1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/IR/AssemblyAnnotationWriter.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/DebugCounter.h" 36 #include "llvm/Support/FormattedStream.h" 37 #include "llvm/Transforms/Utils.h" 38 #include <algorithm> 39 #define DEBUG_TYPE "predicateinfo" 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 44 "PredicateInfo Printer", false, false) 45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", 48 "PredicateInfo Printer", false, false) 49 static cl::opt<bool> VerifyPredicateInfo( 50 "verify-predicateinfo", cl::init(false), cl::Hidden, 51 cl::desc("Verify PredicateInfo in legacy printer pass.")); 52 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 53 "Controls which variables are renamed with predicateinfo"); 54 55 namespace { 56 // Given a predicate info that is a type of branching terminator, get the 57 // branching block. 58 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 59 assert(isa<PredicateWithEdge>(PB) && 60 "Only branches and switches should have PHIOnly defs that " 61 "require branch blocks."); 62 return cast<PredicateWithEdge>(PB)->From; 63 } 64 65 // Given a predicate info that is a type of branching terminator, get the 66 // branching terminator. 67 static Instruction *getBranchTerminator(const PredicateBase *PB) { 68 assert(isa<PredicateWithEdge>(PB) && 69 "Not a predicate info type we know how to get a terminator from."); 70 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 71 } 72 73 // Given a predicate info that is a type of branching terminator, get the 74 // edge this predicate info represents 75 const std::pair<BasicBlock *, BasicBlock *> 76 getBlockEdge(const PredicateBase *PB) { 77 assert(isa<PredicateWithEdge>(PB) && 78 "Not a predicate info type we know how to get an edge from."); 79 const auto *PEdge = cast<PredicateWithEdge>(PB); 80 return std::make_pair(PEdge->From, PEdge->To); 81 } 82 } 83 84 namespace llvm { 85 enum LocalNum { 86 // Operations that must appear first in the block. 87 LN_First, 88 // Operations that are somewhere in the middle of the block, and are sorted on 89 // demand. 90 LN_Middle, 91 // Operations that must appear last in a block, like successor phi node uses. 92 LN_Last 93 }; 94 95 // Associate global and local DFS info with defs and uses, so we can sort them 96 // into a global domination ordering. 97 struct ValueDFS { 98 int DFSIn = 0; 99 int DFSOut = 0; 100 unsigned int LocalNum = LN_Middle; 101 // Only one of Def or Use will be set. 102 Value *Def = nullptr; 103 Use *U = nullptr; 104 // Neither PInfo nor EdgeOnly participate in the ordering 105 PredicateBase *PInfo = nullptr; 106 bool EdgeOnly = false; 107 }; 108 109 // Perform a strict weak ordering on instructions and arguments. 110 static bool valueComesBefore(const Value *A, const Value *B) { 111 auto *ArgA = dyn_cast_or_null<Argument>(A); 112 auto *ArgB = dyn_cast_or_null<Argument>(B); 113 if (ArgA && !ArgB) 114 return true; 115 if (ArgB && !ArgA) 116 return false; 117 if (ArgA && ArgB) 118 return ArgA->getArgNo() < ArgB->getArgNo(); 119 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B)); 120 } 121 122 // This compares ValueDFS structures. Doing so allows us to walk the minimum 123 // number of instructions necessary to compute our def/use ordering. 124 struct ValueDFS_Compare { 125 DominatorTree &DT; 126 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} 127 128 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 129 if (&A == &B) 130 return false; 131 // The only case we can't directly compare them is when they in the same 132 // block, and both have localnum == middle. In that case, we have to use 133 // comesbefore to see what the real ordering is, because they are in the 134 // same basic block. 135 136 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 137 "Equal DFS-in numbers imply equal out numbers"); 138 bool SameBlock = A.DFSIn == B.DFSIn; 139 140 // We want to put the def that will get used for a given set of phi uses, 141 // before those phi uses. 142 // So we sort by edge, then by def. 143 // Note that only phi nodes uses and defs can come last. 144 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 145 return comparePHIRelated(A, B); 146 147 bool isADef = A.Def; 148 bool isBDef = B.Def; 149 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 150 return std::tie(A.DFSIn, A.LocalNum, isADef) < 151 std::tie(B.DFSIn, B.LocalNum, isBDef); 152 return localComesBefore(A, B); 153 } 154 155 // For a phi use, or a non-materialized def, return the edge it represents. 156 const std::pair<BasicBlock *, BasicBlock *> 157 getBlockEdge(const ValueDFS &VD) const { 158 if (!VD.Def && VD.U) { 159 auto *PHI = cast<PHINode>(VD.U->getUser()); 160 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 161 } 162 // This is really a non-materialized def. 163 return ::getBlockEdge(VD.PInfo); 164 } 165 166 // For two phi related values, return the ordering. 167 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 168 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 169 std::tie(ASrc, ADest) = getBlockEdge(A); 170 std::tie(BSrc, BDest) = getBlockEdge(B); 171 172 #ifndef NDEBUG 173 // This function should only be used for values in the same BB, check that. 174 DomTreeNode *DomASrc = DT.getNode(ASrc); 175 DomTreeNode *DomBSrc = DT.getNode(BSrc); 176 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 177 "DFS numbers for A should match the ones of the source block"); 178 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 179 "DFS numbers for B should match the ones of the source block"); 180 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 181 #endif 182 (void)ASrc; 183 (void)BSrc; 184 185 // Use DFS numbers to compare destination blocks, to guarantee a 186 // deterministic order. 187 DomTreeNode *DomADest = DT.getNode(ADest); 188 DomTreeNode *DomBDest = DT.getNode(BDest); 189 unsigned AIn = DomADest->getDFSNumIn(); 190 unsigned BIn = DomBDest->getDFSNumIn(); 191 bool isADef = A.Def; 192 bool isBDef = B.Def; 193 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 194 "Def and U cannot be set at the same time"); 195 // Now sort by edge destination and then defs before uses. 196 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 197 } 198 199 // Get the definition of an instruction that occurs in the middle of a block. 200 Value *getMiddleDef(const ValueDFS &VD) const { 201 if (VD.Def) 202 return VD.Def; 203 // It's possible for the defs and uses to be null. For branches, the local 204 // numbering will say the placed predicaeinfos should go first (IE 205 // LN_beginning), so we won't be in this function. For assumes, we will end 206 // up here, beause we need to order the def we will place relative to the 207 // assume. So for the purpose of ordering, we pretend the def is the assume 208 // because that is where we will insert the info. 209 if (!VD.U) { 210 assert(VD.PInfo && 211 "No def, no use, and no predicateinfo should not occur"); 212 assert(isa<PredicateAssume>(VD.PInfo) && 213 "Middle of block should only occur for assumes"); 214 return cast<PredicateAssume>(VD.PInfo)->AssumeInst; 215 } 216 return nullptr; 217 } 218 219 // Return either the Def, if it's not null, or the user of the Use, if the def 220 // is null. 221 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 222 if (Def) 223 return cast<Instruction>(Def); 224 return cast<Instruction>(U->getUser()); 225 } 226 227 // This performs the necessary local basic block ordering checks to tell 228 // whether A comes before B, where both are in the same basic block. 229 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 230 auto *ADef = getMiddleDef(A); 231 auto *BDef = getMiddleDef(B); 232 233 // See if we have real values or uses. If we have real values, we are 234 // guaranteed they are instructions or arguments. No matter what, we are 235 // guaranteed they are in the same block if they are instructions. 236 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 237 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 238 239 if (ArgA || ArgB) 240 return valueComesBefore(ArgA, ArgB); 241 242 auto *AInst = getDefOrUser(ADef, A.U); 243 auto *BInst = getDefOrUser(BDef, B.U); 244 return valueComesBefore(AInst, BInst); 245 } 246 }; 247 248 class PredicateInfoBuilder { 249 // Used to store information about each value we might rename. 250 struct ValueInfo { 251 SmallVector<PredicateBase *, 4> Infos; 252 }; 253 254 PredicateInfo &PI; 255 Function &F; 256 DominatorTree &DT; 257 AssumptionCache &AC; 258 259 // This stores info about each operand or comparison result we make copies 260 // of. The real ValueInfos start at index 1, index 0 is unused so that we 261 // can more easily detect invalid indexing. 262 SmallVector<ValueInfo, 32> ValueInfos; 263 264 // This gives the index into the ValueInfos array for a given Value. Because 265 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 266 // whether it returned a valid result. 267 DenseMap<Value *, unsigned int> ValueInfoNums; 268 269 // The set of edges along which we can only handle phi uses, due to critical 270 // edges. 271 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 272 273 ValueInfo &getOrCreateValueInfo(Value *); 274 const ValueInfo &getValueInfo(Value *) const; 275 276 void processAssume(IntrinsicInst *, BasicBlock *, 277 SmallVectorImpl<Value *> &OpsToRename); 278 void processBranch(BranchInst *, BasicBlock *, 279 SmallVectorImpl<Value *> &OpsToRename); 280 void processSwitch(SwitchInst *, BasicBlock *, 281 SmallVectorImpl<Value *> &OpsToRename); 282 void renameUses(SmallVectorImpl<Value *> &OpsToRename); 283 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 284 PredicateBase *PB); 285 286 typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 287 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 288 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 289 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 290 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 291 292 public: 293 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 294 AssumptionCache &AC) 295 : PI(PI), F(F), DT(DT), AC(AC) { 296 // Push an empty operand info so that we can detect 0 as not finding one 297 ValueInfos.resize(1); 298 } 299 300 void buildPredicateInfo(); 301 }; 302 303 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 304 const ValueDFS &VDUse) const { 305 if (Stack.empty()) 306 return false; 307 // If it's a phi only use, make sure it's for this phi node edge, and that the 308 // use is in a phi node. If it's anything else, and the top of the stack is 309 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 310 // the defs they must go with so that we can know it's time to pop the stack 311 // when we hit the end of the phi uses for a given def. 312 if (Stack.back().EdgeOnly) { 313 if (!VDUse.U) 314 return false; 315 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 316 if (!PHI) 317 return false; 318 // Check edge 319 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 320 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 321 return false; 322 323 // Use dominates, which knows how to handle edge dominance. 324 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 325 } 326 327 return (VDUse.DFSIn >= Stack.back().DFSIn && 328 VDUse.DFSOut <= Stack.back().DFSOut); 329 } 330 331 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 332 const ValueDFS &VD) { 333 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 334 Stack.pop_back(); 335 } 336 337 // Convert the uses of Op into a vector of uses, associating global and local 338 // DFS info with each one. 339 void PredicateInfoBuilder::convertUsesToDFSOrdered( 340 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 341 for (auto &U : Op->uses()) { 342 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 343 ValueDFS VD; 344 // Put the phi node uses in the incoming block. 345 BasicBlock *IBlock; 346 if (auto *PN = dyn_cast<PHINode>(I)) { 347 IBlock = PN->getIncomingBlock(U); 348 // Make phi node users appear last in the incoming block 349 // they are from. 350 VD.LocalNum = LN_Last; 351 } else { 352 // If it's not a phi node use, it is somewhere in the middle of the 353 // block. 354 IBlock = I->getParent(); 355 VD.LocalNum = LN_Middle; 356 } 357 DomTreeNode *DomNode = DT.getNode(IBlock); 358 // It's possible our use is in an unreachable block. Skip it if so. 359 if (!DomNode) 360 continue; 361 VD.DFSIn = DomNode->getDFSNumIn(); 362 VD.DFSOut = DomNode->getDFSNumOut(); 363 VD.U = &U; 364 DFSOrderedSet.push_back(VD); 365 } 366 } 367 } 368 369 // Collect relevant operations from Comparison that we may want to insert copies 370 // for. 371 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 372 auto *Op0 = Comparison->getOperand(0); 373 auto *Op1 = Comparison->getOperand(1); 374 if (Op0 == Op1) 375 return; 376 CmpOperands.push_back(Comparison); 377 // Only want real values, not constants. Additionally, operands with one use 378 // are only being used in the comparison, which means they will not be useful 379 // for us to consider for predicateinfo. 380 // 381 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) 382 CmpOperands.push_back(Op0); 383 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) 384 CmpOperands.push_back(Op1); 385 } 386 387 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 388 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 389 Value *Op, PredicateBase *PB) { 390 auto &OperandInfo = getOrCreateValueInfo(Op); 391 if (OperandInfo.Infos.empty()) 392 OpsToRename.push_back(Op); 393 PI.AllInfos.push_back(PB); 394 OperandInfo.Infos.push_back(PB); 395 } 396 397 // Process an assume instruction and place relevant operations we want to rename 398 // into OpsToRename. 399 void PredicateInfoBuilder::processAssume( 400 IntrinsicInst *II, BasicBlock *AssumeBB, 401 SmallVectorImpl<Value *> &OpsToRename) { 402 // See if we have a comparison we support 403 SmallVector<Value *, 8> CmpOperands; 404 SmallVector<Value *, 2> ConditionsToProcess; 405 CmpInst::Predicate Pred; 406 Value *Operand = II->getOperand(0); 407 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), 408 m_Cmp(Pred, m_Value(), m_Value())) 409 .match(II->getOperand(0))) { 410 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); 411 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); 412 ConditionsToProcess.push_back(Operand); 413 } else if (isa<CmpInst>(Operand)) { 414 415 ConditionsToProcess.push_back(Operand); 416 } 417 for (auto Cond : ConditionsToProcess) { 418 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 419 collectCmpOps(Cmp, CmpOperands); 420 // Now add our copy infos for our operands 421 for (auto *Op : CmpOperands) { 422 auto *PA = new PredicateAssume(Op, II, Cmp); 423 addInfoFor(OpsToRename, Op, PA); 424 } 425 CmpOperands.clear(); 426 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 427 // Otherwise, it should be an AND. 428 assert(BinOp->getOpcode() == Instruction::And && 429 "Should have been an AND"); 430 auto *PA = new PredicateAssume(BinOp, II, BinOp); 431 addInfoFor(OpsToRename, BinOp, PA); 432 } else { 433 llvm_unreachable("Unknown type of condition"); 434 } 435 } 436 } 437 438 // Process a block terminating branch, and place relevant operations to be 439 // renamed into OpsToRename. 440 void PredicateInfoBuilder::processBranch( 441 BranchInst *BI, BasicBlock *BranchBB, 442 SmallVectorImpl<Value *> &OpsToRename) { 443 BasicBlock *FirstBB = BI->getSuccessor(0); 444 BasicBlock *SecondBB = BI->getSuccessor(1); 445 SmallVector<BasicBlock *, 2> SuccsToProcess; 446 SuccsToProcess.push_back(FirstBB); 447 SuccsToProcess.push_back(SecondBB); 448 SmallVector<Value *, 2> ConditionsToProcess; 449 450 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { 451 for (auto *Succ : SuccsToProcess) { 452 // Don't try to insert on a self-edge. This is mainly because we will 453 // eliminate during renaming anyway. 454 if (Succ == BranchBB) 455 continue; 456 bool TakenEdge = (Succ == FirstBB); 457 // For and, only insert on the true edge 458 // For or, only insert on the false edge 459 if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) 460 continue; 461 PredicateBase *PB = 462 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); 463 addInfoFor(OpsToRename, Op, PB); 464 if (!Succ->getSinglePredecessor()) 465 EdgeUsesOnly.insert({BranchBB, Succ}); 466 } 467 }; 468 469 // Match combinations of conditions. 470 CmpInst::Predicate Pred; 471 bool isAnd = false; 472 bool isOr = false; 473 SmallVector<Value *, 8> CmpOperands; 474 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), 475 m_Cmp(Pred, m_Value(), m_Value()))) || 476 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), 477 m_Cmp(Pred, m_Value(), m_Value())))) { 478 auto *BinOp = cast<BinaryOperator>(BI->getCondition()); 479 if (BinOp->getOpcode() == Instruction::And) 480 isAnd = true; 481 else if (BinOp->getOpcode() == Instruction::Or) 482 isOr = true; 483 ConditionsToProcess.push_back(BinOp->getOperand(0)); 484 ConditionsToProcess.push_back(BinOp->getOperand(1)); 485 ConditionsToProcess.push_back(BI->getCondition()); 486 } else if (isa<CmpInst>(BI->getCondition())) { 487 ConditionsToProcess.push_back(BI->getCondition()); 488 } 489 for (auto Cond : ConditionsToProcess) { 490 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { 491 collectCmpOps(Cmp, CmpOperands); 492 // Now add our copy infos for our operands 493 for (auto *Op : CmpOperands) 494 InsertHelper(Op, isAnd, isOr, Cmp); 495 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { 496 // This must be an AND or an OR. 497 assert((BinOp->getOpcode() == Instruction::And || 498 BinOp->getOpcode() == Instruction::Or) && 499 "Should have been an AND or an OR"); 500 // The actual value of the binop is not subject to the same restrictions 501 // as the comparison. It's either true or false on the true/false branch. 502 InsertHelper(BinOp, false, false, BinOp); 503 } else { 504 llvm_unreachable("Unknown type of condition"); 505 } 506 CmpOperands.clear(); 507 } 508 } 509 // Process a block terminating switch, and place relevant operations to be 510 // renamed into OpsToRename. 511 void PredicateInfoBuilder::processSwitch( 512 SwitchInst *SI, BasicBlock *BranchBB, 513 SmallVectorImpl<Value *> &OpsToRename) { 514 Value *Op = SI->getCondition(); 515 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 516 return; 517 518 // Remember how many outgoing edges there are to every successor. 519 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 520 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 521 BasicBlock *TargetBlock = SI->getSuccessor(i); 522 ++SwitchEdges[TargetBlock]; 523 } 524 525 // Now propagate info for each case value 526 for (auto C : SI->cases()) { 527 BasicBlock *TargetBlock = C.getCaseSuccessor(); 528 if (SwitchEdges.lookup(TargetBlock) == 1) { 529 PredicateSwitch *PS = new PredicateSwitch( 530 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 531 addInfoFor(OpsToRename, Op, PS); 532 if (!TargetBlock->getSinglePredecessor()) 533 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 534 } 535 } 536 } 537 538 // Build predicate info for our function 539 void PredicateInfoBuilder::buildPredicateInfo() { 540 DT.updateDFSNumbers(); 541 // Collect operands to rename from all conditional branch terminators, as well 542 // as assume statements. 543 SmallVector<Value *, 8> OpsToRename; 544 for (auto DTN : depth_first(DT.getRootNode())) { 545 BasicBlock *BranchBB = DTN->getBlock(); 546 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 547 if (!BI->isConditional()) 548 continue; 549 // Can't insert conditional information if they all go to the same place. 550 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 551 continue; 552 processBranch(BI, BranchBB, OpsToRename); 553 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 554 processSwitch(SI, BranchBB, OpsToRename); 555 } 556 } 557 for (auto &Assume : AC.assumptions()) { 558 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 559 if (DT.isReachableFromEntry(II->getParent())) 560 processAssume(II, II->getParent(), OpsToRename); 561 } 562 // Now rename all our operations. 563 renameUses(OpsToRename); 564 } 565 566 // Create a ssa_copy declaration with custom mangling, because 567 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly: 568 // all unnamed types get mangled to the same string. We use the pointer 569 // to the type as name here, as it guarantees unique names for different 570 // types and we remove the declarations when destroying PredicateInfo. 571 // It is a workaround for PR38117, because solving it in a fully general way is 572 // tricky (FIXME). 573 static Function *getCopyDeclaration(Module *M, Type *Ty) { 574 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty); 575 return cast<Function>( 576 M->getOrInsertFunction(Name, 577 getType(M->getContext(), Intrinsic::ssa_copy, Ty)) 578 .getCallee()); 579 } 580 581 // Given the renaming stack, make all the operands currently on the stack real 582 // by inserting them into the IR. Return the last operation's value. 583 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 584 ValueDFSStack &RenameStack, 585 Value *OrigOp) { 586 // Find the first thing we have to materialize 587 auto RevIter = RenameStack.rbegin(); 588 for (; RevIter != RenameStack.rend(); ++RevIter) 589 if (RevIter->Def) 590 break; 591 592 size_t Start = RevIter - RenameStack.rbegin(); 593 // The maximum number of things we should be trying to materialize at once 594 // right now is 4, depending on if we had an assume, a branch, and both used 595 // and of conditions. 596 for (auto RenameIter = RenameStack.end() - Start; 597 RenameIter != RenameStack.end(); ++RenameIter) { 598 auto *Op = 599 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 600 ValueDFS &Result = *RenameIter; 601 auto *ValInfo = Result.PInfo; 602 // For edge predicates, we can just place the operand in the block before 603 // the terminator. For assume, we have to place it right before the assume 604 // to ensure we dominate all of our uses. Always insert right before the 605 // relevant instruction (terminator, assume), so that we insert in proper 606 // order in the case of multiple predicateinfo in the same block. 607 if (isa<PredicateWithEdge>(ValInfo)) { 608 IRBuilder<> B(getBranchTerminator(ValInfo)); 609 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 610 if (IF->users().empty()) 611 PI.CreatedDeclarations.insert(IF); 612 CallInst *PIC = 613 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 614 PI.PredicateMap.insert({PIC, ValInfo}); 615 Result.Def = PIC; 616 } else { 617 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 618 assert(PAssume && 619 "Should not have gotten here without it being an assume"); 620 IRBuilder<> B(PAssume->AssumeInst); 621 Function *IF = getCopyDeclaration(F.getParent(), Op->getType()); 622 if (IF->users().empty()) 623 PI.CreatedDeclarations.insert(IF); 624 CallInst *PIC = B.CreateCall(IF, Op); 625 PI.PredicateMap.insert({PIC, ValInfo}); 626 Result.Def = PIC; 627 } 628 } 629 return RenameStack.back().Def; 630 } 631 632 // Instead of the standard SSA renaming algorithm, which is O(Number of 633 // instructions), and walks the entire dominator tree, we walk only the defs + 634 // uses. The standard SSA renaming algorithm does not really rely on the 635 // dominator tree except to order the stack push/pops of the renaming stacks, so 636 // that defs end up getting pushed before hitting the correct uses. This does 637 // not require the dominator tree, only the *order* of the dominator tree. The 638 // complete and correct ordering of the defs and uses, in dominator tree is 639 // contained in the DFS numbering of the dominator tree. So we sort the defs and 640 // uses into the DFS ordering, and then just use the renaming stack as per 641 // normal, pushing when we hit a def (which is a predicateinfo instruction), 642 // popping when we are out of the dfs scope for that def, and replacing any uses 643 // with top of stack if it exists. In order to handle liveness without 644 // propagating liveness info, we don't actually insert the predicateinfo 645 // instruction def until we see a use that it would dominate. Once we see such 646 // a use, we materialize the predicateinfo instruction in the right place and 647 // use it. 648 // 649 // TODO: Use this algorithm to perform fast single-variable renaming in 650 // promotememtoreg and memoryssa. 651 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 652 ValueDFS_Compare Compare(DT); 653 // Compute liveness, and rename in O(uses) per Op. 654 for (auto *Op : OpsToRename) { 655 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 656 unsigned Counter = 0; 657 SmallVector<ValueDFS, 16> OrderedUses; 658 const auto &ValueInfo = getValueInfo(Op); 659 // Insert the possible copies into the def/use list. 660 // They will become real copies if we find a real use for them, and never 661 // created otherwise. 662 for (auto &PossibleCopy : ValueInfo.Infos) { 663 ValueDFS VD; 664 // Determine where we are going to place the copy by the copy type. 665 // The predicate info for branches always come first, they will get 666 // materialized in the split block at the top of the block. 667 // The predicate info for assumes will be somewhere in the middle, 668 // it will get materialized in front of the assume. 669 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 670 VD.LocalNum = LN_Middle; 671 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 672 if (!DomNode) 673 continue; 674 VD.DFSIn = DomNode->getDFSNumIn(); 675 VD.DFSOut = DomNode->getDFSNumOut(); 676 VD.PInfo = PossibleCopy; 677 OrderedUses.push_back(VD); 678 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 679 // If we can only do phi uses, we treat it like it's in the branch 680 // block, and handle it specially. We know that it goes last, and only 681 // dominate phi uses. 682 auto BlockEdge = getBlockEdge(PossibleCopy); 683 if (EdgeUsesOnly.count(BlockEdge)) { 684 VD.LocalNum = LN_Last; 685 auto *DomNode = DT.getNode(BlockEdge.first); 686 if (DomNode) { 687 VD.DFSIn = DomNode->getDFSNumIn(); 688 VD.DFSOut = DomNode->getDFSNumOut(); 689 VD.PInfo = PossibleCopy; 690 VD.EdgeOnly = true; 691 OrderedUses.push_back(VD); 692 } 693 } else { 694 // Otherwise, we are in the split block (even though we perform 695 // insertion in the branch block). 696 // Insert a possible copy at the split block and before the branch. 697 VD.LocalNum = LN_First; 698 auto *DomNode = DT.getNode(BlockEdge.second); 699 if (DomNode) { 700 VD.DFSIn = DomNode->getDFSNumIn(); 701 VD.DFSOut = DomNode->getDFSNumOut(); 702 VD.PInfo = PossibleCopy; 703 OrderedUses.push_back(VD); 704 } 705 } 706 } 707 } 708 709 convertUsesToDFSOrdered(Op, OrderedUses); 710 // Here we require a stable sort because we do not bother to try to 711 // assign an order to the operands the uses represent. Thus, two 712 // uses in the same instruction do not have a strict sort order 713 // currently and will be considered equal. We could get rid of the 714 // stable sort by creating one if we wanted. 715 llvm::stable_sort(OrderedUses, Compare); 716 SmallVector<ValueDFS, 8> RenameStack; 717 // For each use, sorted into dfs order, push values and replaces uses with 718 // top of stack, which will represent the reaching def. 719 for (auto &VD : OrderedUses) { 720 // We currently do not materialize copy over copy, but we should decide if 721 // we want to. 722 bool PossibleCopy = VD.PInfo != nullptr; 723 if (RenameStack.empty()) { 724 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 725 } else { 726 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 727 << RenameStack.back().DFSIn << "," 728 << RenameStack.back().DFSOut << ")\n"); 729 } 730 731 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 732 << VD.DFSOut << ")\n"); 733 734 bool ShouldPush = (VD.Def || PossibleCopy); 735 bool OutOfScope = !stackIsInScope(RenameStack, VD); 736 if (OutOfScope || ShouldPush) { 737 // Sync to our current scope. 738 popStackUntilDFSScope(RenameStack, VD); 739 if (ShouldPush) { 740 RenameStack.push_back(VD); 741 } 742 } 743 // If we get to this point, and the stack is empty we must have a use 744 // with no renaming needed, just skip it. 745 if (RenameStack.empty()) 746 continue; 747 // Skip values, only want to rename the uses 748 if (VD.Def || PossibleCopy) 749 continue; 750 if (!DebugCounter::shouldExecute(RenameCounter)) { 751 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 752 continue; 753 } 754 ValueDFS &Result = RenameStack.back(); 755 756 // If the possible copy dominates something, materialize our stack up to 757 // this point. This ensures every comparison that affects our operation 758 // ends up with predicateinfo. 759 if (!Result.Def) 760 Result.Def = materializeStack(Counter, RenameStack, Op); 761 762 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 763 << *VD.U->get() << " in " << *(VD.U->getUser()) 764 << "\n"); 765 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 766 "Predicateinfo def should have dominated this use"); 767 VD.U->set(Result.Def); 768 } 769 } 770 } 771 772 PredicateInfoBuilder::ValueInfo & 773 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 774 auto OIN = ValueInfoNums.find(Operand); 775 if (OIN == ValueInfoNums.end()) { 776 // This will grow it 777 ValueInfos.resize(ValueInfos.size() + 1); 778 // This will use the new size and give us a 0 based number of the info 779 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 780 assert(InsertResult.second && "Value info number already existed?"); 781 return ValueInfos[InsertResult.first->second]; 782 } 783 return ValueInfos[OIN->second]; 784 } 785 786 const PredicateInfoBuilder::ValueInfo & 787 PredicateInfoBuilder::getValueInfo(Value *Operand) const { 788 auto OINI = ValueInfoNums.lookup(Operand); 789 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 790 assert(OINI < ValueInfos.size() && 791 "Value Info Number greater than size of Value Info Table"); 792 return ValueInfos[OINI]; 793 } 794 795 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 796 AssumptionCache &AC) 797 : F(F) { 798 PredicateInfoBuilder Builder(*this, F, DT, AC); 799 Builder.buildPredicateInfo(); 800 } 801 802 // Remove all declarations we created . The PredicateInfo consumers are 803 // responsible for remove the ssa_copy calls created. 804 PredicateInfo::~PredicateInfo() { 805 // Collect function pointers in set first, as SmallSet uses a SmallVector 806 // internally and we have to remove the asserting value handles first. 807 SmallPtrSet<Function *, 20> FunctionPtrs; 808 for (auto &F : CreatedDeclarations) 809 FunctionPtrs.insert(&*F); 810 CreatedDeclarations.clear(); 811 812 for (Function *F : FunctionPtrs) { 813 assert(F->user_begin() == F->user_end() && 814 "PredicateInfo consumer did not remove all SSA copies."); 815 F->eraseFromParent(); 816 } 817 } 818 819 void PredicateInfo::verifyPredicateInfo() const {} 820 821 char PredicateInfoPrinterLegacyPass::ID = 0; 822 823 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() 824 : FunctionPass(ID) { 825 initializePredicateInfoPrinterLegacyPassPass( 826 *PassRegistry::getPassRegistry()); 827 } 828 829 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 830 AU.setPreservesAll(); 831 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 832 AU.addRequired<AssumptionCacheTracker>(); 833 } 834 835 // Replace ssa_copy calls created by PredicateInfo with their operand. 836 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 837 for (auto I = inst_begin(F), E = inst_end(F); I != E;) { 838 Instruction *Inst = &*I++; 839 const auto *PI = PredInfo.getPredicateInfoFor(Inst); 840 auto *II = dyn_cast<IntrinsicInst>(Inst); 841 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 842 continue; 843 844 Inst->replaceAllUsesWith(II->getOperand(0)); 845 Inst->eraseFromParent(); 846 } 847 } 848 849 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { 850 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 851 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 852 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 853 PredInfo->print(dbgs()); 854 if (VerifyPredicateInfo) 855 PredInfo->verifyPredicateInfo(); 856 857 replaceCreatedSSACopys(*PredInfo, F); 858 return false; 859 } 860 861 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 862 FunctionAnalysisManager &AM) { 863 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 864 auto &AC = AM.getResult<AssumptionAnalysis>(F); 865 OS << "PredicateInfo for function: " << F.getName() << "\n"; 866 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 867 PredInfo->print(OS); 868 869 replaceCreatedSSACopys(*PredInfo, F); 870 return PreservedAnalyses::all(); 871 } 872 873 /// An assembly annotator class to print PredicateInfo information in 874 /// comments. 875 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 876 friend class PredicateInfo; 877 const PredicateInfo *PredInfo; 878 879 public: 880 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 881 882 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, 883 formatted_raw_ostream &OS) {} 884 885 virtual void emitInstructionAnnot(const Instruction *I, 886 formatted_raw_ostream &OS) { 887 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 888 OS << "; Has predicate info\n"; 889 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 890 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 891 << " Comparison:" << *PB->Condition << " Edge: ["; 892 PB->From->printAsOperand(OS); 893 OS << ","; 894 PB->To->printAsOperand(OS); 895 OS << "] }\n"; 896 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 897 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 898 << " Switch:" << *PS->Switch << " Edge: ["; 899 PS->From->printAsOperand(OS); 900 OS << ","; 901 PS->To->printAsOperand(OS); 902 OS << "] }\n"; 903 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 904 OS << "; assume predicate info {" 905 << " Comparison:" << *PA->Condition << " }\n"; 906 } 907 } 908 } 909 }; 910 911 void PredicateInfo::print(raw_ostream &OS) const { 912 PredicateInfoAnnotatedWriter Writer(this); 913 F.print(OS, &Writer); 914 } 915 916 void PredicateInfo::dump() const { 917 PredicateInfoAnnotatedWriter Writer(this); 918 F.print(dbgs(), &Writer); 919 } 920 921 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 922 FunctionAnalysisManager &AM) { 923 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 924 auto &AC = AM.getResult<AssumptionAnalysis>(F); 925 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 926 927 return PreservedAnalyses::all(); 928 } 929 } 930