1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Constants.h" 40 #include "llvm/DerivedTypes.h" 41 #include "llvm/Instructions.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include <csetjmp> 53 #include <set> 54 using namespace llvm; 55 56 STATISTIC(NumInvokes, "Number of invokes replaced"); 57 STATISTIC(NumUnwinds, "Number of unwinds replaced"); 58 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 59 60 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 62 63 namespace { 64 class LowerInvoke : public FunctionPass { 65 // Used for both models. 66 Constant *AbortFn; 67 68 // Used for expensive EH support. 69 StructType *JBLinkTy; 70 GlobalVariable *JBListHead; 71 Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; 72 bool useExpensiveEHSupport; 73 74 // We peek in TLI to grab the target's jmp_buf size and alignment 75 const TargetLowering *TLI; 76 77 public: 78 static char ID; // Pass identification, replacement for typeid 79 explicit LowerInvoke(const TargetLowering *tli = NULL, 80 bool useExpensiveEHSupport = ExpensiveEHSupport) 81 : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport), 82 TLI(tli) { 83 initializeLowerInvokePass(*PassRegistry::getPassRegistry()); 84 } 85 bool doInitialization(Module &M); 86 bool runOnFunction(Function &F); 87 88 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 89 // This is a cluster of orthogonal Transforms 90 AU.addPreserved("mem2reg"); 91 AU.addPreservedID(LowerSwitchID); 92 } 93 94 private: 95 bool insertCheapEHSupport(Function &F); 96 void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); 97 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 98 AllocaInst *InvokeNum, AllocaInst *StackPtr, 99 SwitchInst *CatchSwitch); 100 bool insertExpensiveEHSupport(Function &F); 101 }; 102 } 103 104 char LowerInvoke::ID = 0; 105 INITIALIZE_PASS(LowerInvoke, "lowerinvoke", 106 "Lower invoke and unwind, for unwindless code generators", 107 false, false) 108 109 char &llvm::LowerInvokePassID = LowerInvoke::ID; 110 111 // Public Interface To the LowerInvoke pass. 112 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { 113 return new LowerInvoke(TLI, ExpensiveEHSupport); 114 } 115 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI, 116 bool useExpensiveEHSupport) { 117 return new LowerInvoke(TLI, useExpensiveEHSupport); 118 } 119 120 // doInitialization - Make sure that there is a prototype for abort in the 121 // current module. 122 bool LowerInvoke::doInitialization(Module &M) { 123 const Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); 124 if (useExpensiveEHSupport) { 125 // Insert a type for the linked list of jump buffers. 126 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; 127 JBSize = JBSize ? JBSize : 200; 128 Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); 129 130 JBLinkTy = StructType::createNamed(M.getContext(), "llvm.sjljeh.jmpbufty"); 131 Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) }; 132 JBLinkTy->setBody(Elts); 133 134 const Type *PtrJBList = PointerType::getUnqual(JBLinkTy); 135 136 // Now that we've done that, insert the jmpbuf list head global, unless it 137 // already exists. 138 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 139 JBListHead = new GlobalVariable(M, PtrJBList, false, 140 GlobalValue::LinkOnceAnyLinkage, 141 Constant::getNullValue(PtrJBList), 142 "llvm.sjljeh.jblist"); 143 } 144 145 // VisualStudio defines setjmp as _setjmp 146 #if defined(_MSC_VER) && defined(setjmp) && \ 147 !defined(setjmp_undefined_for_msvc) 148 # pragma push_macro("setjmp") 149 # undef setjmp 150 # define setjmp_undefined_for_msvc 151 #endif 152 153 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 154 155 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 156 // let's return it to _setjmp state 157 # pragma pop_macro("setjmp") 158 # undef setjmp_undefined_for_msvc 159 #endif 160 161 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 162 StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); 163 StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); 164 } 165 166 // We need the 'write' and 'abort' functions for both models. 167 AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), 168 (Type *)0); 169 return true; 170 } 171 172 bool LowerInvoke::insertCheapEHSupport(Function &F) { 173 bool Changed = false; 174 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 175 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 176 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 177 // Insert a normal call instruction... 178 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 179 CallArgs.begin(), CallArgs.end(), 180 "",II); 181 NewCall->takeName(II); 182 NewCall->setCallingConv(II->getCallingConv()); 183 NewCall->setAttributes(II->getAttributes()); 184 NewCall->setDebugLoc(II->getDebugLoc()); 185 II->replaceAllUsesWith(NewCall); 186 187 // Insert an unconditional branch to the normal destination. 188 BranchInst::Create(II->getNormalDest(), II); 189 190 // Remove any PHI node entries from the exception destination. 191 II->getUnwindDest()->removePredecessor(BB); 192 193 // Remove the invoke instruction now. 194 BB->getInstList().erase(II); 195 196 ++NumInvokes; Changed = true; 197 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 198 // Insert a call to abort() 199 CallInst::Create(AbortFn, "", UI)->setTailCall(); 200 201 // Insert a return instruction. This really should be a "barrier", as it 202 // is unreachable. 203 ReturnInst::Create(F.getContext(), 204 F.getReturnType()->isVoidTy() ? 205 0 : Constant::getNullValue(F.getReturnType()), UI); 206 207 // Remove the unwind instruction now. 208 BB->getInstList().erase(UI); 209 210 ++NumUnwinds; Changed = true; 211 } 212 return Changed; 213 } 214 215 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 216 /// specified invoke instruction with a call. 217 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 218 AllocaInst *InvokeNum, 219 AllocaInst *StackPtr, 220 SwitchInst *CatchSwitch) { 221 ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), 222 InvokeNo); 223 224 // If the unwind edge has phi nodes, split the edge. 225 if (isa<PHINode>(II->getUnwindDest()->begin())) { 226 SplitCriticalEdge(II, 1, this); 227 228 // If there are any phi nodes left, they must have a single predecessor. 229 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 230 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 231 PN->eraseFromParent(); 232 } 233 } 234 235 // Insert a store of the invoke num before the invoke and store zero into the 236 // location afterward. 237 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 238 239 // Insert a store of the stack ptr before the invoke, so we can restore it 240 // later in the exception case. 241 CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); 242 new StoreInst(StackSaveRet, StackPtr, true, II); // volatile 243 244 BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI(); 245 // nonvolatile. 246 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), 247 InvokeNum, false, NI); 248 249 Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true, 250 II->getUnwindDest()->getFirstNonPHI() 251 ); 252 CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); 253 254 // Add a switch case to our unwind block. 255 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 256 257 // Insert a normal call instruction. 258 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 259 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 260 CallArgs.begin(), CallArgs.end(), "", 261 II); 262 NewCall->takeName(II); 263 NewCall->setCallingConv(II->getCallingConv()); 264 NewCall->setAttributes(II->getAttributes()); 265 NewCall->setDebugLoc(II->getDebugLoc()); 266 II->replaceAllUsesWith(NewCall); 267 268 // Replace the invoke with an uncond branch. 269 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 270 II->eraseFromParent(); 271 } 272 273 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 274 /// we reach blocks we've already seen. 275 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 276 if (!LiveBBs.insert(BB).second) return; // already been here. 277 278 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 279 MarkBlocksLiveIn(*PI, LiveBBs); 280 } 281 282 // First thing we need to do is scan the whole function for values that are 283 // live across unwind edges. Each value that is live across an unwind edge 284 // we spill into a stack location, guaranteeing that there is nothing live 285 // across the unwind edge. This process also splits all critical edges 286 // coming out of invoke's. 287 void LowerInvoke:: 288 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { 289 // First step, split all critical edges from invoke instructions. 290 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 291 InvokeInst *II = Invokes[i]; 292 SplitCriticalEdge(II, 0, this); 293 SplitCriticalEdge(II, 1, this); 294 assert(!isa<PHINode>(II->getNormalDest()) && 295 !isa<PHINode>(II->getUnwindDest()) && 296 "critical edge splitting left single entry phi nodes?"); 297 } 298 299 Function *F = Invokes.back()->getParent()->getParent(); 300 301 // To avoid having to handle incoming arguments specially, we lower each arg 302 // to a copy instruction in the entry block. This ensures that the argument 303 // value itself cannot be live across the entry block. 304 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 305 while (isa<AllocaInst>(AfterAllocaInsertPt) && 306 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 307 ++AfterAllocaInsertPt; 308 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 309 AI != E; ++AI) { 310 const Type *Ty = AI->getType(); 311 // Aggregate types can't be cast, but are legal argument types, so we have 312 // to handle them differently. We use an extract/insert pair as a 313 // lightweight method to achieve the same goal. 314 if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 315 Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); 316 Instruction *NI = InsertValueInst::Create(AI, EI, 0); 317 NI->insertAfter(EI); 318 AI->replaceAllUsesWith(NI); 319 // Set the operand of the instructions back to the AllocaInst. 320 EI->setOperand(0, AI); 321 NI->setOperand(0, AI); 322 } else { 323 // This is always a no-op cast because we're casting AI to AI->getType() 324 // so src and destination types are identical. BitCast is the only 325 // possibility. 326 CastInst *NC = new BitCastInst( 327 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 328 AI->replaceAllUsesWith(NC); 329 // Set the operand of the cast instruction back to the AllocaInst. 330 // Normally it's forbidden to replace a CastInst's operand because it 331 // could cause the opcode to reflect an illegal conversion. However, 332 // we're replacing it here with the same value it was constructed with. 333 // We do this because the above replaceAllUsesWith() clobbered the 334 // operand, but we want this one to remain. 335 NC->setOperand(0, AI); 336 } 337 } 338 339 // Finally, scan the code looking for instructions with bad live ranges. 340 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 341 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 342 // Ignore obvious cases we don't have to handle. In particular, most 343 // instructions either have no uses or only have a single use inside the 344 // current block. Ignore them quickly. 345 Instruction *Inst = II; 346 if (Inst->use_empty()) continue; 347 if (Inst->hasOneUse() && 348 cast<Instruction>(Inst->use_back())->getParent() == BB && 349 !isa<PHINode>(Inst->use_back())) continue; 350 351 // If this is an alloca in the entry block, it's not a real register 352 // value. 353 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 354 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 355 continue; 356 357 // Avoid iterator invalidation by copying users to a temporary vector. 358 SmallVector<Instruction*,16> Users; 359 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 360 UI != E; ++UI) { 361 Instruction *User = cast<Instruction>(*UI); 362 if (User->getParent() != BB || isa<PHINode>(User)) 363 Users.push_back(User); 364 } 365 366 // Scan all of the uses and see if the live range is live across an unwind 367 // edge. If we find a use live across an invoke edge, create an alloca 368 // and spill the value. 369 std::set<InvokeInst*> InvokesWithStoreInserted; 370 371 // Find all of the blocks that this value is live in. 372 std::set<BasicBlock*> LiveBBs; 373 LiveBBs.insert(Inst->getParent()); 374 while (!Users.empty()) { 375 Instruction *U = Users.back(); 376 Users.pop_back(); 377 378 if (!isa<PHINode>(U)) { 379 MarkBlocksLiveIn(U->getParent(), LiveBBs); 380 } else { 381 // Uses for a PHI node occur in their predecessor block. 382 PHINode *PN = cast<PHINode>(U); 383 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 384 if (PN->getIncomingValue(i) == Inst) 385 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 386 } 387 } 388 389 // Now that we know all of the blocks that this thing is live in, see if 390 // it includes any of the unwind locations. 391 bool NeedsSpill = false; 392 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 393 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 394 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 395 NeedsSpill = true; 396 } 397 } 398 399 // If we decided we need a spill, do it. 400 if (NeedsSpill) { 401 ++NumSpilled; 402 DemoteRegToStack(*Inst, true); 403 } 404 } 405 } 406 407 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 408 SmallVector<ReturnInst*,16> Returns; 409 SmallVector<UnwindInst*,16> Unwinds; 410 SmallVector<InvokeInst*,16> Invokes; 411 412 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 413 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 414 // Remember all return instructions in case we insert an invoke into this 415 // function. 416 Returns.push_back(RI); 417 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 418 Invokes.push_back(II); 419 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 420 Unwinds.push_back(UI); 421 } 422 423 if (Unwinds.empty() && Invokes.empty()) return false; 424 425 NumInvokes += Invokes.size(); 426 NumUnwinds += Unwinds.size(); 427 428 // TODO: This is not an optimal way to do this. In particular, this always 429 // inserts setjmp calls into the entries of functions with invoke instructions 430 // even though there are possibly paths through the function that do not 431 // execute any invokes. In particular, for functions with early exits, e.g. 432 // the 'addMove' method in hexxagon, it would be nice to not have to do the 433 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 434 // would not be too hard to do. 435 436 // If we have an invoke instruction, insert a setjmp that dominates all 437 // invokes. After the setjmp, use a cond branch that goes to the original 438 // code path on zero, and to a designated 'catch' block of nonzero. 439 Value *OldJmpBufPtr = 0; 440 if (!Invokes.empty()) { 441 // First thing we need to do is scan the whole function for values that are 442 // live across unwind edges. Each value that is live across an unwind edge 443 // we spill into a stack location, guaranteeing that there is nothing live 444 // across the unwind edge. This process also splits all critical edges 445 // coming out of invoke's. 446 splitLiveRangesLiveAcrossInvokes(Invokes); 447 448 BasicBlock *EntryBB = F.begin(); 449 450 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 451 // that needs to be restored on all exits from the function. This is an 452 // alloca because the value needs to be live across invokes. 453 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; 454 AllocaInst *JmpBuf = 455 new AllocaInst(JBLinkTy, 0, Align, 456 "jblink", F.begin()->begin()); 457 458 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 459 ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; 460 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2], 461 "OldBuf", 462 EntryBB->getTerminator()); 463 464 // Copy the JBListHead to the alloca. 465 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 466 EntryBB->getTerminator()); 467 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 468 469 // Add the new jumpbuf to the list. 470 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 471 472 // Create the catch block. The catch block is basically a big switch 473 // statement that goes to all of the invoke catch blocks. 474 BasicBlock *CatchBB = 475 BasicBlock::Create(F.getContext(), "setjmp.catch", &F); 476 477 // Create an alloca which keeps track of the stack pointer before every 478 // invoke, this allows us to properly restore the stack pointer after 479 // long jumping. 480 AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, 481 "stackptr", EntryBB->begin()); 482 483 // Create an alloca which keeps track of which invoke is currently 484 // executing. For normal calls it contains zero. 485 AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, 486 "invokenum",EntryBB->begin()); 487 new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 488 InvokeNum, true, EntryBB->getTerminator()); 489 490 // Insert a load in the Catch block, and a switch on its value. By default, 491 // we go to a block that just does an unwind (which is the correct action 492 // for a standard call). 493 BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); 494 Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB)); 495 496 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 497 SwitchInst *CatchSwitch = 498 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 499 500 // Now that things are set up, insert the setjmp call itself. 501 502 // Split the entry block to insert the conditional branch for the setjmp. 503 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 504 "setjmp.cont"); 505 506 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); 507 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2], 508 "TheJmpBuf", 509 EntryBB->getTerminator()); 510 JmpBufPtr = new BitCastInst(JmpBufPtr, 511 Type::getInt8PtrTy(F.getContext()), 512 "tmp", EntryBB->getTerminator()); 513 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 514 EntryBB->getTerminator()); 515 516 // Compare the return value to zero. 517 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 518 ICmpInst::ICMP_EQ, SJRet, 519 Constant::getNullValue(SJRet->getType()), 520 "notunwind"); 521 // Nuke the uncond branch. 522 EntryBB->getTerminator()->eraseFromParent(); 523 524 // Put in a new condbranch in its place. 525 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 526 527 // At this point, we are all set up, rewrite each invoke instruction. 528 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 529 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); 530 } 531 532 // We know that there is at least one unwind. 533 534 // Create three new blocks, the block to load the jmpbuf ptr and compare 535 // against null, the block to do the longjmp, and the error block for if it 536 // is null. Add them at the end of the function because they are not hot. 537 BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), 538 "dounwind", &F); 539 BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); 540 BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); 541 542 // If this function contains an invoke, restore the old jumpbuf ptr. 543 Value *BufPtr; 544 if (OldJmpBufPtr) { 545 // Before the return, insert a copy from the saved value to the new value. 546 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 547 new StoreInst(BufPtr, JBListHead, UnwindHandler); 548 } else { 549 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 550 } 551 552 // Load the JBList, if it's null, then there was no catch! 553 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 554 Constant::getNullValue(BufPtr->getType()), 555 "notnull"); 556 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 557 558 // Create the block to do the longjmp. 559 // Get a pointer to the jmpbuf and longjmp. 560 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 561 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; 562 Idx[0] = GetElementPtrInst::Create(BufPtr, &Idx[0], &Idx[2], "JmpBuf", 563 UnwindBlock); 564 Idx[0] = new BitCastInst(Idx[0], 565 Type::getInt8PtrTy(F.getContext()), 566 "tmp", UnwindBlock); 567 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); 568 CallInst::Create(LongJmpFn, &Idx[0], &Idx[2], "", UnwindBlock); 569 new UnreachableInst(F.getContext(), UnwindBlock); 570 571 // Set up the term block ("throw without a catch"). 572 new UnreachableInst(F.getContext(), TermBlock); 573 574 // Insert a call to abort() 575 CallInst::Create(AbortFn, "", 576 TermBlock->getTerminator())->setTailCall(); 577 578 579 // Replace all unwinds with a branch to the unwind handler. 580 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { 581 BranchInst::Create(UnwindHandler, Unwinds[i]); 582 Unwinds[i]->eraseFromParent(); 583 } 584 585 // Finally, for any returns from this function, if this function contains an 586 // invoke, restore the old jmpbuf pointer to its input value. 587 if (OldJmpBufPtr) { 588 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 589 ReturnInst *R = Returns[i]; 590 591 // Before the return, insert a copy from the saved value to the new value. 592 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 593 new StoreInst(OldBuf, JBListHead, true, R); 594 } 595 } 596 597 return true; 598 } 599 600 bool LowerInvoke::runOnFunction(Function &F) { 601 if (useExpensiveEHSupport) 602 return insertExpensiveEHSupport(F); 603 else 604 return insertCheapEHSupport(F); 605 } 606