1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
10 //
11 //===----------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/Transforms/Utils.h"
37 #include <algorithm>
38 #define DEBUG_TYPE "predicateinfo"
39 using namespace llvm;
40 using namespace PatternMatch;
41 using namespace llvm::PredicateInfoClasses;
42 
43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
44                       "PredicateInfo Printer", false, false)
45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
48                     "PredicateInfo Printer", false, false)
49 static cl::opt<bool> VerifyPredicateInfo(
50     "verify-predicateinfo", cl::init(false), cl::Hidden,
51     cl::desc("Verify PredicateInfo in legacy printer pass."));
52 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
53               "Controls which variables are renamed with predicateinfo");
54 
55 namespace {
56 // Given a predicate info that is a type of branching terminator, get the
57 // branching block.
58 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
59   assert(isa<PredicateWithEdge>(PB) &&
60          "Only branches and switches should have PHIOnly defs that "
61          "require branch blocks.");
62   return cast<PredicateWithEdge>(PB)->From;
63 }
64 
65 // Given a predicate info that is a type of branching terminator, get the
66 // branching terminator.
67 static Instruction *getBranchTerminator(const PredicateBase *PB) {
68   assert(isa<PredicateWithEdge>(PB) &&
69          "Not a predicate info type we know how to get a terminator from.");
70   return cast<PredicateWithEdge>(PB)->From->getTerminator();
71 }
72 
73 // Given a predicate info that is a type of branching terminator, get the
74 // edge this predicate info represents
75 const std::pair<BasicBlock *, BasicBlock *>
76 getBlockEdge(const PredicateBase *PB) {
77   assert(isa<PredicateWithEdge>(PB) &&
78          "Not a predicate info type we know how to get an edge from.");
79   const auto *PEdge = cast<PredicateWithEdge>(PB);
80   return std::make_pair(PEdge->From, PEdge->To);
81 }
82 }
83 
84 namespace llvm {
85 namespace PredicateInfoClasses {
86 enum LocalNum {
87   // Operations that must appear first in the block.
88   LN_First,
89   // Operations that are somewhere in the middle of the block, and are sorted on
90   // demand.
91   LN_Middle,
92   // Operations that must appear last in a block, like successor phi node uses.
93   LN_Last
94 };
95 
96 // Associate global and local DFS info with defs and uses, so we can sort them
97 // into a global domination ordering.
98 struct ValueDFS {
99   int DFSIn = 0;
100   int DFSOut = 0;
101   unsigned int LocalNum = LN_Middle;
102   // Only one of Def or Use will be set.
103   Value *Def = nullptr;
104   Use *U = nullptr;
105   // Neither PInfo nor EdgeOnly participate in the ordering
106   PredicateBase *PInfo = nullptr;
107   bool EdgeOnly = false;
108 };
109 
110 // Perform a strict weak ordering on instructions and arguments.
111 static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
112                              const Value *B) {
113   auto *ArgA = dyn_cast_or_null<Argument>(A);
114   auto *ArgB = dyn_cast_or_null<Argument>(B);
115   if (ArgA && !ArgB)
116     return true;
117   if (ArgB && !ArgA)
118     return false;
119   if (ArgA && ArgB)
120     return ArgA->getArgNo() < ArgB->getArgNo();
121   return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
122 }
123 
124 // This compares ValueDFS structures, creating OrderedBasicBlocks where
125 // necessary to compare uses/defs in the same block.  Doing so allows us to walk
126 // the minimum number of instructions necessary to compute our def/use ordering.
127 struct ValueDFS_Compare {
128   OrderedInstructions &OI;
129   ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {}
130 
131   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
132     if (&A == &B)
133       return false;
134     // The only case we can't directly compare them is when they in the same
135     // block, and both have localnum == middle.  In that case, we have to use
136     // comesbefore to see what the real ordering is, because they are in the
137     // same basic block.
138 
139     bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
140 
141     // We want to put the def that will get used for a given set of phi uses,
142     // before those phi uses.
143     // So we sort by edge, then by def.
144     // Note that only phi nodes uses and defs can come last.
145     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
146       return comparePHIRelated(A, B);
147 
148     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
149       return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
150              std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
151     return localComesBefore(A, B);
152   }
153 
154   // For a phi use, or a non-materialized def, return the edge it represents.
155   const std::pair<BasicBlock *, BasicBlock *>
156   getBlockEdge(const ValueDFS &VD) const {
157     if (!VD.Def && VD.U) {
158       auto *PHI = cast<PHINode>(VD.U->getUser());
159       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
160     }
161     // This is really a non-materialized def.
162     return ::getBlockEdge(VD.PInfo);
163   }
164 
165   // For two phi related values, return the ordering.
166   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
167     auto &ABlockEdge = getBlockEdge(A);
168     auto &BBlockEdge = getBlockEdge(B);
169     // Now sort by block edge and then defs before uses.
170     return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
171   }
172 
173   // Get the definition of an instruction that occurs in the middle of a block.
174   Value *getMiddleDef(const ValueDFS &VD) const {
175     if (VD.Def)
176       return VD.Def;
177     // It's possible for the defs and uses to be null.  For branches, the local
178     // numbering will say the placed predicaeinfos should go first (IE
179     // LN_beginning), so we won't be in this function. For assumes, we will end
180     // up here, beause we need to order the def we will place relative to the
181     // assume.  So for the purpose of ordering, we pretend the def is the assume
182     // because that is where we will insert the info.
183     if (!VD.U) {
184       assert(VD.PInfo &&
185              "No def, no use, and no predicateinfo should not occur");
186       assert(isa<PredicateAssume>(VD.PInfo) &&
187              "Middle of block should only occur for assumes");
188       return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
189     }
190     return nullptr;
191   }
192 
193   // Return either the Def, if it's not null, or the user of the Use, if the def
194   // is null.
195   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
196     if (Def)
197       return cast<Instruction>(Def);
198     return cast<Instruction>(U->getUser());
199   }
200 
201   // This performs the necessary local basic block ordering checks to tell
202   // whether A comes before B, where both are in the same basic block.
203   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
204     auto *ADef = getMiddleDef(A);
205     auto *BDef = getMiddleDef(B);
206 
207     // See if we have real values or uses. If we have real values, we are
208     // guaranteed they are instructions or arguments. No matter what, we are
209     // guaranteed they are in the same block if they are instructions.
210     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
211     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
212 
213     if (ArgA || ArgB)
214       return valueComesBefore(OI, ArgA, ArgB);
215 
216     auto *AInst = getDefOrUser(ADef, A.U);
217     auto *BInst = getDefOrUser(BDef, B.U);
218     return valueComesBefore(OI, AInst, BInst);
219   }
220 };
221 
222 } // namespace PredicateInfoClasses
223 
224 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
225                                    const ValueDFS &VDUse) const {
226   if (Stack.empty())
227     return false;
228   // If it's a phi only use, make sure it's for this phi node edge, and that the
229   // use is in a phi node.  If it's anything else, and the top of the stack is
230   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
231   // the defs they must go with so that we can know it's time to pop the stack
232   // when we hit the end of the phi uses for a given def.
233   if (Stack.back().EdgeOnly) {
234     if (!VDUse.U)
235       return false;
236     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
237     if (!PHI)
238       return false;
239     // Check edge
240     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
241     if (EdgePred != getBranchBlock(Stack.back().PInfo))
242       return false;
243 
244     // Use dominates, which knows how to handle edge dominance.
245     return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
246   }
247 
248   return (VDUse.DFSIn >= Stack.back().DFSIn &&
249           VDUse.DFSOut <= Stack.back().DFSOut);
250 }
251 
252 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
253                                           const ValueDFS &VD) {
254   while (!Stack.empty() && !stackIsInScope(Stack, VD))
255     Stack.pop_back();
256 }
257 
258 // Convert the uses of Op into a vector of uses, associating global and local
259 // DFS info with each one.
260 void PredicateInfo::convertUsesToDFSOrdered(
261     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
262   for (auto &U : Op->uses()) {
263     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
264       ValueDFS VD;
265       // Put the phi node uses in the incoming block.
266       BasicBlock *IBlock;
267       if (auto *PN = dyn_cast<PHINode>(I)) {
268         IBlock = PN->getIncomingBlock(U);
269         // Make phi node users appear last in the incoming block
270         // they are from.
271         VD.LocalNum = LN_Last;
272       } else {
273         // If it's not a phi node use, it is somewhere in the middle of the
274         // block.
275         IBlock = I->getParent();
276         VD.LocalNum = LN_Middle;
277       }
278       DomTreeNode *DomNode = DT.getNode(IBlock);
279       // It's possible our use is in an unreachable block. Skip it if so.
280       if (!DomNode)
281         continue;
282       VD.DFSIn = DomNode->getDFSNumIn();
283       VD.DFSOut = DomNode->getDFSNumOut();
284       VD.U = &U;
285       DFSOrderedSet.push_back(VD);
286     }
287   }
288 }
289 
290 // Collect relevant operations from Comparison that we may want to insert copies
291 // for.
292 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
293   auto *Op0 = Comparison->getOperand(0);
294   auto *Op1 = Comparison->getOperand(1);
295   if (Op0 == Op1)
296     return;
297   CmpOperands.push_back(Comparison);
298   // Only want real values, not constants.  Additionally, operands with one use
299   // are only being used in the comparison, which means they will not be useful
300   // for us to consider for predicateinfo.
301   //
302   if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
303     CmpOperands.push_back(Op0);
304   if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
305     CmpOperands.push_back(Op1);
306 }
307 
308 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
309 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
310                                PredicateBase *PB) {
311   OpsToRename.insert(Op);
312   auto &OperandInfo = getOrCreateValueInfo(Op);
313   AllInfos.push_back(PB);
314   OperandInfo.Infos.push_back(PB);
315 }
316 
317 // Process an assume instruction and place relevant operations we want to rename
318 // into OpsToRename.
319 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
320                                   SmallPtrSetImpl<Value *> &OpsToRename) {
321   // See if we have a comparison we support
322   SmallVector<Value *, 8> CmpOperands;
323   SmallVector<Value *, 2> ConditionsToProcess;
324   CmpInst::Predicate Pred;
325   Value *Operand = II->getOperand(0);
326   if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
327               m_Cmp(Pred, m_Value(), m_Value()))
328           .match(II->getOperand(0))) {
329     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
330     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
331     ConditionsToProcess.push_back(Operand);
332   } else if (isa<CmpInst>(Operand)) {
333 
334     ConditionsToProcess.push_back(Operand);
335   }
336   for (auto Cond : ConditionsToProcess) {
337     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
338       collectCmpOps(Cmp, CmpOperands);
339       // Now add our copy infos for our operands
340       for (auto *Op : CmpOperands) {
341         auto *PA = new PredicateAssume(Op, II, Cmp);
342         addInfoFor(OpsToRename, Op, PA);
343       }
344       CmpOperands.clear();
345     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
346       // Otherwise, it should be an AND.
347       assert(BinOp->getOpcode() == Instruction::And &&
348              "Should have been an AND");
349       auto *PA = new PredicateAssume(BinOp, II, BinOp);
350       addInfoFor(OpsToRename, BinOp, PA);
351     } else {
352       llvm_unreachable("Unknown type of condition");
353     }
354   }
355 }
356 
357 // Process a block terminating branch, and place relevant operations to be
358 // renamed into OpsToRename.
359 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
360                                   SmallPtrSetImpl<Value *> &OpsToRename) {
361   BasicBlock *FirstBB = BI->getSuccessor(0);
362   BasicBlock *SecondBB = BI->getSuccessor(1);
363   SmallVector<BasicBlock *, 2> SuccsToProcess;
364   SuccsToProcess.push_back(FirstBB);
365   SuccsToProcess.push_back(SecondBB);
366   SmallVector<Value *, 2> ConditionsToProcess;
367 
368   auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
369     for (auto *Succ : SuccsToProcess) {
370       // Don't try to insert on a self-edge. This is mainly because we will
371       // eliminate during renaming anyway.
372       if (Succ == BranchBB)
373         continue;
374       bool TakenEdge = (Succ == FirstBB);
375       // For and, only insert on the true edge
376       // For or, only insert on the false edge
377       if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
378         continue;
379       PredicateBase *PB =
380           new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
381       addInfoFor(OpsToRename, Op, PB);
382       if (!Succ->getSinglePredecessor())
383         EdgeUsesOnly.insert({BranchBB, Succ});
384     }
385   };
386 
387   // Match combinations of conditions.
388   CmpInst::Predicate Pred;
389   bool isAnd = false;
390   bool isOr = false;
391   SmallVector<Value *, 8> CmpOperands;
392   if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
393                                       m_Cmp(Pred, m_Value(), m_Value()))) ||
394       match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
395                                      m_Cmp(Pred, m_Value(), m_Value())))) {
396     auto *BinOp = cast<BinaryOperator>(BI->getCondition());
397     if (BinOp->getOpcode() == Instruction::And)
398       isAnd = true;
399     else if (BinOp->getOpcode() == Instruction::Or)
400       isOr = true;
401     ConditionsToProcess.push_back(BinOp->getOperand(0));
402     ConditionsToProcess.push_back(BinOp->getOperand(1));
403     ConditionsToProcess.push_back(BI->getCondition());
404   } else if (isa<CmpInst>(BI->getCondition())) {
405     ConditionsToProcess.push_back(BI->getCondition());
406   }
407   for (auto Cond : ConditionsToProcess) {
408     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
409       collectCmpOps(Cmp, CmpOperands);
410       // Now add our copy infos for our operands
411       for (auto *Op : CmpOperands)
412         InsertHelper(Op, isAnd, isOr, Cmp);
413     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
414       // This must be an AND or an OR.
415       assert((BinOp->getOpcode() == Instruction::And ||
416               BinOp->getOpcode() == Instruction::Or) &&
417              "Should have been an AND or an OR");
418       // The actual value of the binop is not subject to the same restrictions
419       // as the comparison. It's either true or false on the true/false branch.
420       InsertHelper(BinOp, false, false, BinOp);
421     } else {
422       llvm_unreachable("Unknown type of condition");
423     }
424     CmpOperands.clear();
425   }
426 }
427 // Process a block terminating switch, and place relevant operations to be
428 // renamed into OpsToRename.
429 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
430                                   SmallPtrSetImpl<Value *> &OpsToRename) {
431   Value *Op = SI->getCondition();
432   if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
433     return;
434 
435   // Remember how many outgoing edges there are to every successor.
436   SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
437   for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
438     BasicBlock *TargetBlock = SI->getSuccessor(i);
439     ++SwitchEdges[TargetBlock];
440   }
441 
442   // Now propagate info for each case value
443   for (auto C : SI->cases()) {
444     BasicBlock *TargetBlock = C.getCaseSuccessor();
445     if (SwitchEdges.lookup(TargetBlock) == 1) {
446       PredicateSwitch *PS = new PredicateSwitch(
447           Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
448       addInfoFor(OpsToRename, Op, PS);
449       if (!TargetBlock->getSinglePredecessor())
450         EdgeUsesOnly.insert({BranchBB, TargetBlock});
451     }
452   }
453 }
454 
455 // Build predicate info for our function
456 void PredicateInfo::buildPredicateInfo() {
457   DT.updateDFSNumbers();
458   // Collect operands to rename from all conditional branch terminators, as well
459   // as assume statements.
460   SmallPtrSet<Value *, 8> OpsToRename;
461   for (auto DTN : depth_first(DT.getRootNode())) {
462     BasicBlock *BranchBB = DTN->getBlock();
463     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
464       if (!BI->isConditional())
465         continue;
466       // Can't insert conditional information if they all go to the same place.
467       if (BI->getSuccessor(0) == BI->getSuccessor(1))
468         continue;
469       processBranch(BI, BranchBB, OpsToRename);
470     } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
471       processSwitch(SI, BranchBB, OpsToRename);
472     }
473   }
474   for (auto &Assume : AC.assumptions()) {
475     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
476       processAssume(II, II->getParent(), OpsToRename);
477   }
478   // Now rename all our operations.
479   renameUses(OpsToRename);
480 }
481 
482 // Create a ssa_copy declaration with custom mangling, because
483 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
484 // all unnamed types get mangled to the same string. We use the pointer
485 // to the type as name here, as it guarantees unique names for different
486 // types and we remove the declarations when destroying PredicateInfo.
487 // It is a workaround for PR38117, because solving it in a fully general way is
488 // tricky (FIXME).
489 static Function *getCopyDeclaration(Module *M, Type *Ty) {
490   std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
491   return cast<Function>(
492       M->getOrInsertFunction(Name,
493                              getType(M->getContext(), Intrinsic::ssa_copy, Ty))
494           .getCallee());
495 }
496 
497 // Given the renaming stack, make all the operands currently on the stack real
498 // by inserting them into the IR.  Return the last operation's value.
499 Value *PredicateInfo::materializeStack(unsigned int &Counter,
500                                        ValueDFSStack &RenameStack,
501                                        Value *OrigOp) {
502   // Find the first thing we have to materialize
503   auto RevIter = RenameStack.rbegin();
504   for (; RevIter != RenameStack.rend(); ++RevIter)
505     if (RevIter->Def)
506       break;
507 
508   size_t Start = RevIter - RenameStack.rbegin();
509   // The maximum number of things we should be trying to materialize at once
510   // right now is 4, depending on if we had an assume, a branch, and both used
511   // and of conditions.
512   for (auto RenameIter = RenameStack.end() - Start;
513        RenameIter != RenameStack.end(); ++RenameIter) {
514     auto *Op =
515         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
516     ValueDFS &Result = *RenameIter;
517     auto *ValInfo = Result.PInfo;
518     // For edge predicates, we can just place the operand in the block before
519     // the terminator.  For assume, we have to place it right before the assume
520     // to ensure we dominate all of our uses.  Always insert right before the
521     // relevant instruction (terminator, assume), so that we insert in proper
522     // order in the case of multiple predicateinfo in the same block.
523     if (isa<PredicateWithEdge>(ValInfo)) {
524       IRBuilder<> B(getBranchTerminator(ValInfo));
525       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
526       if (empty(IF->users()))
527         CreatedDeclarations.insert(IF);
528       CallInst *PIC =
529           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
530       PredicateMap.insert({PIC, ValInfo});
531       Result.Def = PIC;
532     } else {
533       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
534       assert(PAssume &&
535              "Should not have gotten here without it being an assume");
536       IRBuilder<> B(PAssume->AssumeInst);
537       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
538       if (empty(IF->users()))
539         CreatedDeclarations.insert(IF);
540       CallInst *PIC = B.CreateCall(IF, Op);
541       PredicateMap.insert({PIC, ValInfo});
542       Result.Def = PIC;
543     }
544   }
545   return RenameStack.back().Def;
546 }
547 
548 // Instead of the standard SSA renaming algorithm, which is O(Number of
549 // instructions), and walks the entire dominator tree, we walk only the defs +
550 // uses.  The standard SSA renaming algorithm does not really rely on the
551 // dominator tree except to order the stack push/pops of the renaming stacks, so
552 // that defs end up getting pushed before hitting the correct uses.  This does
553 // not require the dominator tree, only the *order* of the dominator tree. The
554 // complete and correct ordering of the defs and uses, in dominator tree is
555 // contained in the DFS numbering of the dominator tree. So we sort the defs and
556 // uses into the DFS ordering, and then just use the renaming stack as per
557 // normal, pushing when we hit a def (which is a predicateinfo instruction),
558 // popping when we are out of the dfs scope for that def, and replacing any uses
559 // with top of stack if it exists.  In order to handle liveness without
560 // propagating liveness info, we don't actually insert the predicateinfo
561 // instruction def until we see a use that it would dominate.  Once we see such
562 // a use, we materialize the predicateinfo instruction in the right place and
563 // use it.
564 //
565 // TODO: Use this algorithm to perform fast single-variable renaming in
566 // promotememtoreg and memoryssa.
567 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) {
568   // Sort OpsToRename since we are going to iterate it.
569   SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end());
570   auto Comparator = [&](const Value *A, const Value *B) {
571     return valueComesBefore(OI, A, B);
572   };
573   llvm::sort(OpsToRename, Comparator);
574   ValueDFS_Compare Compare(OI);
575   // Compute liveness, and rename in O(uses) per Op.
576   for (auto *Op : OpsToRename) {
577     LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
578     unsigned Counter = 0;
579     SmallVector<ValueDFS, 16> OrderedUses;
580     const auto &ValueInfo = getValueInfo(Op);
581     // Insert the possible copies into the def/use list.
582     // They will become real copies if we find a real use for them, and never
583     // created otherwise.
584     for (auto &PossibleCopy : ValueInfo.Infos) {
585       ValueDFS VD;
586       // Determine where we are going to place the copy by the copy type.
587       // The predicate info for branches always come first, they will get
588       // materialized in the split block at the top of the block.
589       // The predicate info for assumes will be somewhere in the middle,
590       // it will get materialized in front of the assume.
591       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
592         VD.LocalNum = LN_Middle;
593         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
594         if (!DomNode)
595           continue;
596         VD.DFSIn = DomNode->getDFSNumIn();
597         VD.DFSOut = DomNode->getDFSNumOut();
598         VD.PInfo = PossibleCopy;
599         OrderedUses.push_back(VD);
600       } else if (isa<PredicateWithEdge>(PossibleCopy)) {
601         // If we can only do phi uses, we treat it like it's in the branch
602         // block, and handle it specially. We know that it goes last, and only
603         // dominate phi uses.
604         auto BlockEdge = getBlockEdge(PossibleCopy);
605         if (EdgeUsesOnly.count(BlockEdge)) {
606           VD.LocalNum = LN_Last;
607           auto *DomNode = DT.getNode(BlockEdge.first);
608           if (DomNode) {
609             VD.DFSIn = DomNode->getDFSNumIn();
610             VD.DFSOut = DomNode->getDFSNumOut();
611             VD.PInfo = PossibleCopy;
612             VD.EdgeOnly = true;
613             OrderedUses.push_back(VD);
614           }
615         } else {
616           // Otherwise, we are in the split block (even though we perform
617           // insertion in the branch block).
618           // Insert a possible copy at the split block and before the branch.
619           VD.LocalNum = LN_First;
620           auto *DomNode = DT.getNode(BlockEdge.second);
621           if (DomNode) {
622             VD.DFSIn = DomNode->getDFSNumIn();
623             VD.DFSOut = DomNode->getDFSNumOut();
624             VD.PInfo = PossibleCopy;
625             OrderedUses.push_back(VD);
626           }
627         }
628       }
629     }
630 
631     convertUsesToDFSOrdered(Op, OrderedUses);
632     // Here we require a stable sort because we do not bother to try to
633     // assign an order to the operands the uses represent. Thus, two
634     // uses in the same instruction do not have a strict sort order
635     // currently and will be considered equal. We could get rid of the
636     // stable sort by creating one if we wanted.
637     std::stable_sort(OrderedUses.begin(), OrderedUses.end(), Compare);
638     SmallVector<ValueDFS, 8> RenameStack;
639     // For each use, sorted into dfs order, push values and replaces uses with
640     // top of stack, which will represent the reaching def.
641     for (auto &VD : OrderedUses) {
642       // We currently do not materialize copy over copy, but we should decide if
643       // we want to.
644       bool PossibleCopy = VD.PInfo != nullptr;
645       if (RenameStack.empty()) {
646         LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
647       } else {
648         LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
649                           << RenameStack.back().DFSIn << ","
650                           << RenameStack.back().DFSOut << ")\n");
651       }
652 
653       LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
654                         << VD.DFSOut << ")\n");
655 
656       bool ShouldPush = (VD.Def || PossibleCopy);
657       bool OutOfScope = !stackIsInScope(RenameStack, VD);
658       if (OutOfScope || ShouldPush) {
659         // Sync to our current scope.
660         popStackUntilDFSScope(RenameStack, VD);
661         if (ShouldPush) {
662           RenameStack.push_back(VD);
663         }
664       }
665       // If we get to this point, and the stack is empty we must have a use
666       // with no renaming needed, just skip it.
667       if (RenameStack.empty())
668         continue;
669       // Skip values, only want to rename the uses
670       if (VD.Def || PossibleCopy)
671         continue;
672       if (!DebugCounter::shouldExecute(RenameCounter)) {
673         LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
674         continue;
675       }
676       ValueDFS &Result = RenameStack.back();
677 
678       // If the possible copy dominates something, materialize our stack up to
679       // this point. This ensures every comparison that affects our operation
680       // ends up with predicateinfo.
681       if (!Result.Def)
682         Result.Def = materializeStack(Counter, RenameStack, Op);
683 
684       LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
685                         << *VD.U->get() << " in " << *(VD.U->getUser())
686                         << "\n");
687       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
688              "Predicateinfo def should have dominated this use");
689       VD.U->set(Result.Def);
690     }
691   }
692 }
693 
694 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
695   auto OIN = ValueInfoNums.find(Operand);
696   if (OIN == ValueInfoNums.end()) {
697     // This will grow it
698     ValueInfos.resize(ValueInfos.size() + 1);
699     // This will use the new size and give us a 0 based number of the info
700     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
701     assert(InsertResult.second && "Value info number already existed?");
702     return ValueInfos[InsertResult.first->second];
703   }
704   return ValueInfos[OIN->second];
705 }
706 
707 const PredicateInfo::ValueInfo &
708 PredicateInfo::getValueInfo(Value *Operand) const {
709   auto OINI = ValueInfoNums.lookup(Operand);
710   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
711   assert(OINI < ValueInfos.size() &&
712          "Value Info Number greater than size of Value Info Table");
713   return ValueInfos[OINI];
714 }
715 
716 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
717                              AssumptionCache &AC)
718     : F(F), DT(DT), AC(AC), OI(&DT) {
719   // Push an empty operand info so that we can detect 0 as not finding one
720   ValueInfos.resize(1);
721   buildPredicateInfo();
722 }
723 
724 // Remove all declarations we created . The PredicateInfo consumers are
725 // responsible for remove the ssa_copy calls created.
726 PredicateInfo::~PredicateInfo() {
727   // Collect function pointers in set first, as SmallSet uses a SmallVector
728   // internally and we have to remove the asserting value handles first.
729   SmallPtrSet<Function *, 20> FunctionPtrs;
730   for (auto &F : CreatedDeclarations)
731     FunctionPtrs.insert(&*F);
732   CreatedDeclarations.clear();
733 
734   for (Function *F : FunctionPtrs) {
735     assert(F->user_begin() == F->user_end() &&
736            "PredicateInfo consumer did not remove all SSA copies.");
737     F->eraseFromParent();
738   }
739 }
740 
741 void PredicateInfo::verifyPredicateInfo() const {}
742 
743 char PredicateInfoPrinterLegacyPass::ID = 0;
744 
745 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
746     : FunctionPass(ID) {
747   initializePredicateInfoPrinterLegacyPassPass(
748       *PassRegistry::getPassRegistry());
749 }
750 
751 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
752   AU.setPreservesAll();
753   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
754   AU.addRequired<AssumptionCacheTracker>();
755 }
756 
757 // Replace ssa_copy calls created by PredicateInfo with their operand.
758 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
759   for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
760     Instruction *Inst = &*I++;
761     const auto *PI = PredInfo.getPredicateInfoFor(Inst);
762     auto *II = dyn_cast<IntrinsicInst>(Inst);
763     if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
764       continue;
765 
766     Inst->replaceAllUsesWith(II->getOperand(0));
767     Inst->eraseFromParent();
768   }
769 }
770 
771 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
772   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
773   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
774   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
775   PredInfo->print(dbgs());
776   if (VerifyPredicateInfo)
777     PredInfo->verifyPredicateInfo();
778 
779   replaceCreatedSSACopys(*PredInfo, F);
780   return false;
781 }
782 
783 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
784                                                 FunctionAnalysisManager &AM) {
785   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
786   auto &AC = AM.getResult<AssumptionAnalysis>(F);
787   OS << "PredicateInfo for function: " << F.getName() << "\n";
788   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
789   PredInfo->print(OS);
790 
791   replaceCreatedSSACopys(*PredInfo, F);
792   return PreservedAnalyses::all();
793 }
794 
795 /// An assembly annotator class to print PredicateInfo information in
796 /// comments.
797 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
798   friend class PredicateInfo;
799   const PredicateInfo *PredInfo;
800 
801 public:
802   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
803 
804   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
805                                         formatted_raw_ostream &OS) {}
806 
807   virtual void emitInstructionAnnot(const Instruction *I,
808                                     formatted_raw_ostream &OS) {
809     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
810       OS << "; Has predicate info\n";
811       if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
812         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
813            << " Comparison:" << *PB->Condition << " Edge: [";
814         PB->From->printAsOperand(OS);
815         OS << ",";
816         PB->To->printAsOperand(OS);
817         OS << "] }\n";
818       } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
819         OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
820            << " Switch:" << *PS->Switch << " Edge: [";
821         PS->From->printAsOperand(OS);
822         OS << ",";
823         PS->To->printAsOperand(OS);
824         OS << "] }\n";
825       } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
826         OS << "; assume predicate info {"
827            << " Comparison:" << *PA->Condition << " }\n";
828       }
829     }
830   }
831 };
832 
833 void PredicateInfo::print(raw_ostream &OS) const {
834   PredicateInfoAnnotatedWriter Writer(this);
835   F.print(OS, &Writer);
836 }
837 
838 void PredicateInfo::dump() const {
839   PredicateInfoAnnotatedWriter Writer(this);
840   F.print(dbgs(), &Writer);
841 }
842 
843 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
844                                                  FunctionAnalysisManager &AM) {
845   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
846   auto &AC = AM.getResult<AssumptionAnalysis>(F);
847   make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
848 
849   return PreservedAnalyses::all();
850 }
851 }
852