1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LowerSwitch transformation rewrites switch instructions with a sequence 10 // of branches, which allows targets to get away with not implementing the 11 // switch instruction until it is convenient. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/InstrTypes.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Value.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Compiler.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Utils.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <limits> 38 #include <vector> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "lower-switch" 43 44 namespace { 45 46 struct IntRange { 47 int64_t Low, High; 48 }; 49 50 } // end anonymous namespace 51 52 // Return true iff R is covered by Ranges. 53 static bool IsInRanges(const IntRange &R, 54 const std::vector<IntRange> &Ranges) { 55 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 56 57 // Find the first range whose High field is >= R.High, 58 // then check if the Low field is <= R.Low. If so, we 59 // have a Range that covers R. 60 auto I = std::lower_bound( 61 Ranges.begin(), Ranges.end(), R, 62 [](const IntRange &A, const IntRange &B) { return A.High < B.High; }); 63 return I != Ranges.end() && I->Low <= R.Low; 64 } 65 66 namespace { 67 68 /// Replace all SwitchInst instructions with chained branch instructions. 69 class LowerSwitch : public FunctionPass { 70 public: 71 // Pass identification, replacement for typeid 72 static char ID; 73 74 LowerSwitch() : FunctionPass(ID) { 75 initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnFunction(Function &F) override; 79 80 struct CaseRange { 81 ConstantInt* Low; 82 ConstantInt* High; 83 BasicBlock* BB; 84 85 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 86 : Low(low), High(high), BB(bb) {} 87 }; 88 89 using CaseVector = std::vector<CaseRange>; 90 using CaseItr = std::vector<CaseRange>::iterator; 91 92 private: 93 void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList); 94 95 BasicBlock *switchConvert(CaseItr Begin, CaseItr End, 96 ConstantInt *LowerBound, ConstantInt *UpperBound, 97 Value *Val, BasicBlock *Predecessor, 98 BasicBlock *OrigBlock, BasicBlock *Default, 99 const std::vector<IntRange> &UnreachableRanges); 100 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock, 101 BasicBlock *Default); 102 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI); 103 }; 104 105 /// The comparison function for sorting the switch case values in the vector. 106 /// WARNING: Case ranges should be disjoint! 107 struct CaseCmp { 108 bool operator()(const LowerSwitch::CaseRange& C1, 109 const LowerSwitch::CaseRange& C2) { 110 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 111 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 112 return CI1->getValue().slt(CI2->getValue()); 113 } 114 }; 115 116 } // end anonymous namespace 117 118 char LowerSwitch::ID = 0; 119 120 // Publicly exposed interface to pass... 121 char &llvm::LowerSwitchID = LowerSwitch::ID; 122 123 INITIALIZE_PASS(LowerSwitch, "lowerswitch", 124 "Lower SwitchInst's to branches", false, false) 125 126 // createLowerSwitchPass - Interface to this file... 127 FunctionPass *llvm::createLowerSwitchPass() { 128 return new LowerSwitch(); 129 } 130 131 bool LowerSwitch::runOnFunction(Function &F) { 132 bool Changed = false; 133 SmallPtrSet<BasicBlock*, 8> DeleteList; 134 135 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 136 BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks 137 138 // If the block is a dead Default block that will be deleted later, don't 139 // waste time processing it. 140 if (DeleteList.count(Cur)) 141 continue; 142 143 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { 144 Changed = true; 145 processSwitchInst(SI, DeleteList); 146 } 147 } 148 149 for (BasicBlock* BB: DeleteList) { 150 DeleteDeadBlock(BB); 151 } 152 153 return Changed; 154 } 155 156 /// Used for debugging purposes. 157 LLVM_ATTRIBUTE_USED 158 static raw_ostream &operator<<(raw_ostream &O, 159 const LowerSwitch::CaseVector &C) { 160 O << "["; 161 162 for (LowerSwitch::CaseVector::const_iterator B = C.begin(), 163 E = C.end(); B != E; ) { 164 O << *B->Low << " -" << *B->High; 165 if (++B != E) O << ", "; 166 } 167 168 return O << "]"; 169 } 170 171 /// Update the first occurrence of the "switch statement" BB in the PHI 172 /// node with the "new" BB. The other occurrences will: 173 /// 174 /// 1) Be updated by subsequent calls to this function. Switch statements may 175 /// have more than one outcoming edge into the same BB if they all have the same 176 /// value. When the switch statement is converted these incoming edges are now 177 /// coming from multiple BBs. 178 /// 2) Removed if subsequent incoming values now share the same case, i.e., 179 /// multiple outcome edges are condensed into one. This is necessary to keep the 180 /// number of phi values equal to the number of branches to SuccBB. 181 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 182 unsigned NumMergedCases) { 183 for (BasicBlock::iterator I = SuccBB->begin(), 184 IE = SuccBB->getFirstNonPHI()->getIterator(); 185 I != IE; ++I) { 186 PHINode *PN = cast<PHINode>(I); 187 188 // Only update the first occurrence. 189 unsigned Idx = 0, E = PN->getNumIncomingValues(); 190 unsigned LocalNumMergedCases = NumMergedCases; 191 for (; Idx != E; ++Idx) { 192 if (PN->getIncomingBlock(Idx) == OrigBB) { 193 PN->setIncomingBlock(Idx, NewBB); 194 break; 195 } 196 } 197 198 // Remove additional occurrences coming from condensed cases and keep the 199 // number of incoming values equal to the number of branches to SuccBB. 200 SmallVector<unsigned, 8> Indices; 201 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) 202 if (PN->getIncomingBlock(Idx) == OrigBB) { 203 Indices.push_back(Idx); 204 LocalNumMergedCases--; 205 } 206 // Remove incoming values in the reverse order to prevent invalidating 207 // *successive* index. 208 for (unsigned III : llvm::reverse(Indices)) 209 PN->removeIncomingValue(III); 210 } 211 } 212 213 /// Convert the switch statement into a binary lookup of the case values. 214 /// The function recursively builds this tree. LowerBound and UpperBound are 215 /// used to keep track of the bounds for Val that have already been checked by 216 /// a block emitted by one of the previous calls to switchConvert in the call 217 /// stack. 218 BasicBlock * 219 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 220 ConstantInt *UpperBound, Value *Val, 221 BasicBlock *Predecessor, BasicBlock *OrigBlock, 222 BasicBlock *Default, 223 const std::vector<IntRange> &UnreachableRanges) { 224 unsigned Size = End - Begin; 225 226 if (Size == 1) { 227 // Check if the Case Range is perfectly squeezed in between 228 // already checked Upper and Lower bounds. If it is then we can avoid 229 // emitting the code that checks if the value actually falls in the range 230 // because the bounds already tell us so. 231 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 232 unsigned NumMergedCases = 0; 233 if (LowerBound && UpperBound) 234 NumMergedCases = 235 UpperBound->getSExtValue() - LowerBound->getSExtValue(); 236 fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 237 return Begin->BB; 238 } 239 return newLeafBlock(*Begin, Val, OrigBlock, Default); 240 } 241 242 unsigned Mid = Size / 2; 243 std::vector<CaseRange> LHS(Begin, Begin + Mid); 244 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); 245 std::vector<CaseRange> RHS(Begin + Mid, End); 246 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); 247 248 CaseRange &Pivot = *(Begin + Mid); 249 LLVM_DEBUG(dbgs() << "Pivot ==> " << Pivot.Low->getValue() << " -" 250 << Pivot.High->getValue() << "\n"); 251 252 // NewLowerBound here should never be the integer minimal value. 253 // This is because it is computed from a case range that is never 254 // the smallest, so there is always a case range that has at least 255 // a smaller value. 256 ConstantInt *NewLowerBound = Pivot.Low; 257 258 // Because NewLowerBound is never the smallest representable integer 259 // it is safe here to subtract one. 260 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 261 NewLowerBound->getValue() - 1); 262 263 if (!UnreachableRanges.empty()) { 264 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 265 int64_t GapLow = LHS.back().High->getSExtValue() + 1; 266 int64_t GapHigh = NewLowerBound->getSExtValue() - 1; 267 IntRange Gap = { GapLow, GapHigh }; 268 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) 269 NewUpperBound = LHS.back().High; 270 } 271 272 LLVM_DEBUG(dbgs() << "LHS Bounds ==> "; if (LowerBound) { 273 dbgs() << LowerBound->getSExtValue(); 274 } else { dbgs() << "NONE"; } dbgs() << " - " 275 << NewUpperBound->getSExtValue() << "\n"; 276 dbgs() << "RHS Bounds ==> "; 277 dbgs() << NewLowerBound->getSExtValue() << " - "; if (UpperBound) { 278 dbgs() << UpperBound->getSExtValue() << "\n"; 279 } else { dbgs() << "NONE\n"; }); 280 281 // Create a new node that checks if the value is < pivot. Go to the 282 // left branch if it is and right branch if not. 283 Function* F = OrigBlock->getParent(); 284 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 285 286 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, 287 Val, Pivot.Low, "Pivot"); 288 289 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound, 290 NewUpperBound, Val, NewNode, OrigBlock, 291 Default, UnreachableRanges); 292 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound, 293 UpperBound, Val, NewNode, OrigBlock, 294 Default, UnreachableRanges); 295 296 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); 297 NewNode->getInstList().push_back(Comp); 298 299 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 300 return NewNode; 301 } 302 303 /// Create a new leaf block for the binary lookup tree. It checks if the 304 /// switch's value == the case's value. If not, then it jumps to the default 305 /// branch. At this point in the tree, the value can't be another valid case 306 /// value, so the jump to the "default" branch is warranted. 307 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, 308 BasicBlock* OrigBlock, 309 BasicBlock* Default) { 310 Function* F = OrigBlock->getParent(); 311 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 312 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); 313 314 // Emit comparison 315 ICmpInst* Comp = nullptr; 316 if (Leaf.Low == Leaf.High) { 317 // Make the seteq instruction... 318 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, 319 Leaf.Low, "SwitchLeaf"); 320 } else { 321 // Make range comparison 322 if (Leaf.Low->isMinValue(true /*isSigned*/)) { 323 // Val >= Min && Val <= Hi --> Val <= Hi 324 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 325 "SwitchLeaf"); 326 } else if (Leaf.Low->isZero()) { 327 // Val >= 0 && Val <= Hi --> Val <=u Hi 328 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 329 "SwitchLeaf"); 330 } else { 331 // Emit V-Lo <=u Hi-Lo 332 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); 333 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, 334 Val->getName()+".off", 335 NewLeaf); 336 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 337 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 338 "SwitchLeaf"); 339 } 340 } 341 342 // Make the conditional branch... 343 BasicBlock* Succ = Leaf.BB; 344 BranchInst::Create(Succ, Default, Comp, NewLeaf); 345 346 // If there were any PHI nodes in this successor, rewrite one entry 347 // from OrigBlock to come from NewLeaf. 348 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 349 PHINode* PN = cast<PHINode>(I); 350 // Remove all but one incoming entries from the cluster 351 uint64_t Range = Leaf.High->getSExtValue() - 352 Leaf.Low->getSExtValue(); 353 for (uint64_t j = 0; j < Range; ++j) { 354 PN->removeIncomingValue(OrigBlock); 355 } 356 357 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 358 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 359 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 360 } 361 362 return NewLeaf; 363 } 364 365 /// Transform simple list of Cases into list of CaseRange's. 366 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { 367 unsigned numCmps = 0; 368 369 // Start with "simple" cases 370 for (auto Case : SI->cases()) 371 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), 372 Case.getCaseSuccessor())); 373 374 llvm::sort(Cases, CaseCmp()); 375 376 // Merge case into clusters 377 if (Cases.size() >= 2) { 378 CaseItr I = Cases.begin(); 379 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 380 int64_t nextValue = J->Low->getSExtValue(); 381 int64_t currentValue = I->High->getSExtValue(); 382 BasicBlock* nextBB = J->BB; 383 BasicBlock* currentBB = I->BB; 384 385 // If the two neighboring cases go to the same destination, merge them 386 // into a single case. 387 assert(nextValue > currentValue && "Cases should be strictly ascending"); 388 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 389 I->High = J->High; 390 // FIXME: Combine branch weights. 391 } else if (++I != J) { 392 *I = *J; 393 } 394 } 395 Cases.erase(std::next(I), Cases.end()); 396 } 397 398 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 399 if (I->Low != I->High) 400 // A range counts double, since it requires two compares. 401 ++numCmps; 402 } 403 404 return numCmps; 405 } 406 407 /// Replace the specified switch instruction with a sequence of chained if-then 408 /// insts in a balanced binary search. 409 void LowerSwitch::processSwitchInst(SwitchInst *SI, 410 SmallPtrSetImpl<BasicBlock*> &DeleteList) { 411 BasicBlock *CurBlock = SI->getParent(); 412 BasicBlock *OrigBlock = CurBlock; 413 Function *F = CurBlock->getParent(); 414 Value *Val = SI->getCondition(); // The value we are switching on... 415 BasicBlock* Default = SI->getDefaultDest(); 416 417 // Don't handle unreachable blocks. If there are successors with phis, this 418 // would leave them behind with missing predecessors. 419 if ((CurBlock != &F->getEntryBlock() && pred_empty(CurBlock)) || 420 CurBlock->getSinglePredecessor() == CurBlock) { 421 DeleteList.insert(CurBlock); 422 return; 423 } 424 425 // If there is only the default destination, just branch. 426 if (!SI->getNumCases()) { 427 BranchInst::Create(Default, CurBlock); 428 SI->eraseFromParent(); 429 return; 430 } 431 432 // Prepare cases vector. 433 CaseVector Cases; 434 unsigned numCmps = Clusterify(Cases, SI); 435 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 436 << ". Total compares: " << numCmps << "\n"); 437 LLVM_DEBUG(dbgs() << "Cases: " << Cases << "\n"); 438 (void)numCmps; 439 440 ConstantInt *LowerBound = nullptr; 441 ConstantInt *UpperBound = nullptr; 442 std::vector<IntRange> UnreachableRanges; 443 444 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 445 // Make the bounds tightly fitted around the case value range, because we 446 // know that the value passed to the switch must be exactly one of the case 447 // values. 448 assert(!Cases.empty()); 449 LowerBound = Cases.front().Low; 450 UpperBound = Cases.back().High; 451 452 DenseMap<BasicBlock *, unsigned> Popularity; 453 unsigned MaxPop = 0; 454 BasicBlock *PopSucc = nullptr; 455 456 IntRange R = {std::numeric_limits<int64_t>::min(), 457 std::numeric_limits<int64_t>::max()}; 458 UnreachableRanges.push_back(R); 459 for (const auto &I : Cases) { 460 int64_t Low = I.Low->getSExtValue(); 461 int64_t High = I.High->getSExtValue(); 462 463 IntRange &LastRange = UnreachableRanges.back(); 464 if (LastRange.Low == Low) { 465 // There is nothing left of the previous range. 466 UnreachableRanges.pop_back(); 467 } else { 468 // Terminate the previous range. 469 assert(Low > LastRange.Low); 470 LastRange.High = Low - 1; 471 } 472 if (High != std::numeric_limits<int64_t>::max()) { 473 IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; 474 UnreachableRanges.push_back(R); 475 } 476 477 // Count popularity. 478 int64_t N = High - Low + 1; 479 unsigned &Pop = Popularity[I.BB]; 480 if ((Pop += N) > MaxPop) { 481 MaxPop = Pop; 482 PopSucc = I.BB; 483 } 484 } 485 #ifndef NDEBUG 486 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 487 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 488 I != E; ++I) { 489 assert(I->Low <= I->High); 490 auto Next = I + 1; 491 if (Next != E) { 492 assert(Next->Low > I->High); 493 } 494 } 495 #endif 496 497 // As the default block in the switch is unreachable, update the PHI nodes 498 // (remove the entry to the default block) to reflect this. 499 Default->removePredecessor(OrigBlock); 500 501 // Use the most popular block as the new default, reducing the number of 502 // cases. 503 assert(MaxPop > 0 && PopSucc); 504 Default = PopSucc; 505 Cases.erase( 506 llvm::remove_if( 507 Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }), 508 Cases.end()); 509 510 // If there are no cases left, just branch. 511 if (Cases.empty()) { 512 BranchInst::Create(Default, CurBlock); 513 SI->eraseFromParent(); 514 // As all the cases have been replaced with a single branch, only keep 515 // one entry in the PHI nodes. 516 for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) 517 PopSucc->removePredecessor(OrigBlock); 518 return; 519 } 520 } 521 522 unsigned NrOfDefaults = (SI->getDefaultDest() == Default) ? 1 : 0; 523 for (const auto &Case : SI->cases()) 524 if (Case.getCaseSuccessor() == Default) 525 NrOfDefaults++; 526 527 // Create a new, empty default block so that the new hierarchy of 528 // if-then statements go to this and the PHI nodes are happy. 529 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); 530 F->getBasicBlockList().insert(Default->getIterator(), NewDefault); 531 BranchInst::Create(Default, NewDefault); 532 533 BasicBlock *SwitchBlock = 534 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 535 OrigBlock, OrigBlock, NewDefault, UnreachableRanges); 536 537 // If there are entries in any PHI nodes for the default edge, make sure 538 // to update them as well. 539 fixPhis(Default, OrigBlock, NewDefault, NrOfDefaults); 540 541 // Branch to our shiny new if-then stuff... 542 BranchInst::Create(SwitchBlock, OrigBlock); 543 544 // We are now done with the switch instruction, delete it. 545 BasicBlock *OldDefault = SI->getDefaultDest(); 546 CurBlock->getInstList().erase(SI); 547 548 // If the Default block has no more predecessors just add it to DeleteList. 549 if (pred_begin(OldDefault) == pred_end(OldDefault)) 550 DeleteList.insert(OldDefault); 551 } 552