1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Constants.h" 40 #include "llvm/DerivedTypes.h" 41 #include "llvm/Instructions.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/TargetTransformInfo.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Support/CommandLine.h" 52 #include <csetjmp> 53 #include <set> 54 using namespace llvm; 55 56 STATISTIC(NumInvokes, "Number of invokes replaced"); 57 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 58 59 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 61 62 namespace { 63 class LowerInvoke : public FunctionPass { 64 // Used for both models. 65 Constant *AbortFn; 66 67 // Used for expensive EH support. 68 StructType *JBLinkTy; 69 GlobalVariable *JBListHead; 70 Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; 71 bool useExpensiveEHSupport; 72 73 // We peek in STTI to grab the target's jmp_buf size and alignment 74 const ScalarTargetTransformInfo *STTI; 75 76 public: 77 static char ID; // Pass identification, replacement for typeid 78 explicit LowerInvoke(bool useExpensiveEHSupport = ExpensiveEHSupport) 79 : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport), 80 STTI(0) { 81 initializeLowerInvokePass(*PassRegistry::getPassRegistry()); 82 } 83 bool doInitialization(Module &M); 84 bool runOnFunction(Function &F); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 // This is a cluster of orthogonal Transforms 88 AU.addPreserved("mem2reg"); 89 AU.addPreservedID(LowerSwitchID); 90 } 91 92 private: 93 bool insertCheapEHSupport(Function &F); 94 void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); 95 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 96 AllocaInst *InvokeNum, AllocaInst *StackPtr, 97 SwitchInst *CatchSwitch); 98 bool insertExpensiveEHSupport(Function &F); 99 }; 100 } 101 102 char LowerInvoke::ID = 0; 103 INITIALIZE_PASS(LowerInvoke, "lowerinvoke", 104 "Lower invoke and unwind, for unwindless code generators", 105 false, false) 106 107 char &llvm::LowerInvokePassID = LowerInvoke::ID; 108 109 // Public Interface To the LowerInvoke pass. 110 FunctionPass *llvm::createLowerInvokePass() { 111 return new LowerInvoke(ExpensiveEHSupport); 112 } 113 FunctionPass *llvm::createLowerInvokePass(bool useExpensiveEHSupport) { 114 return new LowerInvoke(useExpensiveEHSupport); 115 } 116 117 // doInitialization - Make sure that there is a prototype for abort in the 118 // current module. 119 bool LowerInvoke::doInitialization(Module &M) { 120 TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>(); 121 if (TTI) 122 STTI = TTI->getScalarTargetTransformInfo(); 123 124 Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); 125 if (useExpensiveEHSupport) { 126 // Insert a type for the linked list of jump buffers. 127 unsigned JBSize = STTI ? STTI->getJumpBufSize() : 0; 128 JBSize = JBSize ? JBSize : 200; 129 Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); 130 131 JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty"); 132 Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) }; 133 JBLinkTy->setBody(Elts); 134 135 Type *PtrJBList = PointerType::getUnqual(JBLinkTy); 136 137 // Now that we've done that, insert the jmpbuf list head global, unless it 138 // already exists. 139 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 140 JBListHead = new GlobalVariable(M, PtrJBList, false, 141 GlobalValue::LinkOnceAnyLinkage, 142 Constant::getNullValue(PtrJBList), 143 "llvm.sjljeh.jblist"); 144 } 145 146 // VisualStudio defines setjmp as _setjmp 147 #if defined(_MSC_VER) && defined(setjmp) && \ 148 !defined(setjmp_undefined_for_msvc) 149 # pragma push_macro("setjmp") 150 # undef setjmp 151 # define setjmp_undefined_for_msvc 152 #endif 153 154 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 155 156 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 157 // let's return it to _setjmp state 158 # pragma pop_macro("setjmp") 159 # undef setjmp_undefined_for_msvc 160 #endif 161 162 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 163 StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); 164 StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); 165 } 166 167 // We need the 'write' and 'abort' functions for both models. 168 AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), 169 (Type *)0); 170 return true; 171 } 172 173 bool LowerInvoke::insertCheapEHSupport(Function &F) { 174 bool Changed = false; 175 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 176 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 177 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 178 // Insert a normal call instruction... 179 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 180 CallArgs, "", II); 181 NewCall->takeName(II); 182 NewCall->setCallingConv(II->getCallingConv()); 183 NewCall->setAttributes(II->getAttributes()); 184 NewCall->setDebugLoc(II->getDebugLoc()); 185 II->replaceAllUsesWith(NewCall); 186 187 // Insert an unconditional branch to the normal destination. 188 BranchInst::Create(II->getNormalDest(), II); 189 190 // Remove any PHI node entries from the exception destination. 191 II->getUnwindDest()->removePredecessor(BB); 192 193 // Remove the invoke instruction now. 194 BB->getInstList().erase(II); 195 196 ++NumInvokes; Changed = true; 197 } 198 return Changed; 199 } 200 201 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 202 /// specified invoke instruction with a call. 203 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 204 AllocaInst *InvokeNum, 205 AllocaInst *StackPtr, 206 SwitchInst *CatchSwitch) { 207 ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), 208 InvokeNo); 209 210 // If the unwind edge has phi nodes, split the edge. 211 if (isa<PHINode>(II->getUnwindDest()->begin())) { 212 SplitCriticalEdge(II, 1, this); 213 214 // If there are any phi nodes left, they must have a single predecessor. 215 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 216 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 217 PN->eraseFromParent(); 218 } 219 } 220 221 // Insert a store of the invoke num before the invoke and store zero into the 222 // location afterward. 223 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 224 225 // Insert a store of the stack ptr before the invoke, so we can restore it 226 // later in the exception case. 227 CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); 228 new StoreInst(StackSaveRet, StackPtr, true, II); // volatile 229 230 BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt(); 231 // nonvolatile. 232 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), 233 InvokeNum, false, NI); 234 235 Instruction* StackPtrLoad = 236 new LoadInst(StackPtr, "stackptr.restore", true, 237 II->getUnwindDest()->getFirstInsertionPt()); 238 CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); 239 240 // Add a switch case to our unwind block. 241 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 242 243 // Insert a normal call instruction. 244 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 245 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 246 CallArgs, "", II); 247 NewCall->takeName(II); 248 NewCall->setCallingConv(II->getCallingConv()); 249 NewCall->setAttributes(II->getAttributes()); 250 NewCall->setDebugLoc(II->getDebugLoc()); 251 II->replaceAllUsesWith(NewCall); 252 253 // Replace the invoke with an uncond branch. 254 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 255 II->eraseFromParent(); 256 } 257 258 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 259 /// we reach blocks we've already seen. 260 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 261 if (!LiveBBs.insert(BB).second) return; // already been here. 262 263 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 264 MarkBlocksLiveIn(*PI, LiveBBs); 265 } 266 267 // First thing we need to do is scan the whole function for values that are 268 // live across unwind edges. Each value that is live across an unwind edge 269 // we spill into a stack location, guaranteeing that there is nothing live 270 // across the unwind edge. This process also splits all critical edges 271 // coming out of invoke's. 272 void LowerInvoke:: 273 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { 274 // First step, split all critical edges from invoke instructions. 275 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 276 InvokeInst *II = Invokes[i]; 277 SplitCriticalEdge(II, 0, this); 278 SplitCriticalEdge(II, 1, this); 279 assert(!isa<PHINode>(II->getNormalDest()) && 280 !isa<PHINode>(II->getUnwindDest()) && 281 "critical edge splitting left single entry phi nodes?"); 282 } 283 284 Function *F = Invokes.back()->getParent()->getParent(); 285 286 // To avoid having to handle incoming arguments specially, we lower each arg 287 // to a copy instruction in the entry block. This ensures that the argument 288 // value itself cannot be live across the entry block. 289 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 290 while (isa<AllocaInst>(AfterAllocaInsertPt) && 291 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 292 ++AfterAllocaInsertPt; 293 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 294 AI != E; ++AI) { 295 Type *Ty = AI->getType(); 296 // Aggregate types can't be cast, but are legal argument types, so we have 297 // to handle them differently. We use an extract/insert pair as a 298 // lightweight method to achieve the same goal. 299 if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 300 Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); 301 Instruction *NI = InsertValueInst::Create(AI, EI, 0); 302 NI->insertAfter(EI); 303 AI->replaceAllUsesWith(NI); 304 // Set the operand of the instructions back to the AllocaInst. 305 EI->setOperand(0, AI); 306 NI->setOperand(0, AI); 307 } else { 308 // This is always a no-op cast because we're casting AI to AI->getType() 309 // so src and destination types are identical. BitCast is the only 310 // possibility. 311 CastInst *NC = new BitCastInst( 312 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 313 AI->replaceAllUsesWith(NC); 314 // Set the operand of the cast instruction back to the AllocaInst. 315 // Normally it's forbidden to replace a CastInst's operand because it 316 // could cause the opcode to reflect an illegal conversion. However, 317 // we're replacing it here with the same value it was constructed with. 318 // We do this because the above replaceAllUsesWith() clobbered the 319 // operand, but we want this one to remain. 320 NC->setOperand(0, AI); 321 } 322 } 323 324 // Finally, scan the code looking for instructions with bad live ranges. 325 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 326 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 327 // Ignore obvious cases we don't have to handle. In particular, most 328 // instructions either have no uses or only have a single use inside the 329 // current block. Ignore them quickly. 330 Instruction *Inst = II; 331 if (Inst->use_empty()) continue; 332 if (Inst->hasOneUse() && 333 cast<Instruction>(Inst->use_back())->getParent() == BB && 334 !isa<PHINode>(Inst->use_back())) continue; 335 336 // If this is an alloca in the entry block, it's not a real register 337 // value. 338 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 339 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 340 continue; 341 342 // Avoid iterator invalidation by copying users to a temporary vector. 343 SmallVector<Instruction*,16> Users; 344 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 345 UI != E; ++UI) { 346 Instruction *User = cast<Instruction>(*UI); 347 if (User->getParent() != BB || isa<PHINode>(User)) 348 Users.push_back(User); 349 } 350 351 // Scan all of the uses and see if the live range is live across an unwind 352 // edge. If we find a use live across an invoke edge, create an alloca 353 // and spill the value. 354 std::set<InvokeInst*> InvokesWithStoreInserted; 355 356 // Find all of the blocks that this value is live in. 357 std::set<BasicBlock*> LiveBBs; 358 LiveBBs.insert(Inst->getParent()); 359 while (!Users.empty()) { 360 Instruction *U = Users.back(); 361 Users.pop_back(); 362 363 if (!isa<PHINode>(U)) { 364 MarkBlocksLiveIn(U->getParent(), LiveBBs); 365 } else { 366 // Uses for a PHI node occur in their predecessor block. 367 PHINode *PN = cast<PHINode>(U); 368 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 369 if (PN->getIncomingValue(i) == Inst) 370 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 371 } 372 } 373 374 // Now that we know all of the blocks that this thing is live in, see if 375 // it includes any of the unwind locations. 376 bool NeedsSpill = false; 377 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 378 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 379 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 380 NeedsSpill = true; 381 } 382 } 383 384 // If we decided we need a spill, do it. 385 if (NeedsSpill) { 386 ++NumSpilled; 387 DemoteRegToStack(*Inst, true); 388 } 389 } 390 } 391 392 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 393 SmallVector<ReturnInst*,16> Returns; 394 SmallVector<InvokeInst*,16> Invokes; 395 UnreachableInst* UnreachablePlaceholder = 0; 396 397 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 398 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 399 // Remember all return instructions in case we insert an invoke into this 400 // function. 401 Returns.push_back(RI); 402 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 403 Invokes.push_back(II); 404 } 405 406 if (Invokes.empty()) return false; 407 408 NumInvokes += Invokes.size(); 409 410 // TODO: This is not an optimal way to do this. In particular, this always 411 // inserts setjmp calls into the entries of functions with invoke instructions 412 // even though there are possibly paths through the function that do not 413 // execute any invokes. In particular, for functions with early exits, e.g. 414 // the 'addMove' method in hexxagon, it would be nice to not have to do the 415 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 416 // would not be too hard to do. 417 418 // If we have an invoke instruction, insert a setjmp that dominates all 419 // invokes. After the setjmp, use a cond branch that goes to the original 420 // code path on zero, and to a designated 'catch' block of nonzero. 421 Value *OldJmpBufPtr = 0; 422 if (!Invokes.empty()) { 423 // First thing we need to do is scan the whole function for values that are 424 // live across unwind edges. Each value that is live across an unwind edge 425 // we spill into a stack location, guaranteeing that there is nothing live 426 // across the unwind edge. This process also splits all critical edges 427 // coming out of invoke's. 428 splitLiveRangesLiveAcrossInvokes(Invokes); 429 430 BasicBlock *EntryBB = F.begin(); 431 432 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 433 // that needs to be restored on all exits from the function. This is an 434 // alloca because the value needs to be live across invokes. 435 unsigned Align = STTI ? STTI->getJumpBufAlignment() : 0; 436 AllocaInst *JmpBuf = 437 new AllocaInst(JBLinkTy, 0, Align, 438 "jblink", F.begin()->begin()); 439 440 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 441 ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; 442 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf", 443 EntryBB->getTerminator()); 444 445 // Copy the JBListHead to the alloca. 446 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 447 EntryBB->getTerminator()); 448 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 449 450 // Add the new jumpbuf to the list. 451 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 452 453 // Create the catch block. The catch block is basically a big switch 454 // statement that goes to all of the invoke catch blocks. 455 BasicBlock *CatchBB = 456 BasicBlock::Create(F.getContext(), "setjmp.catch", &F); 457 458 // Create an alloca which keeps track of the stack pointer before every 459 // invoke, this allows us to properly restore the stack pointer after 460 // long jumping. 461 AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, 462 "stackptr", EntryBB->begin()); 463 464 // Create an alloca which keeps track of which invoke is currently 465 // executing. For normal calls it contains zero. 466 AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, 467 "invokenum",EntryBB->begin()); 468 new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 469 InvokeNum, true, EntryBB->getTerminator()); 470 471 // Insert a load in the Catch block, and a switch on its value. By default, 472 // we go to a block that just does an unwind (which is the correct action 473 // for a standard call). We insert an unreachable instruction here and 474 // modify the block to jump to the correct unwinding pad later. 475 BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); 476 UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB); 477 478 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 479 SwitchInst *CatchSwitch = 480 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 481 482 // Now that things are set up, insert the setjmp call itself. 483 484 // Split the entry block to insert the conditional branch for the setjmp. 485 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 486 "setjmp.cont"); 487 488 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); 489 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf", 490 EntryBB->getTerminator()); 491 JmpBufPtr = new BitCastInst(JmpBufPtr, 492 Type::getInt8PtrTy(F.getContext()), 493 "tmp", EntryBB->getTerminator()); 494 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 495 EntryBB->getTerminator()); 496 497 // Compare the return value to zero. 498 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 499 ICmpInst::ICMP_EQ, SJRet, 500 Constant::getNullValue(SJRet->getType()), 501 "notunwind"); 502 // Nuke the uncond branch. 503 EntryBB->getTerminator()->eraseFromParent(); 504 505 // Put in a new condbranch in its place. 506 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 507 508 // At this point, we are all set up, rewrite each invoke instruction. 509 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 510 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); 511 } 512 513 // We know that there is at least one unwind. 514 515 // Create three new blocks, the block to load the jmpbuf ptr and compare 516 // against null, the block to do the longjmp, and the error block for if it 517 // is null. Add them at the end of the function because they are not hot. 518 BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), 519 "dounwind", &F); 520 BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); 521 BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); 522 523 // If this function contains an invoke, restore the old jumpbuf ptr. 524 Value *BufPtr; 525 if (OldJmpBufPtr) { 526 // Before the return, insert a copy from the saved value to the new value. 527 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 528 new StoreInst(BufPtr, JBListHead, UnwindHandler); 529 } else { 530 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 531 } 532 533 // Load the JBList, if it's null, then there was no catch! 534 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 535 Constant::getNullValue(BufPtr->getType()), 536 "notnull"); 537 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 538 539 // Create the block to do the longjmp. 540 // Get a pointer to the jmpbuf and longjmp. 541 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 542 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; 543 Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock); 544 Idx[0] = new BitCastInst(Idx[0], 545 Type::getInt8PtrTy(F.getContext()), 546 "tmp", UnwindBlock); 547 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); 548 CallInst::Create(LongJmpFn, Idx, "", UnwindBlock); 549 new UnreachableInst(F.getContext(), UnwindBlock); 550 551 // Set up the term block ("throw without a catch"). 552 new UnreachableInst(F.getContext(), TermBlock); 553 554 // Insert a call to abort() 555 CallInst::Create(AbortFn, "", 556 TermBlock->getTerminator())->setTailCall(); 557 558 // Replace the inserted unreachable with a branch to the unwind handler. 559 if (UnreachablePlaceholder) { 560 BranchInst::Create(UnwindHandler, UnreachablePlaceholder); 561 UnreachablePlaceholder->eraseFromParent(); 562 } 563 564 // Finally, for any returns from this function, if this function contains an 565 // invoke, restore the old jmpbuf pointer to its input value. 566 if (OldJmpBufPtr) { 567 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 568 ReturnInst *R = Returns[i]; 569 570 // Before the return, insert a copy from the saved value to the new value. 571 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 572 new StoreInst(OldBuf, JBListHead, true, R); 573 } 574 } 575 576 return true; 577 } 578 579 bool LowerInvoke::runOnFunction(Function &F) { 580 TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>(); 581 if (TTI) 582 STTI = TTI->getScalarTargetTransformInfo(); 583 584 if (useExpensiveEHSupport) 585 return insertExpensiveEHSupport(F); 586 else 587 return insertCheapEHSupport(F); 588 } 589