DomNode->getDFSNumOut();
260       VD.U = &U;
261       DFSOrderedSet.push_back(VD);
262     }
263   }
264 }
265 
266 // Collect relevant operations from Comparison that we may want to insert copies
267 // for.
268 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
269   auto *Op0 = Comparison->getOperand(0);
270   auto *Op1 = Comparison->getOperand(1);
271   if (Op0 == Op1)
272     return;
273   CmpOperands.push_back(Comparison);
274   // Only want real values, not constants.  Additionally, operands with one use
275   // are only being used in the comparison, which means they will not be useful
276   // for us to consider for predicateinfo.
277   //
278   if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
279     CmpOperands.push_back(Op0);
280   if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
281     CmpOperands.push_back(Op1);
282 }
283 
284 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
285 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
286                                PredicateBase *PB) {
287   OpsToRename.insert(Op);
288   auto &OperandInfo = getOrCreateValueInfo(Op);
289   AllInfos.push_back(PB);
290   OperandInfo.Infos.push_back(PB);
291 }
292 
293 // Process an assume instruction and place relevant operations we want to rename
294 // into OpsToRename.
295 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
296                                   SmallPtrSetImpl<Value *> &OpsToRename) {
297   // See if we have a comparison we support
298   SmallVector<Value *, 8> CmpOperands;
299   SmallVector<Value *, 2> ConditionsToProcess;
300   CmpInst::Predicate Pred;
301   Value *Operand = II->getOperand(0);
302   if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
303               m_Cmp(Pred, m_Value(), m_Value()))
304           .match(II->getOperand(0))) {
305     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
306     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
307     ConditionsToProcess.push_back(Operand);
308   } else if (isa<CmpInst>(Operand)) {
309 
310     ConditionsToProcess.push_back(Operand);
311   }
312   for (auto Cond : ConditionsToProcess) {
313     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
314       collectCmpOps(Cmp, CmpOperands);
315       // Now add our copy infos for our operands
316       for (auto *Op : CmpOperands) {
317         auto *PA = new PredicateAssume(Op, II, Cmp);
318         addInfoFor(OpsToRename, Op, PA);
319       }
320       CmpOperands.clear();
321     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
322       // Otherwise, it should be an AND.
323       assert(BinOp->getOpcode() == Instruction::And &&
324              "Should have been an AND");
325       auto *PA = new PredicateAssume(BinOp, II, BinOp);
326       addInfoFor(OpsToRename, BinOp, PA);
327     } else {
328       llvm_unreachable("Unknown type of condition");
329     }
330   }
331 }
332 
333 // Process a block terminating branch, and place relevant operations to be
334 // renamed into OpsToRename.
335 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
336                                   SmallPtrSetImpl<Value *> &OpsToRename) {
337   BasicBlock *FirstBB = BI->getSuccessor(0);
338   BasicBlock *SecondBB = BI->getSuccessor(1);
339   SmallVector<BasicBlock *, 2> SuccsToProcess;
340   SuccsToProcess.push_back(FirstBB);
341   SuccsToProcess.push_back(SecondBB);
342   SmallVector<Value *, 2> ConditionsToProcess;
343 
344   auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
345     for (auto *Succ : SuccsToProcess) {
346       // Don't try to insert on a self-edge. This is mainly because we will
347       // eliminate during renaming anyway.
348       if (Succ == BranchBB)
349         continue;
350       bool TakenEdge = (Succ == FirstBB);
351       // For and, only insert on the true edge
352       // For or, only insert on the false edge
353       if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
354         continue;
355       PredicateBase *PB =
356           new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
357       addInfoFor(OpsToRename, Op, PB);
358       if (!Succ->getSinglePredecessor())
359         EdgeUsesOnly.insert({BranchBB, Succ});
360     }
361   };
362 
363   // Match combinations of conditions.
364   CmpInst::Predicate Pred;
365   bool isAnd = false;
366   bool isOr = false;
367   SmallVector<Value *, 8> CmpOperands;
368   if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
369                                       m_Cmp(Pred, m_Value(), m_Value()))) ||
370       match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
371                                      m_Cmp(Pred, m_Value(), m_Value())))) {
372     auto *BinOp = cast<BinaryOperator>(BI->getCondition());
373     if (BinOp->getOpcode() == Instruction::And)
374       isAnd = true;
375     else if (BinOp->getOpcode() == Instruction::Or)
376       isOr = true;
377     ConditionsToProcess.push_back(BinOp->getOperand(0));
378     ConditionsToProcess.push_back(BinOp->getOperand(1));
379     ConditionsToProcess.push_back(BI->getCondition());
380   } else if (isa<CmpInst>(BI->getCondition())) {
381     ConditionsToProcess.push_back(BI->getCondition());
382   }
383   for (auto Cond : ConditionsToProcess) {
384     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
385       collectCmpOps(Cmp, CmpOperands);
386       // Now add our copy infos for our operands
387       for (auto *Op : CmpOperands)
388         InsertHelper(Op, isAnd, isOr, Cmp);
389     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
390       // This must be an AND or an OR.
391       assert((BinOp->getOpcode() == Instruction::And ||
392               BinOp->getOpcode() == Instruction::Or) &&
393              "Should have been an AND or an OR");
394       // The actual value of the binop is not subject to the same restrictions
395       // as the comparison. It's either true or false on the true/false branch.
396       InsertHelper(BinOp, false, false, BinOp);
397     } else {
398       llvm_unreachable("Unknown type of condition");
399     }
400     CmpOperands.clear();
401   }
402 }
403 
404 // Build predicate info for our function
405 void PredicateInfo::buildPredicateInfo() {
406   DT.updateDFSNumbers();
407   // Collect operands to rename from all conditional branch terminators, as well
408   // as assume statements.
409   SmallPtrSet<Value *, 8> OpsToRename;
410   for (auto DTN : depth_first(DT.getRootNode())) {
411     BasicBlock *BranchBB = DTN->getBlock();
412     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
413       if (!BI->isConditional())
414         continue;
415       processBranch(BI, BranchBB, OpsToRename);
416     }
417   }
418   for (auto &Assume : AC.assumptions()) {
419     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
420       processAssume(II, II->getParent(), OpsToRename);
421   }
422   // Now rename all our operations.
423   renameUses(OpsToRename);
424 }
425 Value *PredicateInfo::materializeStack(unsigned int &Counter,
426                                        ValueDFSStack &RenameStack,
427                                        Value *OrigOp) {
428   // Find the first thing we have to materialize
429   auto RevIter = RenameStack.rbegin();
430   for (; RevIter != RenameStack.rend(); ++RevIter)
431     if (RevIter->Def)
432       break;
433 
434   size_t Start = RevIter - RenameStack.rbegin();
435   // The maximum number of things we should be trying to materialize at once
436   // right now is 4, depending on if we had an assume, a branch, and both used
437   // and of conditions.
438   for (auto RenameIter = RenameStack.end() - Start;
439        RenameIter != RenameStack.end(); ++RenameIter) {
440     auto *Op =
441         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
442     ValueDFS &Result = *RenameIter;
443     auto *ValInfo = Result.PInfo;
444     // For branches, we can just place the operand in the branch block before
445     // the terminator.  For assume, we have to place it right before the assume
446     // to ensure we dominate all of our uses.  Always insert right before the
447     // relevant instruction (terminator, assume), so that we insert in proper
448     // order in the case of multiple predicateinfo in the same block.
449     if (isa<PredicateBranch>(ValInfo)) {
450       auto *PBranch = cast<PredicateBranch>(ValInfo);
451       IRBuilder<> B(PBranch->BranchBB->getTerminator());
452       Function *IF = Intrinsic::getDeclaration(
453           F.getParent(), Intrinsic::ssa_copy, Op->getType());
454       CallInst *PIC =
455           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
456       PredicateMap.insert({PIC, ValInfo});
457       Result.Def = PIC;
458     } else {
459       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
460       assert(PAssume &&
461              "Should not have gotten here without it being an assume");
462       IRBuilder<> B(PAssume->AssumeInst);
463       Function *IF = Intrinsic::getDeclaration(
464           F.getParent(), Intrinsic::ssa_copy, Op->getType());
465       CallInst *PIC = B.CreateCall(IF, Op);
466       PredicateMap.insert({PIC, ValInfo});
467       Result.Def = PIC;
468     }
469   }
470   return RenameStack.back().Def;
471 }
472 
473 // Instead of the standard SSA renaming algorithm, which is O(Number of
474 // instructions), and walks the entire dominator tree, we walk only the defs +
475 // uses.  The standard SSA renaming algorithm does not really rely on the
476 // dominator tree except to order the stack push/pops of the renaming stacks, so
477 // that defs end up getting pushed before hitting the correct uses.  This does
478 // not require the dominator tree, only the *order* of the dominator tree. The
479 // complete and correct ordering of the defs and uses, in dominator tree is
480 // contained in the DFS numbering of the dominator tree. So we sort the defs and
481 // uses into the DFS ordering, and then just use the renaming stack as per
482 // normal, pushing when we hit a def (which is a predicateinfo instruction),
483 // popping when we are out of the dfs scope for that def, and replacing any uses
484 // with top of stack if it exists.  In order to handle liveness without
485 // propagating liveness info, we don't actually insert the predicateinfo
486 // instruction def until we see a use that it would dominate.  Once we see such
487 // a use, we materialize the predicateinfo instruction in the right place and
488 // use it.
489 //
490 // TODO: Use this algorithm to perform fast single-variable renaming in
491 // promotememtoreg and memoryssa.
492 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) {
493   ValueDFS_Compare Compare(OBBMap);
494   // Compute liveness, and rename in O(uses) per Op.
495   for (auto *Op : OpsToRename) {
496     unsigned Counter = 0;
497     SmallVector<ValueDFS, 16> OrderedUses;
498     const auto &ValueInfo = getValueInfo(Op);
499     // Insert the possible copies into the def/use list.
500     // They will become real copies if we find a real use for them, and never
501     // created otherwise.
502     for (auto &PossibleCopy : ValueInfo.Infos) {
503       ValueDFS VD;
504       // Determine where we are going to place the copy by the copy type.
505       // The predicate info for branches always come first, they will get
506       // materialized in the split block at the top of the block.
507       // The predicate info for assumes will be somewhere in the middle,
508       // it will get materialized in front of the assume.
509       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
510         VD.LocalNum = LN_Middle;
511         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
512         if (!DomNode)
513           continue;
514         VD.DFSIn = DomNode->getDFSNumIn();
515         VD.DFSOut = DomNode->getDFSNumOut();
516         VD.PInfo = PossibleCopy;
517         OrderedUses.push_back(VD);
518       } else if (const auto *PBranch =
519                      dyn_cast<PredicateBranch>(PossibleCopy)) {
520         // If we can only do phi uses, we treat it like it's in the branch
521         // block, and handle it specially. We know that it goes last, and only
522         // dominate phi uses.
523         if (EdgeUsesOnly.count({PBranch->BranchBB, PBranch->SplitBB})) {
524           VD.LocalNum = LN_Last;
525           auto *DomNode = DT.getNode(PBranch->BranchBB);
526           if (DomNode) {
527             VD.DFSIn = DomNode->getDFSNumIn();
528             VD.DFSOut = DomNode->getDFSNumOut();
529             VD.PInfo = PossibleCopy;
530             VD.EdgeOnly = true;
531             OrderedUses.push_back(VD);
532           }
533         } else {
534           // Otherwise, we are in the split block (even though we perform
535           // insertion in the branch block).
536           // Insert a possible copy at the split block and before the branch.
537           VD.LocalNum = LN_First;
538           auto *DomNode = DT.getNode(PBranch->SplitBB);
539           if (DomNode) {
540             VD.DFSIn = DomNode->getDFSNumIn();
541             VD.DFSOut = DomNode->getDFSNumOut();
542             VD.PInfo = PossibleCopy;
543             OrderedUses.push_back(VD);
544           }
545         }
546       }
547     }
548 
549     convertUsesToDFSOrdered(Op, OrderedUses);
550     std::sort(OrderedUses.begin(), OrderedUses.end(), Compare);
551     SmallVector<ValueDFS, 8> RenameStack;
552     // For each use, sorted into dfs order, push values and replaces uses with
553     // top of stack, which will represent the reaching def.
554     for (auto &VD : OrderedUses) {
555       // We currently do not materialize copy over copy, but we should decide if
556       // we want to.
557       bool PossibleCopy = VD.PInfo != nullptr;
558       if (RenameStack.empty()) {
559         DEBUG(dbgs() << "Rename Stack is empty\n");
560       } else {
561         DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
562                      << RenameStack.back().DFSIn << ","
563                      << RenameStack.back().DFSOut << ")\n");
564       }
565 
566       DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
567                    << VD.DFSOut << ")\n");
568 
569       bool ShouldPush = (VD.Def || PossibleCopy);
570       bool OutOfScope = !stackIsInScope(RenameStack, VD);
571       if (OutOfScope || ShouldPush) {
572         // Sync to our current scope.
573         popStackUntilDFSScope(RenameStack, VD);
574         if (ShouldPush) {
575           RenameStack.push_back(VD);
576         }
577       }
578       // If we get to this point, and the stack is empty we must have a use
579       // with no renaming needed, just skip it.
580       if (RenameStack.empty())
581         continue;
582       // Skip values, only want to rename the uses
583       if (VD.Def || PossibleCopy)
584         continue;
585       if (!DebugCounter::shouldExecute(RenameCounter)) {
586         DEBUG(dbgs() << "Skipping execution due to debug counter\n");
587         continue;
588       }
589       ValueDFS &Result = RenameStack.back();
590 
591       // If the possible copy dominates something, materialize our stack up to
592       // this point. This ensures every comparison that affects our operation
593       // ends up with predicateinfo.
594       if (!Result.Def)
595         Result.Def = materializeStack(Counter, RenameStack, Op);
596 
597       DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
598                    << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n");
599       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
600              "Predicateinfo def should have dominated this use");
601       VD.U->set(Result.Def);
602     }
603   }
604 }
605 
606 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
607   auto OIN = ValueInfoNums.find(Operand);
608   if (OIN == ValueInfoNums.end()) {
609     // This will grow it
610     ValueInfos.resize(ValueInfos.size() + 1);
611     // This will use the new size and give us a 0 based number of the info
612     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
613     assert(InsertResult.second && "Value info number already existed?");
614     return ValueInfos[InsertResult.first->second];
615   }
616   return ValueInfos[OIN->second];
617 }
618 
619 const PredicateInfo::ValueInfo &
620 PredicateInfo::getValueInfo(Value *Operand) const {
621   auto OINI = ValueInfoNums.lookup(Operand);
622   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
623   assert(OINI < ValueInfos.size() &&
624          "Value Info Number greater than size of Value Info Table");
625   return ValueInfos[OINI];
626 }
627 
628 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
629                              AssumptionCache &AC)
630     : F(F), DT(DT), AC(AC) {
631   // Push an empty operand info so that we can detect 0 as not finding one
632   ValueInfos.resize(1);
633   buildPredicateInfo();
634 }
635 
636 PredicateInfo::~PredicateInfo() {}
637 
638 void PredicateInfo::verifyPredicateInfo() const {}
639 
640 char PredicateInfoPrinterLegacyPass::ID = 0;
641 
642 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
643     : FunctionPass(ID) {
644   initializePredicateInfoPrinterLegacyPassPass(
645       *PassRegistry::getPassRegistry());
646 }
647 
648 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
649   AU.setPreservesAll();
650   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
651   AU.addRequired<AssumptionCacheTracker>();
652 }
653 
654 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
655   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
656   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
657   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
658   PredInfo->print(dbgs());
659   if (VerifyPredicateInfo)
660     PredInfo->verifyPredicateInfo();
661   return false;
662 }
663 
664 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
665                                                 FunctionAnalysisManager &AM) {
666   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
667   auto &AC = AM.getResult<AssumptionAnalysis>(F);
668   OS << "PredicateInfo for function: " << F.getName() << "\n";
669   make_unique<PredicateInfo>(F, DT, AC)->print(OS);
670 
671   return PreservedAnalyses::all();
672 }
673 
674 /// \brief An assembly annotator class to print PredicateInfo information in
675 /// comments.
676 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
677   friend class PredicateInfo;
678   const PredicateInfo *PredInfo;
679 
680 public:
681   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
682 
683   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
684                                         formatted_raw_ostream &OS) {}
685 
686   virtual void emitInstructionAnnot(const Instruction *I,
687                                     formatted_raw_ostream &OS) {
688     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
689       OS << "; Has predicate info\n";
690       if (const auto *PB = dyn_cast<PredicateBranch>(PI))
691         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
692            << " Comparison:" << *PB->Condition << " }\n";
693       else if (const auto *PA = dyn_cast<PredicateAssume>(PI))
694         OS << "; assume predicate info {"
695            << " Comparison:" << *PA->Condition << " }\n";
696     }
697   }
698 };
699 
700 void PredicateInfo::print(raw_ostream &OS) const {
701   PredicateInfoAnnotatedWriter Writer(this);
702   F.print(OS, &Writer);
703 }
704 
705 void PredicateInfo::dump() const {
706   PredicateInfoAnnotatedWriter Writer(this);
707   F.print(dbgs(), &Writer);
708 }
709 
710 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
711                                                  FunctionAnalysisManager &AM) {
712   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
713   auto &AC = AM.getResult<AssumptionAnalysis>(F);
714   make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
715 
716   return PreservedAnalyses::all();
717 }
718 }
719