1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include <csetjmp> 53 #include <set> 54 using namespace llvm; 55 56 STATISTIC(NumInvokes, "Number of invokes replaced"); 57 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 58 59 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 61 62 namespace { 63 class LowerInvoke : public FunctionPass { 64 const TargetMachine *TM; 65 66 // Used for both models. 67 Constant *AbortFn; 68 69 // Used for expensive EH support. 70 StructType *JBLinkTy; 71 GlobalVariable *JBListHead; 72 Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; 73 bool useExpensiveEHSupport; 74 75 public: 76 static char ID; // Pass identification, replacement for typeid 77 explicit LowerInvoke(const TargetMachine *TM = 0, 78 bool useExpensiveEHSupport = ExpensiveEHSupport) 79 : FunctionPass(ID), TM(TM), 80 useExpensiveEHSupport(useExpensiveEHSupport) { 81 initializeLowerInvokePass(*PassRegistry::getPassRegistry()); 82 } 83 bool doInitialization(Module &M) override; 84 bool runOnFunction(Function &F) override; 85 86 void getAnalysisUsage(AnalysisUsage &AU) const override { 87 // This is a cluster of orthogonal Transforms 88 AU.addPreserved("mem2reg"); 89 AU.addPreservedID(LowerSwitchID); 90 } 91 92 private: 93 bool insertCheapEHSupport(Function &F); 94 void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); 95 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 96 AllocaInst *InvokeNum, AllocaInst *StackPtr, 97 SwitchInst *CatchSwitch); 98 bool insertExpensiveEHSupport(Function &F); 99 }; 100 } 101 102 char LowerInvoke::ID = 0; 103 INITIALIZE_PASS(LowerInvoke, "lowerinvoke", 104 "Lower invoke and unwind, for unwindless code generators", 105 false, false) 106 107 char &llvm::LowerInvokePassID = LowerInvoke::ID; 108 109 // Public Interface To the LowerInvoke pass. 110 FunctionPass *llvm::createLowerInvokePass(const TargetMachine *TM, 111 bool useExpensiveEHSupport) { 112 return new LowerInvoke(TM, useExpensiveEHSupport || ExpensiveEHSupport); 113 } 114 115 // doInitialization - Make sure that there is a prototype for abort in the 116 // current module. 117 bool LowerInvoke::doInitialization(Module &M) { 118 Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); 119 if (useExpensiveEHSupport) { 120 // Insert a type for the linked list of jump buffers. 121 const TargetLowering *TLI = TM ? TM->getTargetLowering() : 0; 122 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; 123 JBSize = JBSize ? JBSize : 200; 124 Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); 125 126 JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty"); 127 Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) }; 128 JBLinkTy->setBody(Elts); 129 130 Type *PtrJBList = PointerType::getUnqual(JBLinkTy); 131 132 // Now that we've done that, insert the jmpbuf list head global, unless it 133 // already exists. 134 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 135 JBListHead = new GlobalVariable(M, PtrJBList, false, 136 GlobalValue::LinkOnceAnyLinkage, 137 Constant::getNullValue(PtrJBList), 138 "llvm.sjljeh.jblist"); 139 } 140 141 // VisualStudio defines setjmp as _setjmp 142 #if defined(_MSC_VER) && defined(setjmp) && \ 143 !defined(setjmp_undefined_for_msvc) 144 # pragma push_macro("setjmp") 145 # undef setjmp 146 # define setjmp_undefined_for_msvc 147 #endif 148 149 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 150 151 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 152 // let's return it to _setjmp state 153 # pragma pop_macro("setjmp") 154 # undef setjmp_undefined_for_msvc 155 #endif 156 157 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 158 StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); 159 StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); 160 } 161 162 // We need the 'write' and 'abort' functions for both models. 163 AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), 164 (Type *)0); 165 return true; 166 } 167 168 bool LowerInvoke::insertCheapEHSupport(Function &F) { 169 bool Changed = false; 170 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 171 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 172 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 173 // Insert a normal call instruction... 174 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 175 CallArgs, "", II); 176 NewCall->takeName(II); 177 NewCall->setCallingConv(II->getCallingConv()); 178 NewCall->setAttributes(II->getAttributes()); 179 NewCall->setDebugLoc(II->getDebugLoc()); 180 II->replaceAllUsesWith(NewCall); 181 182 // Insert an unconditional branch to the normal destination. 183 BranchInst::Create(II->getNormalDest(), II); 184 185 // Remove any PHI node entries from the exception destination. 186 II->getUnwindDest()->removePredecessor(BB); 187 188 // Remove the invoke instruction now. 189 BB->getInstList().erase(II); 190 191 ++NumInvokes; Changed = true; 192 } 193 return Changed; 194 } 195 196 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 197 /// specified invoke instruction with a call. 198 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 199 AllocaInst *InvokeNum, 200 AllocaInst *StackPtr, 201 SwitchInst *CatchSwitch) { 202 ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), 203 InvokeNo); 204 205 // If the unwind edge has phi nodes, split the edge. 206 if (isa<PHINode>(II->getUnwindDest()->begin())) { 207 SplitCriticalEdge(II, 1, this); 208 209 // If there are any phi nodes left, they must have a single predecessor. 210 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 211 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 212 PN->eraseFromParent(); 213 } 214 } 215 216 // Insert a store of the invoke num before the invoke and store zero into the 217 // location afterward. 218 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 219 220 // Insert a store of the stack ptr before the invoke, so we can restore it 221 // later in the exception case. 222 CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); 223 new StoreInst(StackSaveRet, StackPtr, true, II); // volatile 224 225 BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt(); 226 // nonvolatile. 227 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), 228 InvokeNum, false, NI); 229 230 Instruction* StackPtrLoad = 231 new LoadInst(StackPtr, "stackptr.restore", true, 232 II->getUnwindDest()->getFirstInsertionPt()); 233 CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); 234 235 // Add a switch case to our unwind block. 236 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 237 238 // Insert a normal call instruction. 239 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 240 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 241 CallArgs, "", II); 242 NewCall->takeName(II); 243 NewCall->setCallingConv(II->getCallingConv()); 244 NewCall->setAttributes(II->getAttributes()); 245 NewCall->setDebugLoc(II->getDebugLoc()); 246 II->replaceAllUsesWith(NewCall); 247 248 // Replace the invoke with an uncond branch. 249 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 250 II->eraseFromParent(); 251 } 252 253 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 254 /// we reach blocks we've already seen. 255 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 256 if (!LiveBBs.insert(BB).second) return; // already been here. 257 258 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 259 MarkBlocksLiveIn(*PI, LiveBBs); 260 } 261 262 // First thing we need to do is scan the whole function for values that are 263 // live across unwind edges. Each value that is live across an unwind edge 264 // we spill into a stack location, guaranteeing that there is nothing live 265 // across the unwind edge. This process also splits all critical edges 266 // coming out of invoke's. 267 void LowerInvoke:: 268 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { 269 // First step, split all critical edges from invoke instructions. 270 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 271 InvokeInst *II = Invokes[i]; 272 SplitCriticalEdge(II, 0, this); 273 SplitCriticalEdge(II, 1, this); 274 assert(!isa<PHINode>(II->getNormalDest()) && 275 !isa<PHINode>(II->getUnwindDest()) && 276 "critical edge splitting left single entry phi nodes?"); 277 } 278 279 Function *F = Invokes.back()->getParent()->getParent(); 280 281 // To avoid having to handle incoming arguments specially, we lower each arg 282 // to a copy instruction in the entry block. This ensures that the argument 283 // value itself cannot be live across the entry block. 284 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 285 while (isa<AllocaInst>(AfterAllocaInsertPt) && 286 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 287 ++AfterAllocaInsertPt; 288 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 289 AI != E; ++AI) { 290 Type *Ty = AI->getType(); 291 // Aggregate types can't be cast, but are legal argument types, so we have 292 // to handle them differently. We use an extract/insert pair as a 293 // lightweight method to achieve the same goal. 294 if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 295 Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); 296 Instruction *NI = InsertValueInst::Create(AI, EI, 0); 297 NI->insertAfter(EI); 298 AI->replaceAllUsesWith(NI); 299 // Set the operand of the instructions back to the AllocaInst. 300 EI->setOperand(0, AI); 301 NI->setOperand(0, AI); 302 } else { 303 // This is always a no-op cast because we're casting AI to AI->getType() 304 // so src and destination types are identical. BitCast is the only 305 // possibility. 306 CastInst *NC = new BitCastInst( 307 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 308 AI->replaceAllUsesWith(NC); 309 // Set the operand of the cast instruction back to the AllocaInst. 310 // Normally it's forbidden to replace a CastInst's operand because it 311 // could cause the opcode to reflect an illegal conversion. However, 312 // we're replacing it here with the same value it was constructed with. 313 // We do this because the above replaceAllUsesWith() clobbered the 314 // operand, but we want this one to remain. 315 NC->setOperand(0, AI); 316 } 317 } 318 319 // Finally, scan the code looking for instructions with bad live ranges. 320 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 321 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 322 // Ignore obvious cases we don't have to handle. In particular, most 323 // instructions either have no uses or only have a single use inside the 324 // current block. Ignore them quickly. 325 Instruction *Inst = II; 326 if (Inst->use_empty()) continue; 327 if (Inst->hasOneUse() && 328 cast<Instruction>(Inst->user_back())->getParent() == BB && 329 !isa<PHINode>(Inst->user_back())) continue; 330 331 // If this is an alloca in the entry block, it's not a real register 332 // value. 333 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 334 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 335 continue; 336 337 // Avoid iterator invalidation by copying users to a temporary vector. 338 SmallVector<Instruction*,16> Users; 339 for (User *U : Inst->users()) { 340 Instruction *UI = cast<Instruction>(U); 341 if (UI->getParent() != BB || isa<PHINode>(UI)) 342 Users.push_back(UI); 343 } 344 345 // Scan all of the uses and see if the live range is live across an unwind 346 // edge. If we find a use live across an invoke edge, create an alloca 347 // and spill the value. 348 349 // Find all of the blocks that this value is live in. 350 std::set<BasicBlock*> LiveBBs; 351 LiveBBs.insert(Inst->getParent()); 352 while (!Users.empty()) { 353 Instruction *U = Users.back(); 354 Users.pop_back(); 355 356 if (!isa<PHINode>(U)) { 357 MarkBlocksLiveIn(U->getParent(), LiveBBs); 358 } else { 359 // Uses for a PHI node occur in their predecessor block. 360 PHINode *PN = cast<PHINode>(U); 361 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 362 if (PN->getIncomingValue(i) == Inst) 363 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 364 } 365 } 366 367 // Now that we know all of the blocks that this thing is live in, see if 368 // it includes any of the unwind locations. 369 bool NeedsSpill = false; 370 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 371 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 372 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 373 NeedsSpill = true; 374 } 375 } 376 377 // If we decided we need a spill, do it. 378 if (NeedsSpill) { 379 ++NumSpilled; 380 DemoteRegToStack(*Inst, true); 381 } 382 } 383 } 384 385 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 386 SmallVector<ReturnInst*,16> Returns; 387 SmallVector<InvokeInst*,16> Invokes; 388 UnreachableInst* UnreachablePlaceholder = 0; 389 390 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 391 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 392 // Remember all return instructions in case we insert an invoke into this 393 // function. 394 Returns.push_back(RI); 395 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 396 Invokes.push_back(II); 397 } 398 399 if (Invokes.empty()) return false; 400 401 NumInvokes += Invokes.size(); 402 403 // TODO: This is not an optimal way to do this. In particular, this always 404 // inserts setjmp calls into the entries of functions with invoke instructions 405 // even though there are possibly paths through the function that do not 406 // execute any invokes. In particular, for functions with early exits, e.g. 407 // the 'addMove' method in hexxagon, it would be nice to not have to do the 408 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 409 // would not be too hard to do. 410 411 // If we have an invoke instruction, insert a setjmp that dominates all 412 // invokes. After the setjmp, use a cond branch that goes to the original 413 // code path on zero, and to a designated 'catch' block of nonzero. 414 Value *OldJmpBufPtr = 0; 415 if (!Invokes.empty()) { 416 // First thing we need to do is scan the whole function for values that are 417 // live across unwind edges. Each value that is live across an unwind edge 418 // we spill into a stack location, guaranteeing that there is nothing live 419 // across the unwind edge. This process also splits all critical edges 420 // coming out of invoke's. 421 splitLiveRangesLiveAcrossInvokes(Invokes); 422 423 BasicBlock *EntryBB = F.begin(); 424 425 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 426 // that needs to be restored on all exits from the function. This is an 427 // alloca because the value needs to be live across invokes. 428 const TargetLowering *TLI = TM ? TM->getTargetLowering() : 0; 429 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; 430 AllocaInst *JmpBuf = 431 new AllocaInst(JBLinkTy, 0, Align, 432 "jblink", F.begin()->begin()); 433 434 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 435 ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; 436 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf", 437 EntryBB->getTerminator()); 438 439 // Copy the JBListHead to the alloca. 440 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 441 EntryBB->getTerminator()); 442 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 443 444 // Add the new jumpbuf to the list. 445 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 446 447 // Create the catch block. The catch block is basically a big switch 448 // statement that goes to all of the invoke catch blocks. 449 BasicBlock *CatchBB = 450 BasicBlock::Create(F.getContext(), "setjmp.catch", &F); 451 452 // Create an alloca which keeps track of the stack pointer before every 453 // invoke, this allows us to properly restore the stack pointer after 454 // long jumping. 455 AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, 456 "stackptr", EntryBB->begin()); 457 458 // Create an alloca which keeps track of which invoke is currently 459 // executing. For normal calls it contains zero. 460 AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, 461 "invokenum",EntryBB->begin()); 462 new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 463 InvokeNum, true, EntryBB->getTerminator()); 464 465 // Insert a load in the Catch block, and a switch on its value. By default, 466 // we go to a block that just does an unwind (which is the correct action 467 // for a standard call). We insert an unreachable instruction here and 468 // modify the block to jump to the correct unwinding pad later. 469 BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); 470 UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB); 471 472 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 473 SwitchInst *CatchSwitch = 474 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 475 476 // Now that things are set up, insert the setjmp call itself. 477 478 // Split the entry block to insert the conditional branch for the setjmp. 479 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 480 "setjmp.cont"); 481 482 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); 483 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf", 484 EntryBB->getTerminator()); 485 JmpBufPtr = new BitCastInst(JmpBufPtr, 486 Type::getInt8PtrTy(F.getContext()), 487 "tmp", EntryBB->getTerminator()); 488 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 489 EntryBB->getTerminator()); 490 491 // Compare the return value to zero. 492 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 493 ICmpInst::ICMP_EQ, SJRet, 494 Constant::getNullValue(SJRet->getType()), 495 "notunwind"); 496 // Nuke the uncond branch. 497 EntryBB->getTerminator()->eraseFromParent(); 498 499 // Put in a new condbranch in its place. 500 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 501 502 // At this point, we are all set up, rewrite each invoke instruction. 503 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 504 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); 505 } 506 507 // We know that there is at least one unwind. 508 509 // Create three new blocks, the block to load the jmpbuf ptr and compare 510 // against null, the block to do the longjmp, and the error block for if it 511 // is null. Add them at the end of the function because they are not hot. 512 BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), 513 "dounwind", &F); 514 BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); 515 BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); 516 517 // If this function contains an invoke, restore the old jumpbuf ptr. 518 Value *BufPtr; 519 if (OldJmpBufPtr) { 520 // Before the return, insert a copy from the saved value to the new value. 521 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 522 new StoreInst(BufPtr, JBListHead, UnwindHandler); 523 } else { 524 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 525 } 526 527 // Load the JBList, if it's null, then there was no catch! 528 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 529 Constant::getNullValue(BufPtr->getType()), 530 "notnull"); 531 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 532 533 // Create the block to do the longjmp. 534 // Get a pointer to the jmpbuf and longjmp. 535 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 536 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; 537 Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock); 538 Idx[0] = new BitCastInst(Idx[0], 539 Type::getInt8PtrTy(F.getContext()), 540 "tmp", UnwindBlock); 541 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); 542 CallInst::Create(LongJmpFn, Idx, "", UnwindBlock); 543 new UnreachableInst(F.getContext(), UnwindBlock); 544 545 // Set up the term block ("throw without a catch"). 546 new UnreachableInst(F.getContext(), TermBlock); 547 548 // Insert a call to abort() 549 CallInst::Create(AbortFn, "", 550 TermBlock->getTerminator())->setTailCall(); 551 552 // Replace the inserted unreachable with a branch to the unwind handler. 553 if (UnreachablePlaceholder) { 554 BranchInst::Create(UnwindHandler, UnreachablePlaceholder); 555 UnreachablePlaceholder->eraseFromParent(); 556 } 557 558 // Finally, for any returns from this function, if this function contains an 559 // invoke, restore the old jmpbuf pointer to its input value. 560 if (OldJmpBufPtr) { 561 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 562 ReturnInst *R = Returns[i]; 563 564 // Before the return, insert a copy from the saved value to the new value. 565 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 566 new StoreInst(OldBuf, JBListHead, true, R); 567 } 568 } 569 570 return true; 571 } 572 573 bool LowerInvoke::runOnFunction(Function &F) { 574 if (useExpensiveEHSupport) 575 return insertExpensiveEHSupport(F); 576 else 577 return insertCheapEHSupport(F); 578 } 579