1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Constants.h" 40 #include "llvm/DerivedTypes.h" 41 #include "llvm/Instructions.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include <csetjmp> 52 #include <set> 53 using namespace llvm; 54 55 STATISTIC(NumInvokes, "Number of invokes replaced"); 56 STATISTIC(NumUnwinds, "Number of unwinds replaced"); 57 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 58 59 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 61 62 namespace { 63 class LowerInvoke : public FunctionPass { 64 // Used for both models. 65 Constant *WriteFn; 66 Constant *AbortFn; 67 Value *AbortMessage; 68 unsigned AbortMessageLength; 69 70 // Used for expensive EH support. 71 const Type *JBLinkTy; 72 GlobalVariable *JBListHead; 73 Constant *SetJmpFn, *LongJmpFn; 74 75 // We peek in TLI to grab the target's jmp_buf size and alignment 76 const TargetLowering *TLI; 77 78 public: 79 static char ID; // Pass identification, replacement for typeid 80 explicit LowerInvoke(const TargetLowering *tli = NULL) 81 : FunctionPass(&ID), TLI(tli) { } 82 bool doInitialization(Module &M); 83 bool runOnFunction(Function &F); 84 85 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 86 // This is a cluster of orthogonal Transforms 87 AU.addPreservedID(PromoteMemoryToRegisterID); 88 AU.addPreservedID(LowerSwitchID); 89 } 90 91 private: 92 void createAbortMessage(Module *M); 93 void writeAbortMessage(Instruction *IB); 94 bool insertCheapEHSupport(Function &F); 95 void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes); 96 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 97 AllocaInst *InvokeNum, SwitchInst *CatchSwitch); 98 bool insertExpensiveEHSupport(Function &F); 99 }; 100 } 101 102 char LowerInvoke::ID = 0; 103 static RegisterPass<LowerInvoke> 104 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators"); 105 106 const PassInfo *const llvm::LowerInvokePassID = &X; 107 108 // Public Interface To the LowerInvoke pass. 109 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { 110 return new LowerInvoke(TLI); 111 } 112 113 // doInitialization - Make sure that there is a prototype for abort in the 114 // current module. 115 bool LowerInvoke::doInitialization(Module &M) { 116 const Type *VoidPtrTy = 117 Type::getInt8PtrTy(M.getContext()); 118 AbortMessage = 0; 119 if (ExpensiveEHSupport) { 120 // Insert a type for the linked list of jump buffers. 121 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; 122 JBSize = JBSize ? JBSize : 200; 123 const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); 124 125 { // The type is recursive, so use a type holder. 126 std::vector<const Type*> Elements; 127 Elements.push_back(JmpBufTy); 128 OpaqueType *OT = OpaqueType::get(M.getContext()); 129 Elements.push_back(PointerType::getUnqual(OT)); 130 PATypeHolder JBLType(StructType::get(M.getContext(), Elements)); 131 OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle. 132 JBLinkTy = JBLType.get(); 133 M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy); 134 } 135 136 const Type *PtrJBList = PointerType::getUnqual(JBLinkTy); 137 138 // Now that we've done that, insert the jmpbuf list head global, unless it 139 // already exists. 140 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 141 JBListHead = new GlobalVariable(M, PtrJBList, false, 142 GlobalValue::LinkOnceAnyLinkage, 143 Constant::getNullValue(PtrJBList), 144 "llvm.sjljeh.jblist"); 145 } 146 147 // VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>, 148 // so it looks like Intrinsic::_setjmp 149 #if defined(_MSC_VER) && defined(setjmp) 150 #define setjmp_undefined_for_visual_studio 151 #undef setjmp 152 #endif 153 154 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 155 156 #if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio) 157 // let's return it to _setjmp state in case anyone ever needs it after this 158 // point under VisualStudio 159 #define setjmp _setjmp 160 #endif 161 162 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 163 } 164 165 // We need the 'write' and 'abort' functions for both models. 166 AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), 167 (Type *)0); 168 #if 0 // "write" is Unix-specific.. code is going away soon anyway. 169 WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty, 170 VoidPtrTy, Type::Int32Ty, (Type *)0); 171 #else 172 WriteFn = 0; 173 #endif 174 return true; 175 } 176 177 void LowerInvoke::createAbortMessage(Module *M) { 178 if (ExpensiveEHSupport) { 179 // The abort message for expensive EH support tells the user that the 180 // program 'unwound' without an 'invoke' instruction. 181 Constant *Msg = 182 ConstantArray::get(M->getContext(), 183 "ERROR: Exception thrown, but not caught!\n"); 184 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 185 186 GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true, 187 GlobalValue::InternalLinkage, 188 Msg, "abortmsg"); 189 std::vector<Constant*> GEPIdx(2, 190 Constant::getNullValue(Type::getInt32Ty(M->getContext()))); 191 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2); 192 } else { 193 // The abort message for cheap EH support tells the user that EH is not 194 // enabled. 195 Constant *Msg = 196 ConstantArray::get(M->getContext(), 197 "Exception handler needed, but not enabled." 198 "Recompile program with -enable-correct-eh-support.\n"); 199 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 200 201 GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true, 202 GlobalValue::InternalLinkage, 203 Msg, "abortmsg"); 204 std::vector<Constant*> GEPIdx(2, Constant::getNullValue( 205 Type::getInt32Ty(M->getContext()))); 206 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2); 207 } 208 } 209 210 211 void LowerInvoke::writeAbortMessage(Instruction *IB) { 212 #if 0 213 if (AbortMessage == 0) 214 createAbortMessage(IB->getParent()->getParent()->getParent()); 215 216 // These are the arguments we WANT... 217 Value* Args[3]; 218 Args[0] = ConstantInt::get(Type::Int32Ty, 2); 219 Args[1] = AbortMessage; 220 Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength); 221 (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall(); 222 #endif 223 } 224 225 bool LowerInvoke::insertCheapEHSupport(Function &F) { 226 bool Changed = false; 227 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 228 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 229 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end()); 230 // Insert a normal call instruction... 231 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 232 CallArgs.begin(), CallArgs.end(), "",II); 233 NewCall->takeName(II); 234 NewCall->setCallingConv(II->getCallingConv()); 235 NewCall->setAttributes(II->getAttributes()); 236 II->replaceAllUsesWith(NewCall); 237 238 // Insert an unconditional branch to the normal destination. 239 BranchInst::Create(II->getNormalDest(), II); 240 241 // Remove any PHI node entries from the exception destination. 242 II->getUnwindDest()->removePredecessor(BB); 243 244 // Remove the invoke instruction now. 245 BB->getInstList().erase(II); 246 247 ++NumInvokes; Changed = true; 248 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 249 // Insert a new call to write(2, AbortMessage, AbortMessageLength); 250 writeAbortMessage(UI); 251 252 // Insert a call to abort() 253 CallInst::Create(AbortFn, "", UI)->setTailCall(); 254 255 // Insert a return instruction. This really should be a "barrier", as it 256 // is unreachable. 257 ReturnInst::Create(F.getContext(), 258 F.getReturnType() == Type::getVoidTy(F.getContext()) ? 259 0 : Constant::getNullValue(F.getReturnType()), UI); 260 261 // Remove the unwind instruction now. 262 BB->getInstList().erase(UI); 263 264 ++NumUnwinds; Changed = true; 265 } 266 return Changed; 267 } 268 269 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 270 /// specified invoke instruction with a call. 271 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 272 AllocaInst *InvokeNum, 273 SwitchInst *CatchSwitch) { 274 ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), 275 InvokeNo); 276 277 // If the unwind edge has phi nodes, split the edge. 278 if (isa<PHINode>(II->getUnwindDest()->begin())) { 279 SplitCriticalEdge(II, 1, this); 280 281 // If there are any phi nodes left, they must have a single predecessor. 282 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 283 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 284 PN->eraseFromParent(); 285 } 286 } 287 288 // Insert a store of the invoke num before the invoke and store zero into the 289 // location afterward. 290 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 291 292 BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI(); 293 // nonvolatile. 294 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), 295 InvokeNum, false, NI); 296 297 // Add a switch case to our unwind block. 298 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 299 300 // Insert a normal call instruction. 301 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end()); 302 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 303 CallArgs.begin(), CallArgs.end(), "", 304 II); 305 NewCall->takeName(II); 306 NewCall->setCallingConv(II->getCallingConv()); 307 NewCall->setAttributes(II->getAttributes()); 308 II->replaceAllUsesWith(NewCall); 309 310 // Replace the invoke with an uncond branch. 311 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 312 II->eraseFromParent(); 313 } 314 315 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 316 /// we reach blocks we've already seen. 317 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 318 if (!LiveBBs.insert(BB).second) return; // already been here. 319 320 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 321 MarkBlocksLiveIn(*PI, LiveBBs); 322 } 323 324 // First thing we need to do is scan the whole function for values that are 325 // live across unwind edges. Each value that is live across an unwind edge 326 // we spill into a stack location, guaranteeing that there is nothing live 327 // across the unwind edge. This process also splits all critical edges 328 // coming out of invoke's. 329 void LowerInvoke:: 330 splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) { 331 // First step, split all critical edges from invoke instructions. 332 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 333 InvokeInst *II = Invokes[i]; 334 SplitCriticalEdge(II, 0, this); 335 SplitCriticalEdge(II, 1, this); 336 assert(!isa<PHINode>(II->getNormalDest()) && 337 !isa<PHINode>(II->getUnwindDest()) && 338 "critical edge splitting left single entry phi nodes?"); 339 } 340 341 Function *F = Invokes.back()->getParent()->getParent(); 342 343 // To avoid having to handle incoming arguments specially, we lower each arg 344 // to a copy instruction in the entry block. This ensures that the argument 345 // value itself cannot be live across the entry block. 346 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 347 while (isa<AllocaInst>(AfterAllocaInsertPt) && 348 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 349 ++AfterAllocaInsertPt; 350 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 351 AI != E; ++AI) { 352 // This is always a no-op cast because we're casting AI to AI->getType() so 353 // src and destination types are identical. BitCast is the only possibility. 354 CastInst *NC = new BitCastInst( 355 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 356 AI->replaceAllUsesWith(NC); 357 // Normally its is forbidden to replace a CastInst's operand because it 358 // could cause the opcode to reflect an illegal conversion. However, we're 359 // replacing it here with the same value it was constructed with to simply 360 // make NC its user. 361 NC->setOperand(0, AI); 362 } 363 364 // Finally, scan the code looking for instructions with bad live ranges. 365 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 366 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 367 // Ignore obvious cases we don't have to handle. In particular, most 368 // instructions either have no uses or only have a single use inside the 369 // current block. Ignore them quickly. 370 Instruction *Inst = II; 371 if (Inst->use_empty()) continue; 372 if (Inst->hasOneUse() && 373 cast<Instruction>(Inst->use_back())->getParent() == BB && 374 !isa<PHINode>(Inst->use_back())) continue; 375 376 // If this is an alloca in the entry block, it's not a real register 377 // value. 378 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 379 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 380 continue; 381 382 // Avoid iterator invalidation by copying users to a temporary vector. 383 std::vector<Instruction*> Users; 384 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 385 UI != E; ++UI) { 386 Instruction *User = cast<Instruction>(*UI); 387 if (User->getParent() != BB || isa<PHINode>(User)) 388 Users.push_back(User); 389 } 390 391 // Scan all of the uses and see if the live range is live across an unwind 392 // edge. If we find a use live across an invoke edge, create an alloca 393 // and spill the value. 394 std::set<InvokeInst*> InvokesWithStoreInserted; 395 396 // Find all of the blocks that this value is live in. 397 std::set<BasicBlock*> LiveBBs; 398 LiveBBs.insert(Inst->getParent()); 399 while (!Users.empty()) { 400 Instruction *U = Users.back(); 401 Users.pop_back(); 402 403 if (!isa<PHINode>(U)) { 404 MarkBlocksLiveIn(U->getParent(), LiveBBs); 405 } else { 406 // Uses for a PHI node occur in their predecessor block. 407 PHINode *PN = cast<PHINode>(U); 408 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 409 if (PN->getIncomingValue(i) == Inst) 410 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 411 } 412 } 413 414 // Now that we know all of the blocks that this thing is live in, see if 415 // it includes any of the unwind locations. 416 bool NeedsSpill = false; 417 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 418 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 419 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 420 NeedsSpill = true; 421 } 422 } 423 424 // If we decided we need a spill, do it. 425 if (NeedsSpill) { 426 ++NumSpilled; 427 DemoteRegToStack(*Inst, true); 428 } 429 } 430 } 431 432 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 433 std::vector<ReturnInst*> Returns; 434 std::vector<UnwindInst*> Unwinds; 435 std::vector<InvokeInst*> Invokes; 436 437 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 438 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 439 // Remember all return instructions in case we insert an invoke into this 440 // function. 441 Returns.push_back(RI); 442 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 443 Invokes.push_back(II); 444 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 445 Unwinds.push_back(UI); 446 } 447 448 if (Unwinds.empty() && Invokes.empty()) return false; 449 450 NumInvokes += Invokes.size(); 451 NumUnwinds += Unwinds.size(); 452 453 // TODO: This is not an optimal way to do this. In particular, this always 454 // inserts setjmp calls into the entries of functions with invoke instructions 455 // even though there are possibly paths through the function that do not 456 // execute any invokes. In particular, for functions with early exits, e.g. 457 // the 'addMove' method in hexxagon, it would be nice to not have to do the 458 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 459 // would not be too hard to do. 460 461 // If we have an invoke instruction, insert a setjmp that dominates all 462 // invokes. After the setjmp, use a cond branch that goes to the original 463 // code path on zero, and to a designated 'catch' block of nonzero. 464 Value *OldJmpBufPtr = 0; 465 if (!Invokes.empty()) { 466 // First thing we need to do is scan the whole function for values that are 467 // live across unwind edges. Each value that is live across an unwind edge 468 // we spill into a stack location, guaranteeing that there is nothing live 469 // across the unwind edge. This process also splits all critical edges 470 // coming out of invoke's. 471 splitLiveRangesLiveAcrossInvokes(Invokes); 472 473 BasicBlock *EntryBB = F.begin(); 474 475 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 476 // that needs to be restored on all exits from the function. This is an 477 // alloca because the value needs to be live across invokes. 478 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; 479 AllocaInst *JmpBuf = 480 new AllocaInst(JBLinkTy, 0, Align, 481 "jblink", F.begin()->begin()); 482 483 std::vector<Value*> Idx; 484 Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext()))); 485 Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 1)); 486 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(), 487 "OldBuf", 488 EntryBB->getTerminator()); 489 490 // Copy the JBListHead to the alloca. 491 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 492 EntryBB->getTerminator()); 493 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 494 495 // Add the new jumpbuf to the list. 496 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 497 498 // Create the catch block. The catch block is basically a big switch 499 // statement that goes to all of the invoke catch blocks. 500 BasicBlock *CatchBB = 501 BasicBlock::Create(F.getContext(), "setjmp.catch", &F); 502 503 // Create an alloca which keeps track of which invoke is currently 504 // executing. For normal calls it contains zero. 505 AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, 506 "invokenum",EntryBB->begin()); 507 new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 508 InvokeNum, true, EntryBB->getTerminator()); 509 510 // Insert a load in the Catch block, and a switch on its value. By default, 511 // we go to a block that just does an unwind (which is the correct action 512 // for a standard call). 513 BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); 514 Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB)); 515 516 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 517 SwitchInst *CatchSwitch = 518 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 519 520 // Now that things are set up, insert the setjmp call itself. 521 522 // Split the entry block to insert the conditional branch for the setjmp. 523 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 524 "setjmp.cont"); 525 526 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); 527 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(), 528 "TheJmpBuf", 529 EntryBB->getTerminator()); 530 JmpBufPtr = new BitCastInst(JmpBufPtr, 531 Type::getInt8PtrTy(F.getContext()), 532 "tmp", EntryBB->getTerminator()); 533 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 534 EntryBB->getTerminator()); 535 536 // Compare the return value to zero. 537 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 538 ICmpInst::ICMP_EQ, SJRet, 539 Constant::getNullValue(SJRet->getType()), 540 "notunwind"); 541 // Nuke the uncond branch. 542 EntryBB->getTerminator()->eraseFromParent(); 543 544 // Put in a new condbranch in its place. 545 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 546 547 // At this point, we are all set up, rewrite each invoke instruction. 548 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 549 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch); 550 } 551 552 // We know that there is at least one unwind. 553 554 // Create three new blocks, the block to load the jmpbuf ptr and compare 555 // against null, the block to do the longjmp, and the error block for if it 556 // is null. Add them at the end of the function because they are not hot. 557 BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), 558 "dounwind", &F); 559 BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); 560 BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); 561 562 // If this function contains an invoke, restore the old jumpbuf ptr. 563 Value *BufPtr; 564 if (OldJmpBufPtr) { 565 // Before the return, insert a copy from the saved value to the new value. 566 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 567 new StoreInst(BufPtr, JBListHead, UnwindHandler); 568 } else { 569 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 570 } 571 572 // Load the JBList, if it's null, then there was no catch! 573 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 574 Constant::getNullValue(BufPtr->getType()), 575 "notnull"); 576 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 577 578 // Create the block to do the longjmp. 579 // Get a pointer to the jmpbuf and longjmp. 580 std::vector<Value*> Idx; 581 Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext()))); 582 Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)); 583 Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf", 584 UnwindBlock); 585 Idx[0] = new BitCastInst(Idx[0], 586 Type::getInt8PtrTy(F.getContext()), 587 "tmp", UnwindBlock); 588 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); 589 CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock); 590 new UnreachableInst(F.getContext(), UnwindBlock); 591 592 // Set up the term block ("throw without a catch"). 593 new UnreachableInst(F.getContext(), TermBlock); 594 595 // Insert a new call to write(2, AbortMessage, AbortMessageLength); 596 writeAbortMessage(TermBlock->getTerminator()); 597 598 // Insert a call to abort() 599 CallInst::Create(AbortFn, "", 600 TermBlock->getTerminator())->setTailCall(); 601 602 603 // Replace all unwinds with a branch to the unwind handler. 604 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { 605 BranchInst::Create(UnwindHandler, Unwinds[i]); 606 Unwinds[i]->eraseFromParent(); 607 } 608 609 // Finally, for any returns from this function, if this function contains an 610 // invoke, restore the old jmpbuf pointer to its input value. 611 if (OldJmpBufPtr) { 612 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 613 ReturnInst *R = Returns[i]; 614 615 // Before the return, insert a copy from the saved value to the new value. 616 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 617 new StoreInst(OldBuf, JBListHead, true, R); 618 } 619 } 620 621 return true; 622 } 623 624 bool LowerInvoke::runOnFunction(Function &F) { 625 if (ExpensiveEHSupport) 626 return insertExpensiveEHSupport(F); 627 else 628 return insertCheapEHSupport(F); 629 } 630