1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------===// 9 // 10 // This file implements the PredicateInfo class. 11 // 12 //===----------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/PredicateInfo.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/OrderedBasicBlock.h" 23 #include "llvm/IR/AssemblyAnnotationWriter.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/FormattedStream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include <algorithm> 38 #define DEBUG_TYPE "predicateinfo" 39 using namespace llvm; 40 using namespace PatternMatch; 41 using namespace llvm::PredicateInfoClasses; 42 43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 44 "PredicateInfo Printer", false, false) 45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 48 "PredicateInfo Printer", false, false) 49 static cl::opt<bool> VerifyPredicateInfo( 50 "verify-predicateinfo", cl::init(false), cl::Hidden, 51 cl::desc("Verify PredicateInfo in legacy printer pass.")); 52 namespace { 53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 54 "Controls which variables are renamed with predicateinfo") 55 // Given a predicate info that is a type of branching terminator, get the 56 // branching block. 57 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 58 assert(isa<PredicateWithEdge>(PB) && 59 "Only branches and switches should have PHIOnly defs that " 60 "require branch blocks."); 61 return cast<PredicateWithEdge>(PB)->From; 62 } 63 64 // Given a predicate info that is a type of branching terminator, get the 65 // branching terminator. 66 static Instruction *getBranchTerminator(const PredicateBase *PB) { 67 assert(isa<PredicateWithEdge>(PB) && 68 "Not a predicate info type we know how to get a terminator from."); 69 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 70 } 71 72 // Given a predicate info that is a type of branching terminator, get the 73 // edge this predicate info represents 74 const std::pair<BasicBlock *, BasicBlock *> 75 getBlockEdge(const PredicateBase *PB) { 76 assert(isa<PredicateWithEdge>(PB) && 77 "Not a predicate info type we know how to get an edge from."); 78 const auto *PEdge = cast<PredicateWithEdge>(PB); 79 return std::make_pair(PEdge->From, PEdge->To); 80 } 81 } 82 83 namespace llvm { 84 namespace PredicateInfoClasses { 85 enum LocalNum { 86 // Operations that must appear first in the block. 87 LN_First, 88 // Operations that are somewhere in the middle of the block, and are sorted on 89 // demand. 90 LN_Middle, 91 // Operations that must appear last in a block, like successor phi node uses. 92 LN_Last 93 }; 94 95 // Associate global and local DFS info with defs and uses, so we can sort them 96 // into a global domination ordering. 97 struct ValueDFS { 98 int DFSIn = 0; 99 int DFSOut = 0; 100 unsigned int LocalNum = LN_Middle; 101 // Only one of Def or Use will be set. 102 Value *Def = nullptr; 103 Use *U = nullptr; 104 // Neither PInfo nor EdgeOnly participate in the ordering 105 PredicateBase *PInfo = nullptr; 106 bool EdgeOnly = false; 107 }; 108 109 // This compares ValueDFS structures, creating OrderedBasicBlocks where 110 // necessary to compare uses/defs in the same block. Doing so allows us to walk 111 // the minimum number of instructions necessary to compute our def/use ordering. 112 struct ValueDFS_Compare { 113 DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap; 114 ValueDFS_Compare( 115 DenseMap<const BasicBlock *, std::unique_ptr<OrderedBasicBlock>> &OBBMap) 116 : OBBMap(OBBMap) {} 117 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 118 if (&A == &B) 119 return false; 120 // The only case we can't directly compare them is when they in the same 121 // block, and both have localnum == middle. In that case, we have to use 122 // comesbefore to see what the real ordering is, because they are in the 123 // same basic block. 124 125 bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); 126 127 // We want to put the def that will get used for a given set of phi uses, 128 // before those phi uses. 129 // So we sort by edge, then by def. 130 // Note that only phi nodes uses and defs can come last. 131 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 132 return comparePHIRelated(A, B); 133 134 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 135 return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < 136 std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); 137 return localComesBefore(A, B); 138 } 139 140 // For a phi use, or a non-materialized def, return the edge it represents. 141 const std::pair<BasicBlock *, BasicBlock *> 142 getBlockEdge(const ValueDFS &VD) const { 143 if (!VD.Def && VD.U) { 144 auto *PHI = cast<PHINode>(VD.U->getUser()); 145 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 146 } 147 // This is really a non-materialized def. 148 return ::getBlockEdge(VD.PInfo); 149 } 150 151 // For two phi related values, return the ordering. 152 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 153 auto &ABlockEdge = getBlockEdge(A); 154 auto &BBlockEdge = getBlockEdge(B); 155 // Now sort by block edge and then defs before uses. 156 return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); 157 } 158 159 // Get the definition of an instruction that occurs in the middle of a block. 160 Value *getMiddleDef(const ValueDFS &VD) const { 161 if (VD.Def) 162 return VD.Def; 163 // It's possible for the defs and uses to be null. For branches, the local 164 // numbering will say the placed predicaeinfos should go first (IE 165 // LN_beginning), so we won't be in this function. For assumes, we will end 166 // up here, beause we need to order the def we will place relative to the 167 // assume. So for the purpose of ordering, we pretend the def is the assume 168 // because that is where we will insert the info. 169 if (!VD.U) { 170 assert(VD.PInfo && 171 "No def, no use, and no predicateinfo should not occur"); 172 assert(isa<PredicateAssume>(VD.PInfo) && 173 "Middle of block should only occur for assumes"); 174 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 175 } 176 return nullptr; 177 } 178 179 // Return either the Def, if it's not null, or the user of the Use, if the def 180 // is null. 181 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 182 if (Def) 183 return cast<Instruction>(Def); 184 return cast<Instruction>(U->getUser()); 185 } 186 187 // This performs the necessary local basic block ordering checks to tell 188 // whether A comes before B, where both are in the same basic block. 189 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 190 auto *ADef = getMiddleDef(A); 191 auto *BDef = getMiddleDef(B); 192 193 // See if we have real values or uses. If we have real values, we are 194 // guaranteed they are instructions or arguments. No matter what, we are 195 // guaranteed they are in the same block if they are instructions. 196 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 197 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 198 199 if (ArgA && !ArgB) 200 return true; 201 if (ArgB && !ArgA) 202 return false; 203 if (ArgA && ArgB) 204 return ArgA->getArgNo() < ArgB->getArgNo(); 205 206 auto *AInst = getDefOrUser(ADef, A.U); 207 auto *BInst = getDefOrUser(BDef, B.U); 208 209 auto *BB = AInst->getParent(); 210 auto LookupResult = OBBMap.find(BB); 211 if (LookupResult != OBBMap.end()) 212 return LookupResult->second->dominates(AInst, BInst); 213 else { 214 auto Result = OBBMap.insert({BB, make_unique<OrderedBasicBlock>(BB)}); 215 return Result.first->second->dominates(AInst, BInst); 216 } 217 return std::tie(ADef, A.U) < std::tie(BDef, B.U); 218 } 219 }; 220 221 } // namespace PredicateInfoClasses 222 223 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, 224 const ValueDFS &VDUse) const { 225 if (Stack.empty()) 226 return false; 227 // If it's a phi only use, make sure it's for this phi node edge, and that the 228 // use is in a phi node. If it's anything else, and the top of the stack is 229 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 230 // the defs they must go with so that we can know it's time to pop the stack 231 // when we hit the end of the phi uses for a given def. 232 if (Stack.back().EdgeOnly) { 233 if (!VDUse.U) 234 return false; 235 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 236 if (!PHI) 237 return false; 238 // Check edge 239 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 240 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 241 return false; 242 243 // Use dominates, which knows how to handle edge dominance. 244 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 245 } 246 247 return (VDUse.DFSIn >= Stack.back().DFSIn && 248 VDUse.DFSOut <= Stack.back().DFSOut); 249 } 250 251 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, 252 const ValueDFS &VD) { 253 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 254 Stack.pop_back(); 255 } 256 257 // Convert the uses of Op into a vector of uses, associating global and local 258 // DFS info with each one. 259 void PredicateInfo::convertUsesToDFSOrdered( 260 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 261 for (auto &U : Op->uses()) { 262 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 263 ValueDFS VD; 264 // Put the phi node uses in the incoming block. 265 BasicBlock *IBlock; 266 if (auto *PN = dyn_cast<PHINode>(I)) { 267 IBlock = PN->getIncomingBlock(U); 268 // Make phi node users appear last in the incoming block 269 // they are from. 270 VD.LocalNum = LN_Last; 271 } else { 272 // If it's not a phi node use, it is somewhere in the middle of the 273 // block. 274 IBlock = I->getParent(); 275 VD.LocalNum = LN_Middle; 276 } 277 DomTreeNode *DomNode = DT.getNode(IBlock); 278 // It's possible our use is in an unreachable block. Skip it if so. 279 if (!DomNode) 280 continue; 281 VD.DFSIn = DomNode->getDFSNumIn(); 282 VD.DFSOut = DomNode->getDFSNumOut(); 283 VD.U = &U; 284 DFSOrderedSet.push_back(VD); 285 } 286 } 287 } 288 289 // Collect relevant operations from Comparison that we may want to insert copies 290 // for. 291 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 292 auto *Op0 = Comparison->getOperand(0); 293 auto *Op1 = Comparison->getOperand(1); 294 if (Op0 == Op1) 295 return; 296 CmpOperands.push_back(Comparison); 297 // Only want real values, not constants. Additionally, operands with one use 298 // are only being used in the comparison, which means they will not be useful 299 // for us to consider for predicateinfo. 300 // 301 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 302 CmpOperands.push_back(Op0); 303 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 304 CmpOperands.push_back(Op1); 305 } 306 307 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 308 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op, 309 PredicateBase *PB) { 310 OpsToRename.insert(Op); 311 auto &OperandInfo = getOrCreateValueInfo(Op); 312 AllInfos.push_back(PB); 313 OperandInfo.Infos.push_back(PB); 314 } 315 316 // Process an assume instruction and place relevant operations we want to rename 317 // into OpsToRename. 318 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, 319 SmallPtrSetImpl<Value *> &OpsToRename) { 320 // See if we have a comparison we support 321 SmallVector<Value *, 8> CmpOperands; 322 SmallVector<Value *, 2> ConditionsToProcess; 323 CmpInst::Predicate Pred; 324 Value *Operand = II->getOperand(0); 325 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 326 m_Cmp(Pred, m_Value(), m_Value())) 327 .match(II->getOperand(0))) { 328 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 329 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 330 ConditionsToProcess.push_back(Operand); 331 } else if (isa<CmpInst>(Operand)) { 332 333 ConditionsToProcess.push_back(Operand); 334 } 335 for (auto Cond : ConditionsToProcess) { 336 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 337 collectCmpOps(Cmp, CmpOperands); 338 // Now add our copy infos for our operands 339 for (auto *Op : CmpOperands) { 340 auto *PA = new PredicateAssume(Op, II, Cmp); 341 addInfoFor(OpsToRename, Op, PA); 342 } 343 CmpOperands.clear(); 344 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 345 // Otherwise, it should be an AND. 346 assert(BinOp->getOpcode() == Instruction::And && 347 "Should have been an AND"); 348 auto *PA = new PredicateAssume(BinOp, II, BinOp); 349 addInfoFor(OpsToRename, BinOp, PA); 350 } else { 351 llvm_unreachable("Unknown type of condition"); 352 } 353 } 354 } 355 356 // Process a block terminating branch, and place relevant operations to be 357 // renamed into OpsToRename. 358 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, 359 SmallPtrSetImpl<Value *> &OpsToRename) { 360 BasicBlock *FirstBB = BI->getSuccessor(0); 361 BasicBlock *SecondBB = BI->getSuccessor(1); 362 SmallVector<BasicBlock *, 2> SuccsToProcess; 363 SuccsToProcess.push_back(FirstBB); 364 SuccsToProcess.push_back(SecondBB); 365 SmallVector<Value *, 2> ConditionsToProcess; 366 367 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 368 for (auto *Succ : SuccsToProcess) { 369 // Don't try to insert on a self-edge. This is mainly because we will 370 // eliminate during renaming anyway. 371 if (Succ == BranchBB) 372 continue; 373 bool TakenEdge = (Succ == FirstBB); 374 // For and, only insert on the true edge 375 // For or, only insert on the false edge 376 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 377 continue; 378 PredicateBase *PB = 379 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 380 addInfoFor(OpsToRename, Op, PB); 381 if (!Succ->getSinglePredecessor()) 382 EdgeUsesOnly.insert({BranchBB, Succ}); 383 } 384 }; 385 386 // Match combinations of conditions. 387 CmpInst::Predicate Pred; 388 bool isAnd = false; 389 bool isOr = false; 390 SmallVector<Value *, 8> CmpOperands; 391 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 392 m_Cmp(Pred, m_Value(), m_Value()))) || 393 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 394 m_Cmp(Pred, m_Value(), m_Value())))) { 395 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 396 if (BinOp->getOpcode() == Instruction::And) 397 isAnd = true; 398 else if (BinOp->getOpcode() == Instruction::Or) 399 isOr = true; 400 ConditionsToProcess.push_back(BinOp->getOperand(0)); 401 ConditionsToProcess.push_back(BinOp->getOperand(1)); 402 ConditionsToProcess.push_back(BI->getCondition()); 403 } else if (isa<CmpInst>(BI->getCondition())) { 404 ConditionsToProcess.push_back(BI->getCondition()); 405 } 406 for (auto Cond : ConditionsToProcess) { 407 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 408 collectCmpOps(Cmp, CmpOperands); 409 // Now add our copy infos for our operands 410 for (auto *Op : CmpOperands) 411 InsertHelper(Op, isAnd, isOr, Cmp); 412 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 413 // This must be an AND or an OR. 414 assert((BinOp->getOpcode() == Instruction::And || 415 BinOp->getOpcode() == Instruction::Or) && 416 "Should have been an AND or an OR"); 417 // The actual value of the binop is not subject to the same restrictions 418 // as the comparison. It's either true or false on the true/false branch. 419 InsertHelper(BinOp, false, false, BinOp); 420 } else { 421 llvm_unreachable("Unknown type of condition"); 422 } 423 CmpOperands.clear(); 424 } 425 } 426 // Process a block terminating switch, and place relevant operations to be 427 // renamed into OpsToRename. 428 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, 429 SmallPtrSetImpl<Value *> &OpsToRename) { 430 Value *Op = SI->getCondition(); 431 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 432 return; 433 434 // Remember how many outgoing edges there are to every successor. 435 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 436 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 437 BasicBlock *TargetBlock = SI->getSuccessor(i); 438 ++SwitchEdges[TargetBlock]; 439 } 440 441 // Now propagate info for each case value 442 for (auto C : SI->cases()) { 443 BasicBlock *TargetBlock = C.getCaseSuccessor(); 444 if (SwitchEdges.lookup(TargetBlock) == 1) { 445 PredicateSwitch *PS = new PredicateSwitch( 446 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 447 addInfoFor(OpsToRename, Op, PS); 448 if (!TargetBlock->getSinglePredecessor()) 449 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 450 } 451 } 452 } 453 454 // Build predicate info for our function 455 void PredicateInfo::buildPredicateInfo() { 456 DT.updateDFSNumbers(); 457 // Collect operands to rename from all conditional branch terminators, as well 458 // as assume statements. 459 SmallPtrSet<Value *, 8> OpsToRename; 460 for (auto DTN : depth_first(DT.getRootNode())) { 461 BasicBlock *BranchBB = DTN->getBlock(); 462 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 463 if (!BI->isConditional()) 464 continue; 465 processBranch(BI, BranchBB, OpsToRename); 466 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 467 processSwitch(SI, BranchBB, OpsToRename); 468 } 469 } 470 for (auto &Assume : AC.assumptions()) { 471 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 472 processAssume(II, II->getParent(), OpsToRename); 473 } 474 // Now rename all our operations. 475 renameUses(OpsToRename); 476 } 477 478 // Given the renaming stack, make all the operands currently on the stack real 479 // by inserting them into the IR. Return the last operation's value. 480 Value *PredicateInfo::materializeStack(unsigned int &Counter, 481 ValueDFSStack &RenameStack, 482 Value *OrigOp) { 483 // Find the first thing we have to materialize 484 auto RevIter = RenameStack.rbegin(); 485 for (; RevIter != RenameStack.rend(); ++RevIter) 486 if (RevIter->Def) 487 break; 488 489 size_t Start = RevIter - RenameStack.rbegin(); 490 // The maximum number of things we should be trying to materialize at once 491 // right now is 4, depending on if we had an assume, a branch, and both used 492 // and of conditions. 493 for (auto RenameIter = RenameStack.end() - Start; 494 RenameIter != RenameStack.end(); ++RenameIter) { 495 auto *Op = 496 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 497 ValueDFS &Result = *RenameIter; 498 auto *ValInfo = Result.PInfo; 499 // For edge predicates, we can just place the operand in the block before 500 // the terminator. For assume, we have to place it right before the assume 501 // to ensure we dominate all of our uses. Always insert right before the 502 // relevant instruction (terminator, assume), so that we insert in proper 503 // order in the case of multiple predicateinfo in the same block. 504 if (isa<PredicateWithEdge>(ValInfo)) { 505 IRBuilder<> B(getBranchTerminator(ValInfo)); 506 Function *IF = Intrinsic::getDeclaration( 507 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 508 CallInst *PIC = 509 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 510 PredicateMap.insert({PIC, ValInfo}); 511 Result.Def = PIC; 512 } else { 513 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 514 assert(PAssume && 515 "Should not have gotten here without it being an assume"); 516 IRBuilder<> B(PAssume->AssumeInst); 517 Function *IF = Intrinsic::getDeclaration( 518 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 519 CallInst *PIC = B.CreateCall(IF, Op); 520 PredicateMap.insert({PIC, ValInfo}); 521 Result.Def = PIC; 522 } 523 } 524 return RenameStack.back().Def; 525 } 526 527 // Instead of the standard SSA renaming algorithm, which is O(Number of 528 // instructions), and walks the entire dominator tree, we walk only the defs + 529 // uses. The standard SSA renaming algorithm does not really rely on the 530 // dominator tree except to order the stack push/pops of the renaming stacks, so 531 // that defs end up getting pushed before hitting the correct uses. This does 532 // not require the dominator tree, only the *order* of the dominator tree. The 533 // complete and correct ordering of the defs and uses, in dominator tree is 534 // contained in the DFS numbering of the dominator tree. So we sort the defs and 535 // uses into the DFS ordering, and then just use the renaming stack as per 536 // normal, pushing when we hit a def (which is a predicateinfo instruction), 537 // popping when we are out of the dfs scope for that def, and replacing any uses 538 // with top of stack if it exists. In order to handle liveness without 539 // propagating liveness info, we don't actually insert the predicateinfo 540 // instruction def until we see a use that it would dominate. Once we see such 541 // a use, we materialize the predicateinfo instruction in the right place and 542 // use it. 543 // 544 // TODO: Use this algorithm to perform fast single-variable renaming in 545 // promotememtoreg and memoryssa. 546 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpsToRename) { 547 ValueDFS_Compare Compare(OBBMap); 548 // Compute liveness, and rename in O(uses) per Op. 549 for (auto *Op : OpsToRename) { 550 unsigned Counter = 0; 551 SmallVector<ValueDFS, 16> OrderedUses; 552 const auto &ValueInfo = getValueInfo(Op); 553 // Insert the possible copies into the def/use list. 554 // They will become real copies if we find a real use for them, and never 555 // created otherwise. 556 for (auto &PossibleCopy : ValueInfo.Infos) { 557 ValueDFS VD; 558 // Determine where we are going to place the copy by the copy type. 559 // The predicate info for branches always come first, they will get 560 // materialized in the split block at the top of the block. 561 // The predicate info for assumes will be somewhere in the middle, 562 // it will get materialized in front of the assume. 563 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 564 VD.LocalNum = LN_Middle; 565 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 566 if (!DomNode) 567 continue; 568 VD.DFSIn = DomNode->getDFSNumIn(); 569 VD.DFSOut = DomNode->getDFSNumOut(); 570 VD.PInfo = PossibleCopy; 571 OrderedUses.push_back(VD); 572 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 573 // If we can only do phi uses, we treat it like it's in the branch 574 // block, and handle it specially. We know that it goes last, and only 575 // dominate phi uses. 576 auto BlockEdge = getBlockEdge(PossibleCopy); 577 if (EdgeUsesOnly.count(BlockEdge)) { 578 VD.LocalNum = LN_Last; 579 auto *DomNode = DT.getNode(BlockEdge.first); 580 if (DomNode) { 581 VD.DFSIn = DomNode->getDFSNumIn(); 582 VD.DFSOut = DomNode->getDFSNumOut(); 583 VD.PInfo = PossibleCopy; 584 VD.EdgeOnly = true; 585 OrderedUses.push_back(VD); 586 } 587 } else { 588 // Otherwise, we are in the split block (even though we perform 589 // insertion in the branch block). 590 // Insert a possible copy at the split block and before the branch. 591 VD.LocalNum = LN_First; 592 auto *DomNode = DT.getNode(BlockEdge.second); 593 if (DomNode) { 594 VD.DFSIn = DomNode->getDFSNumIn(); 595 VD.DFSOut = DomNode->getDFSNumOut(); 596 VD.PInfo = PossibleCopy; 597 OrderedUses.push_back(VD); 598 } 599 } 600 } 601 } 602 603 convertUsesToDFSOrdered(Op, OrderedUses); 604 std::sort(OrderedUses.begin(), OrderedUses.end(), Compare); 605 SmallVector<ValueDFS, 8> RenameStack; 606 // For each use, sorted into dfs order, push values and replaces uses with 607 // top of stack, which will represent the reaching def. 608 for (auto &VD : OrderedUses) { 609 // We currently do not materialize copy over copy, but we should decide if 610 // we want to. 611 bool PossibleCopy = VD.PInfo != nullptr; 612 if (RenameStack.empty()) { 613 DEBUG(dbgs() << "Rename Stack is empty\n"); 614 } else { 615 DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 616 << RenameStack.back().DFSIn << "," 617 << RenameStack.back().DFSOut << ")\n"); 618 } 619 620 DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 621 << VD.DFSOut << ")\n"); 622 623 bool ShouldPush = (VD.Def || PossibleCopy); 624 bool OutOfScope = !stackIsInScope(RenameStack, VD); 625 if (OutOfScope || ShouldPush) { 626 // Sync to our current scope. 627 popStackUntilDFSScope(RenameStack, VD); 628 if (ShouldPush) { 629 RenameStack.push_back(VD); 630 } 631 } 632 // If we get to this point, and the stack is empty we must have a use 633 // with no renaming needed, just skip it. 634 if (RenameStack.empty()) 635 continue; 636 // Skip values, only want to rename the uses 637 if (VD.Def || PossibleCopy) 638 continue; 639 if (!DebugCounter::shouldExecute(RenameCounter)) { 640 DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 641 continue; 642 } 643 ValueDFS &Result = RenameStack.back(); 644 645 // If the possible copy dominates something, materialize our stack up to 646 // this point. This ensures every comparison that affects our operation 647 // ends up with predicateinfo. 648 if (!Result.Def) 649 Result.Def = materializeStack(Counter, RenameStack, Op); 650 651 DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 652 << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n"); 653 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 654 "Predicateinfo def should have dominated this use"); 655 VD.U->set(Result.Def); 656 } 657 } 658 } 659 660 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { 661 auto OIN = ValueInfoNums.find(Operand); 662 if (OIN == ValueInfoNums.end()) { 663 // This will grow it 664 ValueInfos.resize(ValueInfos.size() + 1); 665 // This will use the new size and give us a 0 based number of the info 666 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 667 assert(InsertResult.second && "Value info number already existed?"); 668 return ValueInfos[InsertResult.first->second]; 669 } 670 return ValueInfos[OIN->second]; 671 } 672 673 const PredicateInfo::ValueInfo & 674 PredicateInfo::getValueInfo(Value *Operand) const { 675 auto OINI = ValueInfoNums.lookup(Operand); 676 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 677 assert(OINI < ValueInfos.size() && 678 "Value Info Number greater than size of Value Info Table"); 679 return ValueInfos[OINI]; 680 } 681 682 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 683 AssumptionCache &AC) 684 : F(F), DT(DT), AC(AC) { 685 // Push an empty operand info so that we can detect 0 as not finding one 686 ValueInfos.resize(1); 687 buildPredicateInfo(); 688 } 689 690 PredicateInfo::~PredicateInfo() {} 691 692 void PredicateInfo::verifyPredicateInfo() const {} 693 694 char PredicateInfoPrinterLegacyPass::ID = 0; 695 696 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 697 : FunctionPass(ID) { 698 initializePredicateInfoPrinterLegacyPassPass( 699 *PassRegistry::getPassRegistry()); 700 } 701 702 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 703 AU.setPreservesAll(); 704 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 705 AU.addRequired<AssumptionCacheTracker>(); 706 } 707 708 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 709 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 710 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 711 auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); 712 PredInfo->print(dbgs()); 713 if (VerifyPredicateInfo) 714 PredInfo->verifyPredicateInfo(); 715 return false; 716 } 717 718 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 719 FunctionAnalysisManager &AM) { 720 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 721 auto &AC = AM.getResult<AssumptionAnalysis>(F); 722 OS << "PredicateInfo for function: " << F.getName() << "\n"; 723 make_unique<PredicateInfo>(F, DT, AC)->print(OS); 724 725 return PreservedAnalyses::all(); 726 } 727 728 /// \brief An assembly annotator class to print PredicateInfo information in 729 /// comments. 730 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 731 friend class PredicateInfo; 732 const PredicateInfo *PredInfo; 733 734 public: 735 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 736 737 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 738 formatted_raw_ostream &OS) {} 739 740 virtual void emitInstructionAnnot(const Instruction *I, 741 formatted_raw_ostream &OS) { 742 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 743 OS << "; Has predicate info\n"; 744 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 745 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 746 << " Comparison:" << *PB->Condition << " Edge: ["; 747 PB->From->printAsOperand(OS); 748 OS << ","; 749 PB->To->printAsOperand(OS); 750 OS << "] }\n"; 751 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 752 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 753 << " Switch:" << *PS->Switch << " Edge: ["; 754 PS->From->printAsOperand(OS); 755 OS << ","; 756 PS->To->printAsOperand(OS); 757 OS << "] }\n"; 758 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 759 OS << "; assume predicate info {" 760 << " Comparison:" << *PA->Condition << " }\n"; 761 } 762 } 763 } 764 }; 765 766 void PredicateInfo::print(raw_ostream &OS) const { 767 PredicateInfoAnnotatedWriter Writer(this); 768 F.print(OS, &Writer); 769 } 770 771 void PredicateInfo::dump() const { 772 PredicateInfoAnnotatedWriter Writer(this); 773 F.print(dbgs(), &Writer); 774 } 775 776 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 777 FunctionAnalysisManager &AM) { 778 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 779 auto &AC = AM.getResult<AssumptionAnalysis>(F); 780 make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 781 782 return PreservedAnalyses::all(); 783 } 784 } 785