1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------===//
9 //
10 // This file implements the PredicateInfo class.
11 //
12 //===----------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/PredicateInfo.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/OrderedBasicBlock.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include <algorithm>
38 #define DEBUG_TYPE "predicateinfo"
39 using namespace llvm;
40 using namespace PatternMatch;
41 using namespace llvm::PredicateInfoClasses;
42 
43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
44                       "PredicateInfo Printer", false, false)
45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
48                     "PredicateInfo Printer", false, false)
49 static cl::opt<bool> VerifyPredicateInfo(
50     "verify-predicateinfo", cl::init(false), cl::Hidden,
51     cl::desc("Verify PredicateInfo in legacy printer pass."));
52 namespace {
53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54               "Controls which variables are renamed with predicateinfo")
55 // Given a predicate info that is a type of branching terminator, get the
56 // branching block.
57 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
58   assert(isa<PredicateWithEdge>(PB) &&
59          "Only branches and switches should have PHIOnly defs that "
60          "require branch blocks.");
61   return cast<PredicateWithEdge>(PB)->From;
62 }
63 
64 // Given a predicate info that is a type of branching terminator, get the
65 // branching terminator.
66 static Instruction *getBranchTerminator(const PredicateBase *PB) {
67   assert(isa<PredicateWithEdge>(PB) &&
68          "Not a predicate info type we know how to get a terminator from.");
69   return cast<PredicateWithEdge>(PB)->From->getTerminator();
70 }
71 
72 // Given a predicate info that is a type of branching terminator, get the
73 // edge this predicate info represents
74 const std::pair<BasicBlock *, BasicBlock *>
75 getBlockEdge(const PredicateBase *PB) {
76   assert(isa<PredicateWithEdge>(PB) &&
77          "Not a predicate info type we know how to get an edge from.");
78   const auto *PEdge = cast<PredicateWithEdge>(PB);
79   return std::make_pair(PEdge->From, PEdge->To);
80 }
81 }
82 
83 namespace llvm {
84 namespace PredicateInfoClasses {
85 enum LocalNum {
86   // Operations that must appear first in the block.
87   LN_First,
88   // Operations that are somewhere in the middle of the block, and are sorted on
89   // demand.
90   LN_Middle,
91   // Operations that must appear last in a block, like successor phi node uses.
92   LN_Last
93 };
94 
95 // Associate global and local DFS info with defs and uses, so we can sort them
96 // into a global domination ordering.
97 struct ValueDFS {
98   int DFSIn = 0;
99   int DFSOut = 0;
100   unsigned int LocalNum = LN_Middle;
101   // Only one of Def or Use will be set.
102   Value *Def = nullptr;
103   Use *U = nullptr;
104   // Neither PInfo nor EdgeOnly participate in the ordering
105   PredicateBase *PInfo = nullptr;
106   bool EdgeOnly = false;
107 };
108 
109 // This compares ValueDFS structures, creating OrderedBasicBlocks where
110 // necessary to compare uses/defs in the same block.  Doing so allows us to walk
111 // the minimum number of instructions necessary to compute our def/use ordering.
112 struct ValueDFS_Compare {
113   DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap;
114   ValueDFS_Compare(
115       DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap)
116       : OBBMap(OBBMap) {}
117   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
118     if (&A == &B)
119       return false;
120     // The only case we can't directly compare them is when they in the same
121     // block, and both have localnum == middle.  In that case, we have to use
122     // comesbefore to see what the real ordering is, because they are in the
123     // same basic block.
124 
125     bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
126 
127     // We want to put the def that will get used for a given set of phi uses,
128     // before those phi uses.
129     // So we sort by edge, then by def.
130     // Note that only phi nodes uses and defs can come last.
131     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
132       return comparePHIRelated(A, B);
133 
134     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
135       return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
136              std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
137     return localComesBefore(A, B);
138   }
139 
140   // For a phi use, or a non-materialized def, return the edge it represents.
141   const std::pair<BasicBlock *, BasicBlock *>
142   getBlockEdge(const ValueDFS &VD) const {
143     if (!VD.Def && VD.U) {
144       auto *PHI = cast<PHINode>(VD.U->getUser());
145       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
146     }
147     // This is really a non-materialized def.
148     return ::getBlockEdge(VD.PInfo);
149   }
150 
151   // For two phi related values, return the ordering.
152   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
153     auto &ABlockEdge = getBlockEdge(A);
154     auto &BBlockEdge = getBlockEdge(B);
155     // Now sort by block edge and then defs before uses.
156     return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
157   }
158 
159   // Get the definition of an instruction that occurs in the middle of a block.
160   Value *getMiddleDef(const ValueDFS &VD) const {
161     if (VD.Def)
162       return VD.Def;
163     // It's possible for the defs and uses to be null.  For branches, the local
164     // numbering will say the placed predicaeinfos should go first (IE
165     // LN_beginning), so we won't be in this function. For assumes, we will end
166     // up here, beause we need to order the def we will place relative to the
167     // assume.  So for the purpose of ordering, we pretend the def is the assume
168     // because that is where we will insert the info.
169     if (!VD.U) {
170       assert(VD.PInfo &&
171              "No def, no use, and no predicateinfo should not occur");
172       assert(isa<PredicateAssume>(VD.PInfo) &&
173              "Middle of block should only occur for assumes");
174       return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
175     }
176     return nullptr;
177   }
178 
179   // Return either the Def, if it's not null, or the user of the Use, if the def
180   // is null.
181   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
182     if (Def)
183       return cast<Instruction>(Def);
184     return cast<Instruction>(U->getUser());
185   }
186 
187   // This performs the necessary local basic block ordering checks to tell
188   // whether A comes before B, where both are in the same basic block.
189   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
190     auto *ADef = getMiddleDef(A);
191     auto *BDef = getMiddleDef(B);
192 
193     // See if we have real values or uses. If we have real values, we are
194     // guaranteed they are instructions or arguments. No matter what, we are
195     // guaranteed they are in the same block if they are instructions.
196     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
197     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
198 
199     if (ArgA && !ArgB)
200       return true;
201     if (ArgB && !ArgA)
202       return false;
203     if (ArgA && ArgB)
204       return ArgA->getArgNo() < ArgB->getArgNo();
205 
206     auto *AInst = getDefOrUser(ADef, A.U);
207     auto *BInst = getDefOrUser(BDef, B.U);
208 
209     auto *BB = AInst->getParent();
210     auto LookupResult = OBBMap.find(BB);
211     if (LookupResult != OBBMap.end())
212       return LookupResult->second->dominates(AInst, BInst);
213     else {
214       auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)});
215       return Result.first->second->dominates(AInst, BInst);
216     }
217     return std::tie(ADef, A.U) < std::tie(BDef, B.U);
218   }
219 };
220 
221 } // namespace PredicateInfoClasses
222 
223 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
224                                    const ValueDFS &VDUse) const {
225   if (Stack.empty())
226     return false;
227   // If it's a phi only use, make sure it's for this phi node edge, and that the
228   // use is in a phi node.  If it's anything else, and the top of the stack is
229   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
230   // the defs they must go with so that we can know it's time to pop the stack
231   // when we hit the end of the phi uses for a given def.
232   if (Stack.back().EdgeOnly) {
233     if (!VDUse.U)
234       return false;
235     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
236     if (!PHI)
237       return false;
238     // Check edge
239     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
240     if (EdgePred != getBranchBlock(Stack.back().PInfo))
241       return false;
242 
243     // Use dominates, which knows how to handle edge dominance.
244     return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
245   }
246 
247   return (VDUse.DFSIn >= Stack.back().DFSIn &&
248           VDUse.DFSOut <= Stack.back().DFSOut);
249 }
250 
251 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
252                                           const ValueDFS &VD) {
253   while (!Stack.empty() && !stackIsInScope(Stack, VD))
254     Stack.pop_back();
255 }
256 
257 // Convert the uses of Op into a vector of uses, associating global and local
258 // DFS info with each one.
259 void PredicateInfo::convertUsesToDFSOrdered(
260     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
261   for (auto &U : Op->uses()) {
262     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
263       ValueDFS VD;
264       // Put the phi node uses in the incoming block.
265       BasicBlock *IBlock;
266       if (auto *PN = dyn_cast<PHINode>(I)) {
267         IBlock = PN->getIncomingBlock(U);
268         // Make phi node users appear last in the incoming block
269         // they are from.
270         VD.LocalNum = LN_Last;
271       } else {
272         // If it's not a phi node use, it is somewhere in the middle of the
273         // block.
274         IBlock = I->getParent();
275         VD.LocalNum = LN_Middle;
276       }
277       DomTreeNode *DomNode = DT.getNode(IBlock);
278       // It's possible our use is in an unreachable block. Skip it if so.
279       if (!DomNode)
280         continue;
281       VD.DFSIn = DomNode->getDFSNumIn();
282       VD.DFSOut = DomNode->getDFSNumOut();
283       VD.U = &U;
284       DFSOrderedSet.push_back(VD);
285     }
286   }
287 }
288 
289 // Collect relevant operations from Comparison that we may want to insert copies
290 // for.
291 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
292   auto *Op0 = Comparison->getOperand(0);
293   auto *Op1 = Comparison->getOperand(1);
294   if (Op0 == Op1)
295     return;
296   CmpOperands.push_back(Comparison);
297   // Only want real values, not constants.  Additionally, operands with one use
298   // are only being used in the comparison, which means they will not be useful
299   // for us to consider for predicateinfo.
300   //
301   if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
302     CmpOperands.push_back(Op0);
303   if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
304     CmpOperands.push_back(Op1);
305 }
306 
307 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
308 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
309                                PredicateBase *PB) {
310   OpsToRename.insert(Op);
311   auto &OperandInfo = getOrCreateValueInfo(Op);
312   AllInfos.push_back(PB);
313   OperandInfo.Infos.push_back(PB);
314 }
315 
316 // Process an assume instruction and place relevant operations we want to rename
317 // into OpsToRename.
318 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
319                                   SmallPtrSetImpl<Value *> &OpsToRename) {
320   // See if we have a comparison we support
321   SmallVector<Value *, 8> CmpOperands;
322   SmallVector<Value *, 2> ConditionsToProcess;
323   CmpInst::Predicate Pred;
324   Value *Operand = II->getOperand(0);
325   if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
326               m_Cmp(Pred, m_Value(), m_Value()))
327           .match(II->getOperand(0))) {
328     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
329     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
330     ConditionsToProcess.push_back(Operand);
331   } else if (isa<CmpInst>(Operand)) {
332 
333     ConditionsToProcess.push_back(Operand);
334   }
335   for (auto Cond : ConditionsToProcess) {
336     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
337       collectCmpOps(Cmp, CmpOperands);
338       // Now add our copy infos for our operands
339       for (auto *Op : CmpOperands) {
340         auto *PA = new PredicateAssume(Op, II, Cmp);
341         addInfoFor(OpsToRename, Op, PA);
342       }
343       CmpOperands.clear();
344     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
345       // Otherwise, it should be an AND.
346       assert(BinOp->getOpcode() == Instruction::And &&
347              "Should have been an AND");
348       auto *PA = new PredicateAssume(BinOp, II, BinOp);
349       addInfoFor(OpsToRename, BinOp, PA);
350     } else {
351       llvm_unreachable("Unknown type of condition");
352     }
353   }
354 }
355 
356 // Process a block terminating branch, and place relevant operations to be
357 // renamed into OpsToRename.
358 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
359                                   SmallPtrSetImpl<Value *> &OpsToRename) {
360   BasicBlock *FirstBB = BI->getSuccessor(0);
361   BasicBlock *SecondBB = BI->getSuccessor(1);
362   SmallVector<BasicBlock *, 2> SuccsToProcess;
363   SuccsToProcess.push_back(FirstBB);
364   SuccsToProcess.push_back(SecondBB);
365   SmallVector<Value *, 2> ConditionsToProcess;
366 
367   auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
368     for (auto *Succ : SuccsToProcess) {
369       // Don't try to insert on a self-edge. This is mainly because we will
370       // eliminate during renaming anyway.
371       if (Succ == BranchBB)
372         continue;
373       bool TakenEdge = (Succ == FirstBB);
374       // For and, only insert on the true edge
375       // For or, only insert on the false edge
376       if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
377         continue;
378       PredicateBase *PB =
379           new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
380       addInfoFor(OpsToRename, Op, PB);
381       if (!Succ->getSinglePredecessor())
382         EdgeUsesOnly.insert({BranchBB, Succ});
383     }
384   };
385 
386   // Match combinations of conditions.
387   CmpInst::Predicate Pred;
388   bool isAnd = false;
389   bool isOr = false;
390   SmallVector<Value *, 8> CmpOperands;
391   if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
392                                       m_Cmp(Pred, m_Value(), m_Value()))) ||
393       match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
394                                      m_Cmp(Pred, m_Value(), m_Value())))) {
395     auto *BinOp = cast<BinaryOperator>(BI->getCondition());
396     if (BinOp->getOpcode() == Instruction::And)
397       isAnd = true;
398     else if (BinOp->getOpcode() == Instruction::Or)
399       isOr = true;
400     ConditionsToProcess.push_back(BinOp->getOperand(0));
401     ConditionsToProcess.push_back(BinOp->getOperand(1));
402     ConditionsToProcess.push_back(BI->getCondition());
403   } else if (isa<CmpInst>(BI->getCondition())) {
404     ConditionsToProcess.push_back(BI->getCondition());
405   }
406   for (auto Cond : ConditionsToProcess) {
407     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
408       collectCmpOps(Cmp, CmpOperands);
409       // Now add our copy infos for our operands
410       for (auto *Op : CmpOperands)
411         InsertHelper(Op, isAnd, isOr, Cmp);
412     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
413       // This must be an AND or an OR.
414       assert((BinOp->getOpcode() == Instruction::And ||
415               BinOp->getOpcode() == Instruction::Or) &&
416              "Should have been an AND or an OR");
417       // The actual value of the binop is not subject to the same restrictions
418       // as the comparison. It's either true or false on the true/false branch.
419       InsertHelper(BinOp, false, false, BinOp);
420     } else {
421       llvm_unreachable("Unknown type of condition");
422     }
423     CmpOperands.clear();
424   }
425 }
426 // Process a block terminating switch, and place relevant operations to be
427 // renamed into OpsToRename.
428 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
429                                   SmallPtrSetImpl<Value *> &OpsToRename) {
430   Value *Op = SI->getCondition();
431   if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
432     return;
433 
434   // Remember how many outgoing edges there are to every successor.
435   SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
436   for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
437     BasicBlock *TargetBlock = SI->getSuccessor(i);
438     ++SwitchEdges[TargetBlock];
439   }
440 
441   // Now propagate info for each case value
442   for (auto C : SI->cases()) {
443     BasicBlock *TargetBlock = C.getCaseSuccessor();
444     if (SwitchEdges.lookup(TargetBlock) == 1) {
445       PredicateSwitch *PS = new PredicateSwitch(
446           Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
447       addInfoFor(OpsToRename, Op, PS);
448       if (!TargetBlock->getSinglePredecessor())
449         EdgeUsesOnly.insert({BranchBB, TargetBlock});
450     }
451   }
452 }
453 
454 // Build predicate info for our function
455 void PredicateInfo::buildPredicateInfo() {
456   DT.updateDFSNumbers();
457   // Collect operands to rename from all conditional branch terminators, as well
458   // as assume statements.
459   SmallPtrSet<Value *, 8> OpsToRename;
460   for (auto DTN : depth_first(DT.getRootNode())) {
461     BasicBlock *BranchBB = DTN->getBlock();
462     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
463       if (!BI->isConditional())
464         continue;
465       processBranch(BI, BranchBB, OpsToRename);
466     } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
467       processSwitch(SI, BranchBB, OpsToRename);
468     }
469   }
470   for (auto &Assume : AC.assumptions()) {
471     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
472       processAssume(II, II->getParent(), OpsToRename);
473   }
474   // Now rename all our operations.
475   renameUses(OpsToRename);
476 }
477 
478 // Given the renaming stack, make all the operands currently on the stack real
479 // by inserting them into the IR.  Return the last operation's value.
480 Value *PredicateInfo::materializeStack(unsigned int &Counter,
481                                        ValueDFSStack &RenameStack,
482                                        Value *OrigOp) {
483   // Find the first thing we have to materialize
484   auto RevIter = RenameStack.rbegin();
485   for (; RevIter != RenameStack.rend(); ++RevIter)
486     if (RevIter->Def)
487       break;
488 
489   size_t Start = RevIter - RenameStack.rbegin();
490   // The maximum number of things we should be trying to materialize at once
491   // right now is 4, depending on if we had an assume, a branch, and both used
492   // and of conditions.
493   for (auto RenameIter = RenameStack.end() - Start;
494        RenameIter != RenameStack.end(); ++RenameIter) {
495     auto *Op =
496         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
497     ValueDFS &Result = *RenameIter;
498     auto *ValInfo = Result.PInfo;
499     // For edge predicates, we can just place the operand in the block before
500     // the terminator.  For assume, we have to place it right before the assume
501     // to ensure we dominate all of our uses.  Always insert right before the
502     // relevant instruction (terminator, assume), so that we insert in proper
503     // order in the case of multiple predicateinfo in the same block.
504     if (isa<PredicateWithEdge>(ValInfo)) {
505       IRBuilder<> B(getBranchTerminator(ValInfo));
506       Function *IF = Intrinsic::getDeclaration(
507           F.getParent(), Intrinsic::ssa_copy, Op->getType());
508       CallInst *PIC =
509           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
510       PredicateMap.insert({PIC, ValInfo});
511       Result.Def = PIC;
512     } else {
513       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
514       assert(PAssume &&
515              "Should not have gotten here without it being an assume");
516       IRBuilder<> B(PAssume->AssumeInst);
517       Function *IF = Intrinsic::getDeclaration(
518           F.getParent(), Intrinsic::ssa_copy, Op->getType());
519       CallInst *PIC = B.CreateCall(IF, Op);
520       PredicateMap.insert({PIC, ValInfo});
521       Result.Def = PIC;
522     }
523   }
524   return RenameStack.back().Def;
525 }
526 
527 // Instead of the standard SSA renaming algorithm, which is O(Number of
528 // instructions), and walks the entire dominator tree, we walk only the defs +
529 // uses.  The standard SSA renaming algorithm does not really rely on the
530 // dominator tree except to order the stack push/pops of the renaming stacks, so
531 // that defs end up getting pushed before hitting the correct uses.  This does
532 // not require the dominator tree, only the *order* of the dominator tree. The
533 // complete and correct ordering of the defs and uses, in dominator tree is
534 // contained in the DFS numbering of the dominator tree. So we sort the defs and
535 // uses into the DFS ordering, and then just use the renaming stack as per
536 // normal, pushing when we hit a def (which is a predicateinfo instruction),
537 // popping when we are out of the dfs scope for that def, and replacing any uses
538 // with top of stack if it exists.  In order to handle liveness without
539 // propagating liveness info, we don't actually insert the predicateinfo
540 // instruction def until we see a use that it would dominate.  Once we see such
541 // a use, we materialize the predicateinfo instruction in the right place and
542 // use it.
543 //
544 // TODO: Use this algorithm to perform fast single-variable renaming in
545 // promotememtoreg and memoryssa.
546 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) {
547   ValueDFS_Compare Compare(OBBMap);
548   // Compute liveness, and rename in O(uses) per Op.
549   for (auto *Op : OpsToRename) {
550     unsigned Counter = 0;
551     SmallVector<ValueDFS, 16> OrderedUses;
552     const auto &ValueInfo = getValueInfo(Op);
553     // Insert the possible copies into the def/use list.
554     // They will become real copies if we find a real use for them, and never
555     // created otherwise.
556     for (auto &PossibleCopy : ValueInfo.Infos) {
557       ValueDFS VD;
558       // Determine where we are going to place the copy by the copy type.
559       // The predicate info for branches always come first, they will get
560       // materialized in the split block at the top of the block.
561       // The predicate info for assumes will be somewhere in the middle,
562       // it will get materialized in front of the assume.
563       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
564         VD.LocalNum = LN_Middle;
565         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
566         if (!DomNode)
567           continue;
568         VD.DFSIn = DomNode->getDFSNumIn();
569         VD.DFSOut = DomNode->getDFSNumOut();
570         VD.PInfo = PossibleCopy;
571         OrderedUses.push_back(VD);
572       } else if (isa<PredicateWithEdge>(PossibleCopy)) {
573         // If we can only do phi uses, we treat it like it's in the branch
574         // block, and handle it specially. We know that it goes last, and only
575         // dominate phi uses.
576         auto BlockEdge = getBlockEdge(PossibleCopy);
577         if (EdgeUsesOnly.count(BlockEdge)) {
578           VD.LocalNum = LN_Last;
579           auto *DomNode = DT.getNode(BlockEdge.first);
580           if (DomNode) {
581             VD.DFSIn = DomNode->getDFSNumIn();
582             VD.DFSOut = DomNode->getDFSNumOut();
583             VD.PInfo = PossibleCopy;
584             VD.EdgeOnly = true;
585             OrderedUses.push_back(VD);
586           }
587         } else {
588           // Otherwise, we are in the split block (even though we perform
589           // insertion in the branch block).
590           // Insert a possible copy at the split block and before the branch.
591           VD.LocalNum = LN_First;
592           auto *DomNode = DT.getNode(BlockEdge.second);
593           if (DomNode) {
594             VD.DFSIn = DomNode->getDFSNumIn();
595             VD.DFSOut = DomNode->getDFSNumOut();
596             VD.PInfo = PossibleCopy;
597             OrderedUses.push_back(VD);
598           }
599         }
600       }
601     }
602 
603     convertUsesToDFSOrdered(Op, OrderedUses);
604     std::sort(OrderedUses.begin(), OrderedUses.end(), Compare);
605     SmallVector<ValueDFS, 8> RenameStack;
606     // For each use, sorted into dfs order, push values and replaces uses with
607     // top of stack, which will represent the reaching def.
608     for (auto &VD : OrderedUses) {
609       // We currently do not materialize copy over copy, but we should decide if
610       // we want to.
611       bool PossibleCopy = VD.PInfo != nullptr;
612       if (RenameStack.empty()) {
613         DEBUG(dbgs() << "Rename Stack is empty\n");
614       } else {
615         DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
616                      << RenameStack.back().DFSIn << ","
617                      << RenameStack.back().DFSOut << ")\n");
618       }
619 
620       DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
621                    << VD.DFSOut << ")\n");
622 
623       bool ShouldPush = (VD.Def || PossibleCopy);
624       bool OutOfScope = !stackIsInScope(RenameStack, VD);
625       if (OutOfScope || ShouldPush) {
626         // Sync to our current scope.
627         popStackUntilDFSScope(RenameStack, VD);
628         if (ShouldPush) {
629           RenameStack.push_back(VD);
630         }
631       }
632       // If we get to this point, and the stack is empty we must have a use
633       // with no renaming needed, just skip it.
634       if (RenameStack.empty())
635         continue;
636       // Skip values, only want to rename the uses
637       if (VD.Def || PossibleCopy)
638         continue;
639       if (!DebugCounter::shouldExecute(RenameCounter)) {
640         DEBUG(dbgs() << "Skipping execution due to debug counter\n");
641         continue;
642       }
643       ValueDFS &Result = RenameStack.back();
644 
645       // If the possible copy dominates something, materialize our stack up to
646       // this point. This ensures every comparison that affects our operation
647       // ends up with predicateinfo.
648       if (!Result.Def)
649         Result.Def = materializeStack(Counter, RenameStack, Op);
650 
651       DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
652                    << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n");
653       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
654              "Predicateinfo def should have dominated this use");
655       VD.U->set(Result.Def);
656     }
657   }
658 }
659 
660 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
661   auto OIN = ValueInfoNums.find(Operand);
662   if (OIN == ValueInfoNums.end()) {
663     // This will grow it
664     ValueInfos.resize(ValueInfos.size() + 1);
665     // This will use the new size and give us a 0 based number of the info
666     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
667     assert(InsertResult.second && "Value info number already existed?");
668     return ValueInfos[InsertResult.first->second];
669   }
670   return ValueInfos[OIN->second];
671 }
672 
673 const PredicateInfo::ValueInfo &
674 PredicateInfo::getValueInfo(Value *Operand) const {
675   auto OINI = ValueInfoNums.lookup(Operand);
676   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
677   assert(OINI < ValueInfos.size() &&
678          "Value Info Number greater than size of Value Info Table");
679   return ValueInfos[OINI];
680 }
681 
682 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
683                              AssumptionCache &AC)
684     : F(F), DT(DT), AC(AC) {
685   // Push an empty operand info so that we can detect 0 as not finding one
686   ValueInfos.resize(1);
687   buildPredicateInfo();
688 }
689 
690 PredicateInfo::~PredicateInfo() {}
691 
692 void PredicateInfo::verifyPredicateInfo() const {}
693 
694 char PredicateInfoPrinterLegacyPass::ID = 0;
695 
696 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
697     : FunctionPass(ID) {
698   initializePredicateInfoPrinterLegacyPassPass(
699       *PassRegistry::getPassRegistry());
700 }
701 
702 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
703   AU.setPreservesAll();
704   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
705   AU.addRequired<AssumptionCacheTracker>();
706 }
707 
708 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
709   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
710   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
711   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
712   PredInfo->print(dbgs());
713   if (VerifyPredicateInfo)
714     PredInfo->verifyPredicateInfo();
715   return false;
716 }
717 
718 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
719                                                 FunctionAnalysisManager &AM) {
720   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
721   auto &AC = AM.getResult<AssumptionAnalysis>(F);
722   OS << "PredicateInfo for function: " << F.getName() << "\n";
723   make_unique<PredicateInfo>(F, DT, AC)->print(OS);
724 
725   return PreservedAnalyses::all();
726 }
727 
728 /// \brief An assembly annotator class to print PredicateInfo information in
729 /// comments.
730 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
731   friend class PredicateInfo;
732   const PredicateInfo *PredInfo;
733 
734 public:
735   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
736 
737   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
738                                         formatted_raw_ostream &OS) {}
739 
740   virtual void emitInstructionAnnot(const Instruction *I,
741                                     formatted_raw_ostream &OS) {
742     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
743       OS << "; Has predicate info\n";
744       if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
745         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
746            << " Comparison:" << *PB->Condition << " Edge: [";
747         PB->From->printAsOperand(OS);
748         OS << ",";
749         PB->To->printAsOperand(OS);
750         OS << "] }\n";
751       } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
752         OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
753            << " Switch:" << *PS->Switch << " Edge: [";
754         PS->From->printAsOperand(OS);
755         OS << ",";
756         PS->To->printAsOperand(OS);
757         OS << "] }\n";
758       } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
759         OS << "; assume predicate info {"
760            << " Comparison:" << *PA->Condition << " }\n";
761       }
762     }
763   }
764 };
765 
766 void PredicateInfo::print(raw_ostream &OS) const {
767   PredicateInfoAnnotatedWriter Writer(this);
768   F.print(OS, &Writer);
769 }
770 
771 void PredicateInfo::dump() const {
772   PredicateInfoAnnotatedWriter Writer(this);
773   F.print(dbgs(), &Writer);
774 }
775 
776 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
777                                                  FunctionAnalysisManager &AM) {
778   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
779   auto &AC = AM.getResult<AssumptionAnalysis>(F);
780   make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
781 
782   return PreservedAnalyses::all();
783 }
784 }
785