1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Constants.h" 40 #include "llvm/DerivedTypes.h" 41 #include "llvm/Instructions.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include <csetjmp> 53 #include <set> 54 using namespace llvm; 55 56 STATISTIC(NumInvokes, "Number of invokes replaced"); 57 STATISTIC(NumUnwinds, "Number of unwinds replaced"); 58 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 59 60 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 62 63 namespace { 64 class LowerInvoke : public FunctionPass { 65 // Used for both models. 66 Constant *AbortFn; 67 68 // Used for expensive EH support. 69 const Type *JBLinkTy; 70 GlobalVariable *JBListHead; 71 Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; 72 bool useExpensiveEHSupport; 73 74 // We peek in TLI to grab the target's jmp_buf size and alignment 75 const TargetLowering *TLI; 76 77 public: 78 static char ID; // Pass identification, replacement for typeid 79 explicit LowerInvoke(const TargetLowering *tli = NULL, 80 bool useExpensiveEHSupport = ExpensiveEHSupport) 81 : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport), 82 TLI(tli) { 83 initializeLowerInvokePass(*PassRegistry::getPassRegistry()); 84 } 85 bool doInitialization(Module &M); 86 bool runOnFunction(Function &F); 87 88 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 89 // This is a cluster of orthogonal Transforms 90 AU.addPreserved("mem2reg"); 91 AU.addPreservedID(LowerSwitchID); 92 } 93 94 private: 95 bool insertCheapEHSupport(Function &F); 96 void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); 97 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 98 AllocaInst *InvokeNum, AllocaInst *StackPtr, 99 SwitchInst *CatchSwitch); 100 bool insertExpensiveEHSupport(Function &F); 101 }; 102 } 103 104 char LowerInvoke::ID = 0; 105 INITIALIZE_PASS(LowerInvoke, "lowerinvoke", 106 "Lower invoke and unwind, for unwindless code generators", 107 false, false) 108 109 char &llvm::LowerInvokePassID = LowerInvoke::ID; 110 111 // Public Interface To the LowerInvoke pass. 112 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { 113 return new LowerInvoke(TLI, ExpensiveEHSupport); 114 } 115 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI, 116 bool useExpensiveEHSupport) { 117 return new LowerInvoke(TLI, useExpensiveEHSupport); 118 } 119 120 // doInitialization - Make sure that there is a prototype for abort in the 121 // current module. 122 bool LowerInvoke::doInitialization(Module &M) { 123 const Type *VoidPtrTy = 124 Type::getInt8PtrTy(M.getContext()); 125 if (useExpensiveEHSupport) { 126 // Insert a type for the linked list of jump buffers. 127 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; 128 JBSize = JBSize ? JBSize : 200; 129 const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); 130 131 { // The type is recursive, so use a type holder. 132 std::vector<const Type*> Elements; 133 Elements.push_back(JmpBufTy); 134 OpaqueType *OT = OpaqueType::get(M.getContext()); 135 Elements.push_back(PointerType::getUnqual(OT)); 136 PATypeHolder JBLType(StructType::get(M.getContext(), Elements)); 137 OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle. 138 JBLinkTy = JBLType.get(); 139 M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy); 140 } 141 142 const Type *PtrJBList = PointerType::getUnqual(JBLinkTy); 143 144 // Now that we've done that, insert the jmpbuf list head global, unless it 145 // already exists. 146 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 147 JBListHead = new GlobalVariable(M, PtrJBList, false, 148 GlobalValue::LinkOnceAnyLinkage, 149 Constant::getNullValue(PtrJBList), 150 "llvm.sjljeh.jblist"); 151 } 152 153 // VisualStudio defines setjmp as _setjmp 154 #if defined(_MSC_VER) && defined(setjmp) && \ 155 !defined(setjmp_undefined_for_msvc) 156 # pragma push_macro("setjmp") 157 # undef setjmp 158 # define setjmp_undefined_for_msvc 159 #endif 160 161 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 162 163 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 164 // let's return it to _setjmp state 165 # pragma pop_macro("setjmp") 166 # undef setjmp_undefined_for_msvc 167 #endif 168 169 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 170 StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); 171 StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); 172 } 173 174 // We need the 'write' and 'abort' functions for both models. 175 AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), 176 (Type *)0); 177 return true; 178 } 179 180 bool LowerInvoke::insertCheapEHSupport(Function &F) { 181 bool Changed = false; 182 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 183 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 184 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 185 // Insert a normal call instruction... 186 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 187 CallArgs.begin(), CallArgs.end(), 188 "",II); 189 NewCall->takeName(II); 190 NewCall->setCallingConv(II->getCallingConv()); 191 NewCall->setAttributes(II->getAttributes()); 192 NewCall->setDebugLoc(II->getDebugLoc()); 193 II->replaceAllUsesWith(NewCall); 194 195 // Insert an unconditional branch to the normal destination. 196 BranchInst::Create(II->getNormalDest(), II); 197 198 // Remove any PHI node entries from the exception destination. 199 II->getUnwindDest()->removePredecessor(BB); 200 201 // Remove the invoke instruction now. 202 BB->getInstList().erase(II); 203 204 ++NumInvokes; Changed = true; 205 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 206 // Insert a call to abort() 207 CallInst::Create(AbortFn, "", UI)->setTailCall(); 208 209 // Insert a return instruction. This really should be a "barrier", as it 210 // is unreachable. 211 ReturnInst::Create(F.getContext(), 212 F.getReturnType()->isVoidTy() ? 213 0 : Constant::getNullValue(F.getReturnType()), UI); 214 215 // Remove the unwind instruction now. 216 BB->getInstList().erase(UI); 217 218 ++NumUnwinds; Changed = true; 219 } 220 return Changed; 221 } 222 223 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 224 /// specified invoke instruction with a call. 225 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 226 AllocaInst *InvokeNum, 227 AllocaInst *StackPtr, 228 SwitchInst *CatchSwitch) { 229 ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), 230 InvokeNo); 231 232 // If the unwind edge has phi nodes, split the edge. 233 if (isa<PHINode>(II->getUnwindDest()->begin())) { 234 SplitCriticalEdge(II, 1, this); 235 236 // If there are any phi nodes left, they must have a single predecessor. 237 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 238 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 239 PN->eraseFromParent(); 240 } 241 } 242 243 // Insert a store of the invoke num before the invoke and store zero into the 244 // location afterward. 245 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 246 247 // Insert a store of the stack ptr before the invoke, so we can restore it 248 // later in the exception case. 249 CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); 250 new StoreInst(StackSaveRet, StackPtr, true, II); // volatile 251 252 BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI(); 253 // nonvolatile. 254 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), 255 InvokeNum, false, NI); 256 257 Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true, 258 II->getUnwindDest()->getFirstNonPHI() 259 ); 260 CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); 261 262 // Add a switch case to our unwind block. 263 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 264 265 // Insert a normal call instruction. 266 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 267 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 268 CallArgs.begin(), CallArgs.end(), "", 269 II); 270 NewCall->takeName(II); 271 NewCall->setCallingConv(II->getCallingConv()); 272 NewCall->setAttributes(II->getAttributes()); 273 NewCall->setDebugLoc(II->getDebugLoc()); 274 II->replaceAllUsesWith(NewCall); 275 276 // Replace the invoke with an uncond branch. 277 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 278 II->eraseFromParent(); 279 } 280 281 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 282 /// we reach blocks we've already seen. 283 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 284 if (!LiveBBs.insert(BB).second) return; // already been here. 285 286 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 287 MarkBlocksLiveIn(*PI, LiveBBs); 288 } 289 290 // First thing we need to do is scan the whole function for values that are 291 // live across unwind edges. Each value that is live across an unwind edge 292 // we spill into a stack location, guaranteeing that there is nothing live 293 // across the unwind edge. This process also splits all critical edges 294 // coming out of invoke's. 295 void LowerInvoke:: 296 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { 297 // First step, split all critical edges from invoke instructions. 298 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 299 InvokeInst *II = Invokes[i]; 300 SplitCriticalEdge(II, 0, this); 301 SplitCriticalEdge(II, 1, this); 302 assert(!isa<PHINode>(II->getNormalDest()) && 303 !isa<PHINode>(II->getUnwindDest()) && 304 "critical edge splitting left single entry phi nodes?"); 305 } 306 307 Function *F = Invokes.back()->getParent()->getParent(); 308 309 // To avoid having to handle incoming arguments specially, we lower each arg 310 // to a copy instruction in the entry block. This ensures that the argument 311 // value itself cannot be live across the entry block. 312 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 313 while (isa<AllocaInst>(AfterAllocaInsertPt) && 314 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 315 ++AfterAllocaInsertPt; 316 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 317 AI != E; ++AI) { 318 const Type *Ty = AI->getType(); 319 // Aggregate types can't be cast, but are legal argument types, so we have 320 // to handle them differently. We use an extract/insert pair as a 321 // lightweight method to achieve the same goal. 322 if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 323 Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); 324 Instruction *NI = InsertValueInst::Create(AI, EI, 0); 325 NI->insertAfter(EI); 326 AI->replaceAllUsesWith(NI); 327 // Set the operand of the instructions back to the AllocaInst. 328 EI->setOperand(0, AI); 329 NI->setOperand(0, AI); 330 } else { 331 // This is always a no-op cast because we're casting AI to AI->getType() 332 // so src and destination types are identical. BitCast is the only 333 // possibility. 334 CastInst *NC = new BitCastInst( 335 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 336 AI->replaceAllUsesWith(NC); 337 // Set the operand of the cast instruction back to the AllocaInst. 338 // Normally it's forbidden to replace a CastInst's operand because it 339 // could cause the opcode to reflect an illegal conversion. However, 340 // we're replacing it here with the same value it was constructed with. 341 // We do this because the above replaceAllUsesWith() clobbered the 342 // operand, but we want this one to remain. 343 NC->setOperand(0, AI); 344 } 345 } 346 347 // Finally, scan the code looking for instructions with bad live ranges. 348 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 349 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 350 // Ignore obvious cases we don't have to handle. In particular, most 351 // instructions either have no uses or only have a single use inside the 352 // current block. Ignore them quickly. 353 Instruction *Inst = II; 354 if (Inst->use_empty()) continue; 355 if (Inst->hasOneUse() && 356 cast<Instruction>(Inst->use_back())->getParent() == BB && 357 !isa<PHINode>(Inst->use_back())) continue; 358 359 // If this is an alloca in the entry block, it's not a real register 360 // value. 361 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 362 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 363 continue; 364 365 // Avoid iterator invalidation by copying users to a temporary vector. 366 SmallVector<Instruction*,16> Users; 367 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 368 UI != E; ++UI) { 369 Instruction *User = cast<Instruction>(*UI); 370 if (User->getParent() != BB || isa<PHINode>(User)) 371 Users.push_back(User); 372 } 373 374 // Scan all of the uses and see if the live range is live across an unwind 375 // edge. If we find a use live across an invoke edge, create an alloca 376 // and spill the value. 377 std::set<InvokeInst*> InvokesWithStoreInserted; 378 379 // Find all of the blocks that this value is live in. 380 std::set<BasicBlock*> LiveBBs; 381 LiveBBs.insert(Inst->getParent()); 382 while (!Users.empty()) { 383 Instruction *U = Users.back(); 384 Users.pop_back(); 385 386 if (!isa<PHINode>(U)) { 387 MarkBlocksLiveIn(U->getParent(), LiveBBs); 388 } else { 389 // Uses for a PHI node occur in their predecessor block. 390 PHINode *PN = cast<PHINode>(U); 391 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 392 if (PN->getIncomingValue(i) == Inst) 393 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 394 } 395 } 396 397 // Now that we know all of the blocks that this thing is live in, see if 398 // it includes any of the unwind locations. 399 bool NeedsSpill = false; 400 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 401 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 402 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 403 NeedsSpill = true; 404 } 405 } 406 407 // If we decided we need a spill, do it. 408 if (NeedsSpill) { 409 ++NumSpilled; 410 DemoteRegToStack(*Inst, true); 411 } 412 } 413 } 414 415 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 416 SmallVector<ReturnInst*,16> Returns; 417 SmallVector<UnwindInst*,16> Unwinds; 418 SmallVector<InvokeInst*,16> Invokes; 419 420 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 421 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 422 // Remember all return instructions in case we insert an invoke into this 423 // function. 424 Returns.push_back(RI); 425 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 426 Invokes.push_back(II); 427 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 428 Unwinds.push_back(UI); 429 } 430 431 if (Unwinds.empty() && Invokes.empty()) return false; 432 433 NumInvokes += Invokes.size(); 434 NumUnwinds += Unwinds.size(); 435 436 // TODO: This is not an optimal way to do this. In particular, this always 437 // inserts setjmp calls into the entries of functions with invoke instructions 438 // even though there are possibly paths through the function that do not 439 // execute any invokes. In particular, for functions with early exits, e.g. 440 // the 'addMove' method in hexxagon, it would be nice to not have to do the 441 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 442 // would not be too hard to do. 443 444 // If we have an invoke instruction, insert a setjmp that dominates all 445 // invokes. After the setjmp, use a cond branch that goes to the original 446 // code path on zero, and to a designated 'catch' block of nonzero. 447 Value *OldJmpBufPtr = 0; 448 if (!Invokes.empty()) { 449 // First thing we need to do is scan the whole function for values that are 450 // live across unwind edges. Each value that is live across an unwind edge 451 // we spill into a stack location, guaranteeing that there is nothing live 452 // across the unwind edge. This process also splits all critical edges 453 // coming out of invoke's. 454 splitLiveRangesLiveAcrossInvokes(Invokes); 455 456 BasicBlock *EntryBB = F.begin(); 457 458 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 459 // that needs to be restored on all exits from the function. This is an 460 // alloca because the value needs to be live across invokes. 461 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; 462 AllocaInst *JmpBuf = 463 new AllocaInst(JBLinkTy, 0, Align, 464 "jblink", F.begin()->begin()); 465 466 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 467 ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; 468 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2], 469 "OldBuf", 470 EntryBB->getTerminator()); 471 472 // Copy the JBListHead to the alloca. 473 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 474 EntryBB->getTerminator()); 475 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 476 477 // Add the new jumpbuf to the list. 478 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 479 480 // Create the catch block. The catch block is basically a big switch 481 // statement that goes to all of the invoke catch blocks. 482 BasicBlock *CatchBB = 483 BasicBlock::Create(F.getContext(), "setjmp.catch", &F); 484 485 // Create an alloca which keeps track of the stack pointer before every 486 // invoke, this allows us to properly restore the stack pointer after 487 // long jumping. 488 AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, 489 "stackptr", EntryBB->begin()); 490 491 // Create an alloca which keeps track of which invoke is currently 492 // executing. For normal calls it contains zero. 493 AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, 494 "invokenum",EntryBB->begin()); 495 new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 496 InvokeNum, true, EntryBB->getTerminator()); 497 498 // Insert a load in the Catch block, and a switch on its value. By default, 499 // we go to a block that just does an unwind (which is the correct action 500 // for a standard call). 501 BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); 502 Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB)); 503 504 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 505 SwitchInst *CatchSwitch = 506 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 507 508 // Now that things are set up, insert the setjmp call itself. 509 510 // Split the entry block to insert the conditional branch for the setjmp. 511 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 512 "setjmp.cont"); 513 514 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); 515 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2], 516 "TheJmpBuf", 517 EntryBB->getTerminator()); 518 JmpBufPtr = new BitCastInst(JmpBufPtr, 519 Type::getInt8PtrTy(F.getContext()), 520 "tmp", EntryBB->getTerminator()); 521 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 522 EntryBB->getTerminator()); 523 524 // Compare the return value to zero. 525 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 526 ICmpInst::ICMP_EQ, SJRet, 527 Constant::getNullValue(SJRet->getType()), 528 "notunwind"); 529 // Nuke the uncond branch. 530 EntryBB->getTerminator()->eraseFromParent(); 531 532 // Put in a new condbranch in its place. 533 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 534 535 // At this point, we are all set up, rewrite each invoke instruction. 536 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 537 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); 538 } 539 540 // We know that there is at least one unwind. 541 542 // Create three new blocks, the block to load the jmpbuf ptr and compare 543 // against null, the block to do the longjmp, and the error block for if it 544 // is null. Add them at the end of the function because they are not hot. 545 BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), 546 "dounwind", &F); 547 BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); 548 BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); 549 550 // If this function contains an invoke, restore the old jumpbuf ptr. 551 Value *BufPtr; 552 if (OldJmpBufPtr) { 553 // Before the return, insert a copy from the saved value to the new value. 554 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 555 new StoreInst(BufPtr, JBListHead, UnwindHandler); 556 } else { 557 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 558 } 559 560 // Load the JBList, if it's null, then there was no catch! 561 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 562 Constant::getNullValue(BufPtr->getType()), 563 "notnull"); 564 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 565 566 // Create the block to do the longjmp. 567 // Get a pointer to the jmpbuf and longjmp. 568 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 569 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; 570 Idx[0] = GetElementPtrInst::Create(BufPtr, &Idx[0], &Idx[2], "JmpBuf", 571 UnwindBlock); 572 Idx[0] = new BitCastInst(Idx[0], 573 Type::getInt8PtrTy(F.getContext()), 574 "tmp", UnwindBlock); 575 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); 576 CallInst::Create(LongJmpFn, &Idx[0], &Idx[2], "", UnwindBlock); 577 new UnreachableInst(F.getContext(), UnwindBlock); 578 579 // Set up the term block ("throw without a catch"). 580 new UnreachableInst(F.getContext(), TermBlock); 581 582 // Insert a call to abort() 583 CallInst::Create(AbortFn, "", 584 TermBlock->getTerminator())->setTailCall(); 585 586 587 // Replace all unwinds with a branch to the unwind handler. 588 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { 589 BranchInst::Create(UnwindHandler, Unwinds[i]); 590 Unwinds[i]->eraseFromParent(); 591 } 592 593 // Finally, for any returns from this function, if this function contains an 594 // invoke, restore the old jmpbuf pointer to its input value. 595 if (OldJmpBufPtr) { 596 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 597 ReturnInst *R = Returns[i]; 598 599 // Before the return, insert a copy from the saved value to the new value. 600 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 601 new StoreInst(OldBuf, JBListHead, true, R); 602 } 603 } 604 605 return true; 606 } 607 608 bool LowerInvoke::runOnFunction(Function &F) { 609 if (useExpensiveEHSupport) 610 return insertExpensiveEHSupport(F); 611 else 612 return insertCheapEHSupport(F); 613 } 614