1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LowerSwitch transformation rewrites switch instructions with a sequence 11 // of branches, which allows targets to get away with not implementing the 12 // switch instruction until it is convenient. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar.h" 17 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 #define DEBUG_TYPE "lower-switch" 33 34 namespace { 35 struct IntRange { 36 int64_t Low, High; 37 }; 38 // Return true iff R is covered by Ranges. 39 static bool IsInRanges(const IntRange &R, 40 const std::vector<IntRange> &Ranges) { 41 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 42 43 // Find the first range whose High field is >= R.High, 44 // then check if the Low field is <= R.Low. If so, we 45 // have a Range that covers R. 46 auto I = std::lower_bound( 47 Ranges.begin(), Ranges.end(), R, 48 [](const IntRange &A, const IntRange &B) { return A.High < B.High; }); 49 return I != Ranges.end() && I->Low <= R.Low; 50 } 51 52 /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch 53 /// instructions. 54 class LowerSwitch : public FunctionPass { 55 public: 56 static char ID; // Pass identification, replacement for typeid 57 LowerSwitch() : FunctionPass(ID) { 58 initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); 59 } 60 61 bool runOnFunction(Function &F) override; 62 63 void getAnalysisUsage(AnalysisUsage &AU) const override { 64 // This is a cluster of orthogonal Transforms 65 AU.addPreserved<UnifyFunctionExitNodes>(); 66 AU.addPreservedID(LowerInvokePassID); 67 } 68 69 struct CaseRange { 70 Constant* Low; 71 Constant* High; 72 BasicBlock* BB; 73 74 CaseRange(Constant *low = nullptr, Constant *high = nullptr, 75 BasicBlock *bb = nullptr) : 76 Low(low), High(high), BB(bb) { } 77 }; 78 79 typedef std::vector<CaseRange> CaseVector; 80 typedef std::vector<CaseRange>::iterator CaseItr; 81 private: 82 void processSwitchInst(SwitchInst *SI); 83 84 BasicBlock *switchConvert(CaseItr Begin, CaseItr End, 85 ConstantInt *LowerBound, ConstantInt *UpperBound, 86 Value *Val, BasicBlock *Predecessor, 87 BasicBlock *OrigBlock, BasicBlock *Default, 88 const std::vector<IntRange> &UnreachableRanges); 89 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock, 90 BasicBlock *Default); 91 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); 92 }; 93 94 /// The comparison function for sorting the switch case values in the vector. 95 /// WARNING: Case ranges should be disjoint! 96 struct CaseCmp { 97 bool operator () (const LowerSwitch::CaseRange& C1, 98 const LowerSwitch::CaseRange& C2) { 99 100 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 101 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 102 return CI1->getValue().slt(CI2->getValue()); 103 } 104 }; 105 } 106 107 char LowerSwitch::ID = 0; 108 INITIALIZE_PASS(LowerSwitch, "lowerswitch", 109 "Lower SwitchInst's to branches", false, false) 110 111 // Publicly exposed interface to pass... 112 char &llvm::LowerSwitchID = LowerSwitch::ID; 113 // createLowerSwitchPass - Interface to this file... 114 FunctionPass *llvm::createLowerSwitchPass() { 115 return new LowerSwitch(); 116 } 117 118 bool LowerSwitch::runOnFunction(Function &F) { 119 bool Changed = false; 120 121 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 122 BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks 123 124 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { 125 Changed = true; 126 processSwitchInst(SI); 127 } 128 } 129 130 return Changed; 131 } 132 133 // operator<< - Used for debugging purposes. 134 // 135 static raw_ostream& operator<<(raw_ostream &O, 136 const LowerSwitch::CaseVector &C) 137 LLVM_ATTRIBUTE_USED; 138 static raw_ostream& operator<<(raw_ostream &O, 139 const LowerSwitch::CaseVector &C) { 140 O << "["; 141 142 for (LowerSwitch::CaseVector::const_iterator B = C.begin(), 143 E = C.end(); B != E; ) { 144 O << *B->Low << " -" << *B->High; 145 if (++B != E) O << ", "; 146 } 147 148 return O << "]"; 149 } 150 151 // \brief Update the first occurrence of the "switch statement" BB in the PHI 152 // node with the "new" BB. The other occurrences will: 153 // 154 // 1) Be updated by subsequent calls to this function. Switch statements may 155 // have more than one outcoming edge into the same BB if they all have the same 156 // value. When the switch statement is converted these incoming edges are now 157 // coming from multiple BBs. 158 // 2) Removed if subsequent incoming values now share the same case, i.e., 159 // multiple outcome edges are condensed into one. This is necessary to keep the 160 // number of phi values equal to the number of branches to SuccBB. 161 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 162 unsigned NumMergedCases) { 163 for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI(); 164 I != IE; ++I) { 165 PHINode *PN = cast<PHINode>(I); 166 167 // Only update the first occurence. 168 unsigned Idx = 0, E = PN->getNumIncomingValues(); 169 unsigned LocalNumMergedCases = NumMergedCases; 170 for (; Idx != E; ++Idx) { 171 if (PN->getIncomingBlock(Idx) == OrigBB) { 172 PN->setIncomingBlock(Idx, NewBB); 173 break; 174 } 175 } 176 177 // Remove additional occurences coming from condensed cases and keep the 178 // number of incoming values equal to the number of branches to SuccBB. 179 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) 180 if (PN->getIncomingBlock(Idx) == OrigBB) { 181 PN->removeIncomingValue(Idx); 182 LocalNumMergedCases--; 183 } 184 } 185 } 186 187 // switchConvert - Convert the switch statement into a binary lookup of 188 // the case values. The function recursively builds this tree. 189 // LowerBound and UpperBound are used to keep track of the bounds for Val 190 // that have already been checked by a block emitted by one of the previous 191 // calls to switchConvert in the call stack. 192 BasicBlock * 193 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 194 ConstantInt *UpperBound, Value *Val, 195 BasicBlock *Predecessor, BasicBlock *OrigBlock, 196 BasicBlock *Default, 197 const std::vector<IntRange> &UnreachableRanges) { 198 unsigned Size = End - Begin; 199 200 if (Size == 1) { 201 // Check if the Case Range is perfectly squeezed in between 202 // already checked Upper and Lower bounds. If it is then we can avoid 203 // emitting the code that checks if the value actually falls in the range 204 // because the bounds already tell us so. 205 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 206 unsigned NumMergedCases = 0; 207 if (LowerBound && UpperBound) 208 NumMergedCases = 209 UpperBound->getSExtValue() - LowerBound->getSExtValue(); 210 fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 211 return Begin->BB; 212 } 213 return newLeafBlock(*Begin, Val, OrigBlock, Default); 214 } 215 216 unsigned Mid = Size / 2; 217 std::vector<CaseRange> LHS(Begin, Begin + Mid); 218 DEBUG(dbgs() << "LHS: " << LHS << "\n"); 219 std::vector<CaseRange> RHS(Begin + Mid, End); 220 DEBUG(dbgs() << "RHS: " << RHS << "\n"); 221 222 CaseRange &Pivot = *(Begin + Mid); 223 DEBUG(dbgs() << "Pivot ==> " 224 << cast<ConstantInt>(Pivot.Low)->getValue() 225 << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n"); 226 227 // NewLowerBound here should never be the integer minimal value. 228 // This is because it is computed from a case range that is never 229 // the smallest, so there is always a case range that has at least 230 // a smaller value. 231 ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low); 232 233 // Because NewLowerBound is never the smallest representable integer 234 // it is safe here to subtract one. 235 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 236 NewLowerBound->getValue() - 1); 237 238 if (!UnreachableRanges.empty()) { 239 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 240 int64_t GapLow = cast<ConstantInt>(LHS.back().High)->getSExtValue() + 1; 241 int64_t GapHigh = NewLowerBound->getSExtValue() - 1; 242 IntRange Gap = { GapLow, GapHigh }; 243 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) 244 NewUpperBound = cast<ConstantInt>(LHS.back().High); 245 } 246 247 DEBUG(dbgs() << "LHS Bounds ==> "; 248 if (LowerBound) { 249 dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue(); 250 } else { 251 dbgs() << "NONE"; 252 } 253 dbgs() << " - " << NewUpperBound->getSExtValue() << "\n"; 254 dbgs() << "RHS Bounds ==> "; 255 dbgs() << NewLowerBound->getSExtValue() << " - "; 256 if (UpperBound) { 257 dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n"; 258 } else { 259 dbgs() << "NONE\n"; 260 }); 261 262 // Create a new node that checks if the value is < pivot. Go to the 263 // left branch if it is and right branch if not. 264 Function* F = OrigBlock->getParent(); 265 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 266 267 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, 268 Val, Pivot.Low, "Pivot"); 269 270 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, 271 NewUpperBound, Val, NewNode, OrigBlock, 272 Default, UnreachableRanges); 273 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, 274 UpperBound, Val, NewNode, OrigBlock, 275 Default, UnreachableRanges); 276 277 Function::iterator FI = OrigBlock; 278 F->getBasicBlockList().insert(++FI, NewNode); 279 NewNode->getInstList().push_back(Comp); 280 281 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 282 return NewNode; 283 } 284 285 // newLeafBlock - Create a new leaf block for the binary lookup tree. It 286 // checks if the switch's value == the case's value. If not, then it 287 // jumps to the default branch. At this point in the tree, the value 288 // can't be another valid case value, so the jump to the "default" branch 289 // is warranted. 290 // 291 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, 292 BasicBlock* OrigBlock, 293 BasicBlock* Default) 294 { 295 Function* F = OrigBlock->getParent(); 296 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 297 Function::iterator FI = OrigBlock; 298 F->getBasicBlockList().insert(++FI, NewLeaf); 299 300 // Emit comparison 301 ICmpInst* Comp = nullptr; 302 if (Leaf.Low == Leaf.High) { 303 // Make the seteq instruction... 304 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, 305 Leaf.Low, "SwitchLeaf"); 306 } else { 307 // Make range comparison 308 if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) { 309 // Val >= Min && Val <= Hi --> Val <= Hi 310 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 311 "SwitchLeaf"); 312 } else if (cast<ConstantInt>(Leaf.Low)->isZero()) { 313 // Val >= 0 && Val <= Hi --> Val <=u Hi 314 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 315 "SwitchLeaf"); 316 } else { 317 // Emit V-Lo <=u Hi-Lo 318 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); 319 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, 320 Val->getName()+".off", 321 NewLeaf); 322 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 323 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 324 "SwitchLeaf"); 325 } 326 } 327 328 // Make the conditional branch... 329 BasicBlock* Succ = Leaf.BB; 330 BranchInst::Create(Succ, Default, Comp, NewLeaf); 331 332 // If there were any PHI nodes in this successor, rewrite one entry 333 // from OrigBlock to come from NewLeaf. 334 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 335 PHINode* PN = cast<PHINode>(I); 336 // Remove all but one incoming entries from the cluster 337 uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() - 338 cast<ConstantInt>(Leaf.Low)->getSExtValue(); 339 for (uint64_t j = 0; j < Range; ++j) { 340 PN->removeIncomingValue(OrigBlock); 341 } 342 343 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 344 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 345 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 346 } 347 348 return NewLeaf; 349 } 350 351 // Clusterify - Transform simple list of Cases into list of CaseRange's 352 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { 353 unsigned numCmps = 0; 354 355 // Start with "simple" cases 356 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 357 Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(), 358 i.getCaseSuccessor())); 359 360 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 361 362 // Merge case into clusters 363 if (Cases.size()>=2) 364 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 365 J != Cases.end();) { 366 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue(); 367 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue(); 368 BasicBlock* nextBB = J->BB; 369 BasicBlock* currentBB = I->BB; 370 371 // If the two neighboring cases go to the same destination, merge them 372 // into a single case. 373 if ((nextValue-currentValue==1) && (currentBB == nextBB)) { 374 I->High = J->High; 375 J = Cases.erase(J); 376 } else { 377 I = J++; 378 } 379 } 380 381 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 382 if (I->Low != I->High) 383 // A range counts double, since it requires two compares. 384 ++numCmps; 385 } 386 387 return numCmps; 388 } 389 390 // processSwitchInst - Replace the specified switch instruction with a sequence 391 // of chained if-then insts in a balanced binary search. 392 // 393 void LowerSwitch::processSwitchInst(SwitchInst *SI) { 394 BasicBlock *CurBlock = SI->getParent(); 395 BasicBlock *OrigBlock = CurBlock; 396 Function *F = CurBlock->getParent(); 397 Value *Val = SI->getCondition(); // The value we are switching on... 398 BasicBlock* Default = SI->getDefaultDest(); 399 400 // If there is only the default destination, just branch. 401 if (!SI->getNumCases()) { 402 BranchInst::Create(Default, CurBlock); 403 SI->eraseFromParent(); 404 return; 405 } 406 407 // Prepare cases vector. 408 CaseVector Cases; 409 unsigned numCmps = Clusterify(Cases, SI); 410 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 411 << ". Total compares: " << numCmps << "\n"); 412 DEBUG(dbgs() << "Cases: " << Cases << "\n"); 413 (void)numCmps; 414 415 ConstantInt *LowerBound = nullptr; 416 ConstantInt *UpperBound = nullptr; 417 std::vector<IntRange> UnreachableRanges; 418 419 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 420 // Make the bounds tightly fitted around the case value range, becase we 421 // know that the value passed to the switch must be exactly one of the case 422 // values. 423 assert(!Cases.empty()); 424 LowerBound = cast<ConstantInt>(Cases.front().Low); 425 UpperBound = cast<ConstantInt>(Cases.back().High); 426 427 DenseMap<BasicBlock *, unsigned> Popularity; 428 unsigned MaxPop = 0; 429 BasicBlock *PopSucc = nullptr; 430 431 IntRange R = { INT64_MIN, INT64_MAX }; 432 UnreachableRanges.push_back(R); 433 for (const auto &I : Cases) { 434 int64_t Low = cast<ConstantInt>(I.Low)->getSExtValue(); 435 int64_t High = cast<ConstantInt>(I.High)->getSExtValue(); 436 437 IntRange &LastRange = UnreachableRanges.back(); 438 if (LastRange.Low == Low) { 439 // There is nothing left of the previous range. 440 UnreachableRanges.pop_back(); 441 } else { 442 // Terminate the previous range. 443 assert(Low > LastRange.Low); 444 LastRange.High = Low - 1; 445 } 446 if (High != INT64_MAX) { 447 IntRange R = { High + 1, INT64_MAX }; 448 UnreachableRanges.push_back(R); 449 } 450 451 // Count popularity. 452 int64_t N = High - Low + 1; 453 unsigned &Pop = Popularity[I.BB]; 454 if ((Pop += N) > MaxPop) { 455 MaxPop = Pop; 456 PopSucc = I.BB; 457 } 458 } 459 #ifndef NDEBUG 460 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 461 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 462 I != E; ++I) { 463 assert(I->Low <= I->High); 464 auto Next = I + 1; 465 if (Next != E) { 466 assert(Next->Low > I->High); 467 } 468 } 469 #endif 470 471 // Use the most popular block as the new default, reducing the number of 472 // cases. 473 assert(MaxPop > 0 && PopSucc); 474 Default = PopSucc; 475 for (CaseItr I = Cases.begin(); I != Cases.end();) { 476 if (I->BB == PopSucc) 477 I = Cases.erase(I); 478 else 479 ++I; 480 } 481 482 // If there are no cases left, just branch. 483 if (Cases.empty()) { 484 BranchInst::Create(Default, CurBlock); 485 SI->eraseFromParent(); 486 return; 487 } 488 } 489 490 // Create a new, empty default block so that the new hierarchy of 491 // if-then statements go to this and the PHI nodes are happy. 492 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); 493 F->getBasicBlockList().insert(Default, NewDefault); 494 BranchInst::Create(Default, NewDefault); 495 496 // If there is an entry in any PHI nodes for the default edge, make sure 497 // to update them as well. 498 for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) { 499 PHINode *PN = cast<PHINode>(I); 500 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 501 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 502 PN->setIncomingBlock((unsigned)BlockIdx, NewDefault); 503 } 504 505 BasicBlock *SwitchBlock = 506 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 507 OrigBlock, OrigBlock, NewDefault, UnreachableRanges); 508 509 // Branch to our shiny new if-then stuff... 510 BranchInst::Create(SwitchBlock, OrigBlock); 511 512 // We are now done with the switch instruction, delete it. 513 BasicBlock *OldDefault = SI->getDefaultDest(); 514 CurBlock->getInstList().erase(SI); 515 516 // If the Default block has no more predecessors just remove it. 517 if (pred_begin(OldDefault) == pred_end(OldDefault)) 518 DeleteDeadBlock(OldDefault); 519 } 520