1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the PredicateInfo class. 11 // 12 //===----------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/PredicateInfo.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/OrderedBasicBlock.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/FormattedStream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include <algorithm> 38 #define DEBUG_TYPE "predicateinfo" 39 using namespace llvm; 40 using namespace PatternMatch; 41 using namespace llvm::PredicateInfoClasses; 42 43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 44 "PredicateInfo Printer", false, false) 45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 48 "PredicateInfo Printer", false, false) 49 static cl::opt<bool> VerifyPredicateInfo( 50 "verify-predicateinfo", cl::init(false), cl::Hidden, 51 cl::desc("Verify PredicateInfo in legacy printer pass.")); 52 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 53 "Controls which variables are renamed with predicateinfo") 54 55 namespace llvm { 56 namespace PredicateInfoClasses { 57 enum LocalNum { 58 // Operations that must appear first in the block. 59 LN_First, 60 // Operations that are somewhere in the middle of the block, and are sorted on 61 // demand. 62 LN_Middle, 63 // Operations that must appear last in a block, like successor phi node uses. 64 LN_Last 65 }; 66 67 // Associate global and local DFS info with defs and uses, so we can sort them 68 // into a global domination ordering. 69 struct ValueDFS { 70 int DFSIn = 0; 71 int DFSOut = 0; 72 unsigned int LocalNum = LN_Middle; 73 // Only one of Def or Use will be set. 74 Value *Def = nullptr; 75 Use *U = nullptr; 76 // Neither PInfo nor EdgeOnly participate in the ordering 77 PredicateBase *PInfo = nullptr; 78 bool EdgeOnly = false; 79 }; 80 81 // This compares ValueDFS structures, creating OrderedBasicBlocks where 82 // necessary to compare uses/defs in the same block. Doing so allows us to walk 83 // the minimum number of instructions necessary to compute our def/use ordering. 84 struct ValueDFS_Compare { 85 DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap; 86 ValueDFS_Compare( 87 DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap) 88 : OBBMap(OBBMap) {} 89 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 90 if (&A == &B) 91 return false; 92 // The only case we can't directly compare them is when they in the same 93 // block, and both have localnum == middle. In that case, we have to use 94 // comesbefore to see what the real ordering is, because they are in the 95 // same basic block. 96 97 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 98 99 // We want to put the def that will get used for a given set of phi uses, 100 // before those phi uses. 101 // So we sort by edge, then by def. 102 // Note that only phi nodes uses and defs can come last. 103 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 104 return comparePHIRelated(A, B); 105 106 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 107 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 108 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 109 return localComesBefore(A, B); 110 } 111 112 // For a phi use, or a non-materialized def, return the edge it represents. 113 const std::pair<const BasicBlock *, const BasicBlock *> 114 getBlockEdge(const ValueDFS &VD) const { 115 if (!VD.Def && VD.U) { 116 auto *PHI = cast<PHINode>(VD.U->getUser()); 117 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 118 } 119 // This is really a non-materialized def. 120 auto *PBranch = cast<PredicateBranch>(VD.PInfo); 121 return std::make_pair(PBranch->BranchBB, PBranch->SplitBB); 122 } 123 124 // For two phi related values, return the ordering. 125 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 126 auto &ABlockEdge = getBlockEdge(A); 127 auto &BBlockEdge = getBlockEdge(B); 128 // Now sort by block edge and then defs before uses. 129 return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); 130 } 131 132 // Get the definition of an instruction that occurs in the middle of a block. 133 Value *getMiddleDef(const ValueDFS &VD) const { 134 if (VD.Def) 135 return VD.Def; 136 // It's possible for the defs and uses to be null. For branches, the local 137 // numbering will say the placed predicaeinfos should go first (IE 138 // LN_beginning), so we won't be in this function. For assumes, we will end 139 // up here, beause we need to order the def we will place relative to the 140 // assume. So for the purpose of ordering, we pretend the def is the assume 141 // because that is where we will insert the info. 142 if (!VD.U) { 143 assert(VD.PInfo && 144 "No def, no use, and no predicateinfo should not occur"); 145 assert(isa<PredicateAssume>(VD.PInfo) && 146 "Middle of block should only occur for assumes"); 147 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 148 } 149 return nullptr; 150 } 151 152 // Return either the Def, if it's not null, or the user of the Use, if the def 153 // is null. 154 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 155 if (Def) 156 return cast<Instruction>(Def); 157 return cast<Instruction>(U->getUser()); 158 } 159 160 // This performs the necessary local basic block ordering checks to tell 161 // whether A comes before B, where both are in the same basic block. 162 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 163 auto *ADef = getMiddleDef(A); 164 auto *BDef = getMiddleDef(B); 165 166 // See if we have real values or uses. If we have real values, we are 167 // guaranteed they are instructions or arguments. No matter what, we are 168 // guaranteed they are in the same block if they are instructions. 169 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 170 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 171 172 if (ArgA && !ArgB) 173 return true; 174 if (ArgB && !ArgA) 175 return false; 176 if (ArgA && ArgB) 177 return ArgA->getArgNo() < ArgB->getArgNo(); 178 179 auto *AInst = getDefOrUser(ADef, A.U); 180 auto *BInst = getDefOrUser(BDef, B.U); 181 182 auto *BB = AInst->getParent(); 183 auto LookupResult = OBBMap.find(BB); 184 if (LookupResult != OBBMap.end()) 185 return LookupResult->second->dominates(AInst, BInst); 186 else { 187 auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)}); 188 return Result.first->second->dominates(AInst, BInst); 189 } 190 return std::tie(ADef, A.U) < std::tie(BDef, B.U); 191 } 192 }; 193 194 } // namespace PredicateInfoClasses 195 196 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 197 const ValueDFS &VDUse) const { 198 if (Stack.empty()) 199 return false; 200 // If it's a phi only use, make sure it's for this phi node edge, and that the 201 // use is in a phi node. If it's anything else, and the top of the stack is 202 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 203 // the defs they must go with so that we can know it's time to pop the stack 204 // when we hit the end of the phi uses for a given def. 205 if (Stack.back().EdgeOnly) { 206 if (!VDUse.U) 207 return false; 208 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 209 if (!PHI) 210 return false; 211 // The only EdgeOnly defs should be branch info. 212 auto *PBranch = dyn_cast<PredicateBranch>(Stack.back().PInfo); 213 assert(PBranch && "Only branches should have EdgeOnly defs"); 214 // Check edge matches us. 215 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 216 if (EdgePred != PBranch->BranchBB) 217 return false; 218 219 // Use dominates, which knows how to handle edge dominance. 220 return DT.dominates(BasicBlockEdge(PBranch->BranchBB, PBranch->SplitBB), 221 *VDUse.U); 222 } 223 224 return (VDUse.DFSIn >= Stack.back().DFSIn && 225 VDUse.DFSOut <= Stack.back().DFSOut); 226 } 227 228 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 229 const ValueDFS &VD) { 230 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 231 Stack.pop_back(); 232 } 233 234 // Convert the uses of Op into a vector of uses, associating global and local 235 // DFS info with each one. 236 void PredicateInfo::convertUsesToDFSOrdered( 237 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 238 for (auto &U : Op->uses()) { 239 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 240 ValueDFS VD; 241 // Put the phi node uses in the incoming block. 242 BasicBlock *IBlock; 243 if (auto *PN = dyn_cast<PHINode>(I)) { 244 IBlock = PN->getIncomingBlock(U); 245 // Make phi node users appear last in the incoming block 246 // they are from. 247 VD.LocalNum = LN_Last; 248 } else { 249 // If it's not a phi node use, it is somewhere in the middle of the 250 // block. 251 IBlock = I->getParent(); 252 VD.LocalNum = LN_Middle; 253 } 254 DomTreeNode *DomNode = DT.getNode(IBlock); 255 // It's possible our use is in an unreachable block. Skip it if so. 256 if (!DomNode) 257 continue; 258 VD.DFSIn = DomNode->getDFSNumIn(); 259 VD.DFSOut = DomNode->getDFSNumOut(); 260 VD.U = &U; 261 DFSOrderedSet.push_back(VD); 262 } 263 } 264 } 265 266 // Collect relevant operations from Comparison that we may want to insert copies 267 // for. 268 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 269 auto *Op0 = Comparison->getOperand(0); 270 auto *Op1 = Comparison->getOperand(1); 271 if (Op0 == Op1) 272 return; 273 CmpOperands.push_back(Comparison); 274 // Only want real values, not constants. Additionally, operands with one use 275 // are only being used in the comparison, which means they will not be useful 276 // for us to consider for predicateinfo. 277 // 278 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 279 CmpOperands.push_back(Op0); 280 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 281 CmpOperands.push_back(Op1); 282 } 283 284 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 285 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op, 286 PredicateBase *PB) { 287 OpsToRename.insert(Op); 288 auto &OperandInfo = getOrCreateValueInfo(Op); 289 AllInfos.push_back(PB); 290 OperandInfo.Infos.push_back(PB); 291 } 292 293 // Process an assume instruction and place relevant operations we want to rename 294 // into OpsToRename. 295 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 296 SmallPtrSetImpl<Value *> &OpsToRename) { 297 // See if we have a comparison we support 298 SmallVector<Value *, 8> CmpOperands; 299 SmallVector<Value *, 2> ConditionsToProcess; 300 CmpInst::Predicate Pred; 301 Value *Operand = II->getOperand(0); 302 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 303 m_Cmp(Pred, m_Value(), m_Value())) 304 .match(II->getOperand(0))) { 305 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 306 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 307 ConditionsToProcess.push_back(Operand); 308 } else if (isa<CmpInst>(Operand)) { 309 310 ConditionsToProcess.push_back(Operand); 311 } 312 for (auto Cond : ConditionsToProcess) { 313 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 314 collectCmpOps(Cmp, CmpOperands); 315 // Now add our copy infos for our operands 316 for (auto *Op : CmpOperands) { 317 auto *PA = new PredicateAssume(Op, II, Cmp); 318 addInfoFor(OpsToRename, Op, PA); 319 } 320 CmpOperands.clear(); 321 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 322 // Otherwise, it should be an AND. 323 assert(BinOp->getOpcode() == Instruction::And && 324 "Should have been an AND"); 325 auto *PA = new PredicateAssume(BinOp, II, BinOp); 326 addInfoFor(OpsToRename, BinOp, PA); 327 } else { 328 llvm_unreachable("Unknown type of condition"); 329 } 330 } 331 } 332 333 // Process a block terminating branch, and place relevant operations to be 334 // renamed into OpsToRename. 335 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 336 SmallPtrSetImpl<Value *> &OpsToRename) { 337 BasicBlock *FirstBB = BI->getSuccessor(0); 338 BasicBlock *SecondBB = BI->getSuccessor(1); 339 SmallVector<BasicBlock *, 2> SuccsToProcess; 340 SuccsToProcess.push_back(FirstBB); 341 SuccsToProcess.push_back(SecondBB); 342 SmallVector<Value *, 2> ConditionsToProcess; 343 344 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 345 for (auto *Succ : SuccsToProcess) { 346 // Don't try to insert on a self-edge. This is mainly because we will 347 // eliminate during renaming anyway. 348 if (Succ == BranchBB) 349 continue; 350 bool TakenEdge = (Succ == FirstBB); 351 // For and, only insert on the true edge 352 // For or, only insert on the false edge 353 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 354 continue; 355 PredicateBase *PB = 356 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 357 addInfoFor(OpsToRename, Op, PB); 358 if (!Succ->getSinglePredecessor()) 359 EdgeUsesOnly.insert({BranchBB, Succ}); 360 } 361 }; 362 363 // Match combinations of conditions. 364 CmpInst::Predicate Pred; 365 bool isAnd = false; 366 bool isOr = false; 367 SmallVector<Value *, 8> CmpOperands; 368 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 369 m_Cmp(Pred, m_Value(), m_Value()))) || 370 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 371 m_Cmp(Pred, m_Value(), m_Value())))) { 372 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 373 if (BinOp->getOpcode() == Instruction::And) 374 isAnd = true; 375 else if (BinOp->getOpcode() == Instruction::Or) 376 isOr = true; 377 ConditionsToProcess.push_back(BinOp->getOperand(0)); 378 ConditionsToProcess.push_back(BinOp->getOperand(1)); 379 ConditionsToProcess.push_back(BI->getCondition()); 380 } else if (isa<CmpInst>(BI->getCondition())) { 381 ConditionsToProcess.push_back(BI->getCondition()); 382 } 383 for (auto Cond : ConditionsToProcess) { 384 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 385 collectCmpOps(Cmp, CmpOperands); 386 // Now add our copy infos for our operands 387 for (auto *Op : CmpOperands) 388 InsertHelper(Op, isAnd, isOr, Cmp); 389 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 390 // This must be an AND or an OR. 391 assert((BinOp->getOpcode() == Instruction::And || 392 BinOp->getOpcode() == Instruction::Or) && 393 "Should have been an AND or an OR"); 394 // The actual value of the binop is not subject to the same restrictions 395 // as the comparison. It's either true or false on the true/false branch. 396 InsertHelper(BinOp, false, false, BinOp); 397 } else { 398 llvm_unreachable("Unknown type of condition"); 399 } 400 CmpOperands.clear(); 401 } 402 } 403 404 // Build predicate info for our function 405 void PredicateInfo::buildPredicateInfo() { 406 DT.updateDFSNumbers(); 407 // Collect operands to rename from all conditional branch terminators, as well 408 // as assume statements. 409 SmallPtrSet<Value *, 8> OpsToRename; 410 for (auto DTN : depth_first(DT.getRootNode())) { 411 BasicBlock *BranchBB = DTN->getBlock(); 412 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 413 if (!BI->isConditional()) 414 continue; 415 processBranch(BI, BranchBB, OpsToRename); 416 } 417 } 418 for (auto &Assume : AC.assumptions()) { 419 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 420 processAssume(II, II->getParent(), OpsToRename); 421 } 422 // Now rename all our operations. 423 renameUses(OpsToRename); 424 } 425 Value *PredicateInfo::materializeStack(unsigned int &Counter, 426 ValueDFSStack &RenameStack, 427 Value *OrigOp) { 428 // Find the first thing we have to materialize 429 auto RevIter = RenameStack.rbegin(); 430 for (; RevIter != RenameStack.rend(); ++RevIter) 431 if (RevIter->Def) 432 break; 433 434 size_t Start = RevIter - RenameStack.rbegin(); 435 // The maximum number of things we should be trying to materialize at once 436 // right now is 4, depending on if we had an assume, a branch, and both used 437 // and of conditions. 438 for (auto RenameIter = RenameStack.end() - Start; 439 RenameIter != RenameStack.end(); ++RenameIter) { 440 auto *Op = 441 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 442 ValueDFS &Result = *RenameIter; 443 auto *ValInfo = Result.PInfo; 444 // For branches, we can just place the operand in the branch block before 445 // the terminator. For assume, we have to place it right before the assume 446 // to ensure we dominate all of our uses. Always insert right before the 447 // relevant instruction (terminator, assume), so that we insert in proper 448 // order in the case of multiple predicateinfo in the same block. 449 if (isa<PredicateBranch>(ValInfo)) { 450 auto *PBranch = cast<PredicateBranch>(ValInfo); 451 IRBuilder<> B(PBranch->BranchBB->getTerminator()); 452 Function *IF = Intrinsic::getDeclaration( 453 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 454 CallInst *PIC = 455 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 456 PredicateMap.insert({PIC, ValInfo}); 457 Result.Def = PIC; 458 } else { 459 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 460 assert(PAssume && 461 "Should not have gotten here without it being an assume"); 462 IRBuilder<> B(PAssume->AssumeInst); 463 Function *IF = Intrinsic::getDeclaration( 464 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 465 CallInst *PIC = B.CreateCall(IF, Op); 466 PredicateMap.insert({PIC, ValInfo}); 467 Result.Def = PIC; 468 } 469 } 470 return RenameStack.back().Def; 471 } 472 473 // Instead of the standard SSA renaming algorithm, which is O(Number of 474 // instructions), and walks the entire dominator tree, we walk only the defs + 475 // uses. The standard SSA renaming algorithm does not really rely on the 476 // dominator tree except to order the stack push/pops of the renaming stacks, so 477 // that defs end up getting pushed before hitting the correct uses. This does 478 // not require the dominator tree, only the *order* of the dominator tree. The 479 // complete and correct ordering of the defs and uses, in dominator tree is 480 // contained in the DFS numbering of the dominator tree. So we sort the defs and 481 // uses into the DFS ordering, and then just use the renaming stack as per 482 // normal, pushing when we hit a def (which is a predicateinfo instruction), 483 // popping when we are out of the dfs scope for that def, and replacing any uses 484 // with top of stack if it exists. In order to handle liveness without 485 // propagating liveness info, we don't actually insert the predicateinfo 486 // instruction def until we see a use that it would dominate. Once we see such 487 // a use, we materialize the predicateinfo instruction in the right place and 488 // use it. 489 // 490 // TODO: Use this algorithm to perform fast single-variable renaming in 491 // promotememtoreg and memoryssa. 492 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) { 493 ValueDFS_Compare Compare(OBBMap); 494 // Compute liveness, and rename in O(uses) per Op. 495 for (auto *Op : OpsToRename) { 496 unsigned Counter = 0; 497 SmallVector<ValueDFS, 16> OrderedUses; 498 const auto &ValueInfo = getValueInfo(Op); 499 // Insert the possible copies into the def/use list. 500 // They will become real copies if we find a real use for them, and never 501 // created otherwise. 502 for (auto &PossibleCopy : ValueInfo.Infos) { 503 ValueDFS VD; 504 // Determine where we are going to place the copy by the copy type. 505 // The predicate info for branches always come first, they will get 506 // materialized in the split block at the top of the block. 507 // The predicate info for assumes will be somewhere in the middle, 508 // it will get materialized in front of the assume. 509 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 510 VD.LocalNum = LN_Middle; 511 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 512 if (!DomNode) 513 continue; 514 VD.DFSIn = DomNode->getDFSNumIn(); 515 VD.DFSOut = DomNode->getDFSNumOut(); 516 VD.PInfo = PossibleCopy; 517 OrderedUses.push_back(VD); 518 } else if (const auto *PBranch = 519 dyn_cast<PredicateBranch>(PossibleCopy)) { 520 // If we can only do phi uses, we treat it like it's in the branch 521 // block, and handle it specially. We know that it goes last, and only 522 // dominate phi uses. 523 if (EdgeUsesOnly.count({PBranch->BranchBB, PBranch->SplitBB})) { 524 VD.LocalNum = LN_Last; 525 auto *DomNode = DT.getNode(PBranch->BranchBB); 526 if (DomNode) { 527 VD.DFSIn = DomNode->getDFSNumIn(); 528 VD.DFSOut = DomNode->getDFSNumOut(); 529 VD.PInfo = PossibleCopy; 530 VD.EdgeOnly = true; 531 OrderedUses.push_back(VD); 532 } 533 } else { 534 // Otherwise, we are in the split block (even though we perform 535 // insertion in the branch block). 536 // Insert a possible copy at the split block and before the branch. 537 VD.LocalNum = LN_First; 538 auto *DomNode = DT.getNode(PBranch->SplitBB); 539 if (DomNode) { 540 VD.DFSIn = DomNode->getDFSNumIn(); 541 VD.DFSOut = DomNode->getDFSNumOut(); 542 VD.PInfo = PossibleCopy; 543 OrderedUses.push_back(VD); 544 } 545 } 546 } 547 } 548 549 convertUsesToDFSOrdered(Op, OrderedUses); 550 std::sort(OrderedUses.begin(), OrderedUses.end(), Compare); 551 SmallVector<ValueDFS, 8> RenameStack; 552 // For each use, sorted into dfs order, push values and replaces uses with 553 // top of stack, which will represent the reaching def. 554 for (auto &VD : OrderedUses) { 555 // We currently do not materialize copy over copy, but we should decide if 556 // we want to. 557 bool PossibleCopy = VD.PInfo != nullptr; 558 if (RenameStack.empty()) { 559 DEBUG(dbgs() << "Rename Stack is empty\n"); 560 } else { 561 DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 562 << RenameStack.back().DFSIn << "," 563 << RenameStack.back().DFSOut << ")\n"); 564 } 565 566 DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 567 << VD.DFSOut << ")\n"); 568 569 bool ShouldPush = (VD.Def || PossibleCopy); 570 bool OutOfScope = !stackIsInScope(RenameStack, VD); 571 if (OutOfScope || ShouldPush) { 572 // Sync to our current scope. 573 popStackUntilDFSScope(RenameStack, VD); 574 if (ShouldPush) { 575 RenameStack.push_back(VD); 576 } 577 } 578 // If we get to this point, and the stack is empty we must have a use 579 // with no renaming needed, just skip it. 580 if (RenameStack.empty()) 581 continue; 582 // Skip values, only want to rename the uses 583 if (VD.Def || PossibleCopy) 584 continue; 585 if (!DebugCounter::shouldExecute(RenameCounter)) { 586 DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 587 continue; 588 } 589 ValueDFS &Result = RenameStack.back(); 590 591 // If the possible copy dominates something, materialize our stack up to 592 // this point. This ensures every comparison that affects our operation 593 // ends up with predicateinfo. 594 if (!Result.Def) 595 Result.Def = materializeStack(Counter, RenameStack, Op); 596 597 DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 598 << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n"); 599 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 600 "Predicateinfo def should have dominated this use"); 601 VD.U->set(Result.Def); 602 } 603 } 604 } 605 606 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 607 auto OIN = ValueInfoNums.find(Operand); 608 if (OIN == ValueInfoNums.end()) { 609 // This will grow it 610 ValueInfos.resize(ValueInfos.size() + 1); 611 // This will use the new size and give us a 0 based number of the info 612 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 613 assert(InsertResult.second && "Value info number already existed?"); 614 return ValueInfos[InsertResult.first->second]; 615 } 616 return ValueInfos[OIN->second]; 617 } 618 619 const PredicateInfo::ValueInfo & 620 PredicateInfo::getValueInfo(Value *Operand) const { 621 auto OINI = ValueInfoNums.lookup(Operand); 622 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 623 assert(OINI < ValueInfos.size() && 624 "Value Info Number greater than size of Value Info Table"); 625 return ValueInfos[OINI]; 626 } 627 628 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 629 AssumptionCache &AC) 630 : F(F), DT(DT), AC(AC) { 631 // Push an empty operand info so that we can detect 0 as not finding one 632 ValueInfos.resize(1); 633 buildPredicateInfo(); 634 } 635 636 PredicateInfo::~PredicateInfo() {} 637 638 void PredicateInfo::verifyPredicateInfo() const {} 639 640 char PredicateInfoPrinterLegacyPass::ID = 0; 641 642 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 643 : FunctionPass(ID) { 644 initializePredicateInfoPrinterLegacyPassPass( 645 *PassRegistry::getPassRegistry()); 646 } 647 648 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 649 AU.setPreservesAll(); 650 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 651 AU.addRequired<AssumptionCacheTracker>(); 652 } 653 654 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 655 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 656 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 657 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 658 PredInfo->print(dbgs()); 659 if (VerifyPredicateInfo) 660 PredInfo->verifyPredicateInfo(); 661 return false; 662 } 663 664 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 665 FunctionAnalysisManager &AM) { 666 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 667 auto &AC = AM.getResult<AssumptionAnalysis>(F); 668 OS << "PredicateInfo for function: " << F.getName() << "\n"; 669 make_unique<PredicateInfo>(F, DT, AC)->print(OS); 670 671 return PreservedAnalyses::all(); 672 } 673 674 /// \brief An assembly annotator class to print PredicateInfo information in 675 /// comments. 676 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 677 friend class PredicateInfo; 678 const PredicateInfo *PredInfo; 679 680 public: 681 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 682 683 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 684 formatted_raw_ostream &OS) {} 685 686 virtual void emitInstructionAnnot(const Instruction *I, 687 formatted_raw_ostream &OS) { 688 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 689 OS << "; Has predicate info\n"; 690 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) 691 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 692 << " Comparison:" << *PB->Condition << " }\n"; 693 else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) 694 OS << "; assume predicate info {" 695 << " Comparison:" << *PA->Condition << " }\n"; 696 } 697 } 698 }; 699 700 void PredicateInfo::print(raw_ostream &OS) const { 701 PredicateInfoAnnotatedWriter Writer(this); 702 F.print(OS, &Writer); 703 } 704 705 void PredicateInfo::dump() const { 706 PredicateInfoAnnotatedWriter Writer(this); 707 F.print(dbgs(), &Writer); 708 } 709 710 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 711 FunctionAnalysisManager &AM) { 712 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 713 auto &AC = AM.getResult<AssumptionAnalysis>(F); 714 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 715 716 return PreservedAnalyses::all(); 717 } 718 } 719