1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Constants.h" 40 #include "llvm/DerivedTypes.h" 41 #include "llvm/Instructions.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include <csetjmp> 53 #include <set> 54 using namespace llvm; 55 56 STATISTIC(NumInvokes, "Number of invokes replaced"); 57 STATISTIC(NumUnwinds, "Number of unwinds replaced"); 58 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 59 60 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 62 63 namespace { 64 class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass { 65 // Used for both models. 66 Constant *WriteFn; 67 Constant *AbortFn; 68 Value *AbortMessage; 69 unsigned AbortMessageLength; 70 71 // Used for expensive EH support. 72 const Type *JBLinkTy; 73 GlobalVariable *JBListHead; 74 Constant *SetJmpFn, *LongJmpFn; 75 76 // We peek in TLI to grab the target's jmp_buf size and alignment 77 const TargetLowering *TLI; 78 79 public: 80 static char ID; // Pass identification, replacement for typeid 81 explicit LowerInvoke(const TargetLowering *tli = NULL) 82 : FunctionPass(&ID), TLI(tli) { } 83 bool doInitialization(Module &M); 84 bool runOnFunction(Function &F); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 // This is a cluster of orthogonal Transforms 88 AU.addPreservedID(PromoteMemoryToRegisterID); 89 AU.addPreservedID(LowerSwitchID); 90 AU.addPreservedID(LowerAllocationsID); 91 } 92 93 private: 94 void createAbortMessage(Module *M); 95 void writeAbortMessage(Instruction *IB); 96 bool insertCheapEHSupport(Function &F); 97 void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes); 98 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 99 AllocaInst *InvokeNum, SwitchInst *CatchSwitch); 100 bool insertExpensiveEHSupport(Function &F); 101 }; 102 } 103 104 char LowerInvoke::ID = 0; 105 static RegisterPass<LowerInvoke> 106 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators"); 107 108 const PassInfo *const llvm::LowerInvokePassID = &X; 109 110 // Public Interface To the LowerInvoke pass. 111 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { 112 return new LowerInvoke(TLI); 113 } 114 115 // doInitialization - Make sure that there is a prototype for abort in the 116 // current module. 117 bool LowerInvoke::doInitialization(Module &M) { 118 LLVMContext &Context = M.getContext(); 119 120 const Type *VoidPtrTy = Context.getPointerTypeUnqual(Type::Int8Ty); 121 AbortMessage = 0; 122 if (ExpensiveEHSupport) { 123 // Insert a type for the linked list of jump buffers. 124 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; 125 JBSize = JBSize ? JBSize : 200; 126 const Type *JmpBufTy = Context.getArrayType(VoidPtrTy, JBSize); 127 128 { // The type is recursive, so use a type holder. 129 std::vector<const Type*> Elements; 130 Elements.push_back(JmpBufTy); 131 OpaqueType *OT = Context.getOpaqueType(); 132 Elements.push_back(Context.getPointerTypeUnqual(OT)); 133 PATypeHolder JBLType(Context.getStructType(Elements)); 134 OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle. 135 JBLinkTy = JBLType.get(); 136 M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy); 137 } 138 139 const Type *PtrJBList = Context.getPointerTypeUnqual(JBLinkTy); 140 141 // Now that we've done that, insert the jmpbuf list head global, unless it 142 // already exists. 143 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 144 JBListHead = new GlobalVariable(M, PtrJBList, false, 145 GlobalValue::LinkOnceAnyLinkage, 146 Context.getNullValue(PtrJBList), 147 "llvm.sjljeh.jblist"); 148 } 149 150 // VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>, 151 // so it looks like Intrinsic::_setjmp 152 #if defined(_MSC_VER) && defined(setjmp) 153 #define setjmp_undefined_for_visual_studio 154 #undef setjmp 155 #endif 156 157 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 158 159 #if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio) 160 // let's return it to _setjmp state in case anyone ever needs it after this 161 // point under VisualStudio 162 #define setjmp _setjmp 163 #endif 164 165 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 166 } 167 168 // We need the 'write' and 'abort' functions for both models. 169 AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0); 170 #if 0 // "write" is Unix-specific.. code is going away soon anyway. 171 WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty, 172 VoidPtrTy, Type::Int32Ty, (Type *)0); 173 #else 174 WriteFn = 0; 175 #endif 176 return true; 177 } 178 179 void LowerInvoke::createAbortMessage(Module *M) { 180 LLVMContext &Context = M->getContext(); 181 182 if (ExpensiveEHSupport) { 183 // The abort message for expensive EH support tells the user that the 184 // program 'unwound' without an 'invoke' instruction. 185 Constant *Msg = 186 Context.getConstantArray("ERROR: Exception thrown, but not caught!\n"); 187 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 188 189 GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true, 190 GlobalValue::InternalLinkage, 191 Msg, "abortmsg"); 192 std::vector<Constant*> GEPIdx(2, Context.getNullValue(Type::Int32Ty)); 193 AbortMessage = Context.getConstantExprGetElementPtr(MsgGV, &GEPIdx[0], 2); 194 } else { 195 // The abort message for cheap EH support tells the user that EH is not 196 // enabled. 197 Constant *Msg = 198 Context.getConstantArray("Exception handler needed, but not enabled." 199 "Recompile program with -enable-correct-eh-support.\n"); 200 AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 201 202 GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true, 203 GlobalValue::InternalLinkage, 204 Msg, "abortmsg"); 205 std::vector<Constant*> GEPIdx(2, Context.getNullValue(Type::Int32Ty)); 206 AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2); 207 } 208 } 209 210 211 void LowerInvoke::writeAbortMessage(Instruction *IB) { 212 #if 0 213 if (AbortMessage == 0) 214 createAbortMessage(IB->getParent()->getParent()->getParent()); 215 216 // These are the arguments we WANT... 217 Value* Args[3]; 218 Args[0] = ConstantInt::get(Type::Int32Ty, 2); 219 Args[1] = AbortMessage; 220 Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength); 221 (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall(); 222 #endif 223 } 224 225 bool LowerInvoke::insertCheapEHSupport(Function &F) { 226 LLVMContext &Context = F.getContext(); 227 bool Changed = false; 228 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 229 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 230 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end()); 231 // Insert a normal call instruction... 232 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 233 CallArgs.begin(), CallArgs.end(), "",II); 234 NewCall->takeName(II); 235 NewCall->setCallingConv(II->getCallingConv()); 236 NewCall->setAttributes(II->getAttributes()); 237 II->replaceAllUsesWith(NewCall); 238 239 // Insert an unconditional branch to the normal destination. 240 BranchInst::Create(II->getNormalDest(), II); 241 242 // Remove any PHI node entries from the exception destination. 243 II->getUnwindDest()->removePredecessor(BB); 244 245 // Remove the invoke instruction now. 246 BB->getInstList().erase(II); 247 248 ++NumInvokes; Changed = true; 249 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 250 // Insert a new call to write(2, AbortMessage, AbortMessageLength); 251 writeAbortMessage(UI); 252 253 // Insert a call to abort() 254 CallInst::Create(AbortFn, "", UI)->setTailCall(); 255 256 // Insert a return instruction. This really should be a "barrier", as it 257 // is unreachable. 258 ReturnInst::Create(F.getReturnType() == Type::VoidTy ? 0 : 259 Context.getNullValue(F.getReturnType()), UI); 260 261 // Remove the unwind instruction now. 262 BB->getInstList().erase(UI); 263 264 ++NumUnwinds; Changed = true; 265 } 266 return Changed; 267 } 268 269 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 270 /// specified invoke instruction with a call. 271 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 272 AllocaInst *InvokeNum, 273 SwitchInst *CatchSwitch) { 274 LLVMContext &Context = II->getContext(); 275 ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo); 276 277 // If the unwind edge has phi nodes, split the edge. 278 if (isa<PHINode>(II->getUnwindDest()->begin())) { 279 SplitCriticalEdge(II, 1, this); 280 281 // If there are any phi nodes left, they must have a single predecessor. 282 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 283 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 284 PN->eraseFromParent(); 285 } 286 } 287 288 // Insert a store of the invoke num before the invoke and store zero into the 289 // location afterward. 290 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 291 292 BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI(); 293 // nonvolatile. 294 new StoreInst(Context.getNullValue(Type::Int32Ty), InvokeNum, false, NI); 295 296 // Add a switch case to our unwind block. 297 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 298 299 // Insert a normal call instruction. 300 std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end()); 301 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 302 CallArgs.begin(), CallArgs.end(), "", 303 II); 304 NewCall->takeName(II); 305 NewCall->setCallingConv(II->getCallingConv()); 306 NewCall->setAttributes(II->getAttributes()); 307 II->replaceAllUsesWith(NewCall); 308 309 // Replace the invoke with an uncond branch. 310 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 311 II->eraseFromParent(); 312 } 313 314 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 315 /// we reach blocks we've already seen. 316 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 317 if (!LiveBBs.insert(BB).second) return; // already been here. 318 319 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 320 MarkBlocksLiveIn(*PI, LiveBBs); 321 } 322 323 // First thing we need to do is scan the whole function for values that are 324 // live across unwind edges. Each value that is live across an unwind edge 325 // we spill into a stack location, guaranteeing that there is nothing live 326 // across the unwind edge. This process also splits all critical edges 327 // coming out of invoke's. 328 void LowerInvoke:: 329 splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) { 330 // First step, split all critical edges from invoke instructions. 331 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 332 InvokeInst *II = Invokes[i]; 333 SplitCriticalEdge(II, 0, this); 334 SplitCriticalEdge(II, 1, this); 335 assert(!isa<PHINode>(II->getNormalDest()) && 336 !isa<PHINode>(II->getUnwindDest()) && 337 "critical edge splitting left single entry phi nodes?"); 338 } 339 340 Function *F = Invokes.back()->getParent()->getParent(); 341 342 // To avoid having to handle incoming arguments specially, we lower each arg 343 // to a copy instruction in the entry block. This ensures that the argument 344 // value itself cannot be live across the entry block. 345 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 346 while (isa<AllocaInst>(AfterAllocaInsertPt) && 347 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 348 ++AfterAllocaInsertPt; 349 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 350 AI != E; ++AI) { 351 // This is always a no-op cast because we're casting AI to AI->getType() so 352 // src and destination types are identical. BitCast is the only possibility. 353 CastInst *NC = new BitCastInst( 354 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 355 AI->replaceAllUsesWith(NC); 356 // Normally its is forbidden to replace a CastInst's operand because it 357 // could cause the opcode to reflect an illegal conversion. However, we're 358 // replacing it here with the same value it was constructed with to simply 359 // make NC its user. 360 NC->setOperand(0, AI); 361 } 362 363 // Finally, scan the code looking for instructions with bad live ranges. 364 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 365 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 366 // Ignore obvious cases we don't have to handle. In particular, most 367 // instructions either have no uses or only have a single use inside the 368 // current block. Ignore them quickly. 369 Instruction *Inst = II; 370 if (Inst->use_empty()) continue; 371 if (Inst->hasOneUse() && 372 cast<Instruction>(Inst->use_back())->getParent() == BB && 373 !isa<PHINode>(Inst->use_back())) continue; 374 375 // If this is an alloca in the entry block, it's not a real register 376 // value. 377 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 378 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 379 continue; 380 381 // Avoid iterator invalidation by copying users to a temporary vector. 382 std::vector<Instruction*> Users; 383 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 384 UI != E; ++UI) { 385 Instruction *User = cast<Instruction>(*UI); 386 if (User->getParent() != BB || isa<PHINode>(User)) 387 Users.push_back(User); 388 } 389 390 // Scan all of the uses and see if the live range is live across an unwind 391 // edge. If we find a use live across an invoke edge, create an alloca 392 // and spill the value. 393 std::set<InvokeInst*> InvokesWithStoreInserted; 394 395 // Find all of the blocks that this value is live in. 396 std::set<BasicBlock*> LiveBBs; 397 LiveBBs.insert(Inst->getParent()); 398 while (!Users.empty()) { 399 Instruction *U = Users.back(); 400 Users.pop_back(); 401 402 if (!isa<PHINode>(U)) { 403 MarkBlocksLiveIn(U->getParent(), LiveBBs); 404 } else { 405 // Uses for a PHI node occur in their predecessor block. 406 PHINode *PN = cast<PHINode>(U); 407 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 408 if (PN->getIncomingValue(i) == Inst) 409 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 410 } 411 } 412 413 // Now that we know all of the blocks that this thing is live in, see if 414 // it includes any of the unwind locations. 415 bool NeedsSpill = false; 416 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 417 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 418 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 419 NeedsSpill = true; 420 } 421 } 422 423 // If we decided we need a spill, do it. 424 if (NeedsSpill) { 425 ++NumSpilled; 426 DemoteRegToStack(*Inst, true); 427 } 428 } 429 } 430 431 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 432 std::vector<ReturnInst*> Returns; 433 std::vector<UnwindInst*> Unwinds; 434 std::vector<InvokeInst*> Invokes; 435 436 LLVMContext &Context = F.getContext(); 437 438 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 439 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 440 // Remember all return instructions in case we insert an invoke into this 441 // function. 442 Returns.push_back(RI); 443 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 444 Invokes.push_back(II); 445 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 446 Unwinds.push_back(UI); 447 } 448 449 if (Unwinds.empty() && Invokes.empty()) return false; 450 451 NumInvokes += Invokes.size(); 452 NumUnwinds += Unwinds.size(); 453 454 // TODO: This is not an optimal way to do this. In particular, this always 455 // inserts setjmp calls into the entries of functions with invoke instructions 456 // even though there are possibly paths through the function that do not 457 // execute any invokes. In particular, for functions with early exits, e.g. 458 // the 'addMove' method in hexxagon, it would be nice to not have to do the 459 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 460 // would not be too hard to do. 461 462 // If we have an invoke instruction, insert a setjmp that dominates all 463 // invokes. After the setjmp, use a cond branch that goes to the original 464 // code path on zero, and to a designated 'catch' block of nonzero. 465 Value *OldJmpBufPtr = 0; 466 if (!Invokes.empty()) { 467 // First thing we need to do is scan the whole function for values that are 468 // live across unwind edges. Each value that is live across an unwind edge 469 // we spill into a stack location, guaranteeing that there is nothing live 470 // across the unwind edge. This process also splits all critical edges 471 // coming out of invoke's. 472 splitLiveRangesLiveAcrossInvokes(Invokes); 473 474 BasicBlock *EntryBB = F.begin(); 475 476 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 477 // that needs to be restored on all exits from the function. This is an 478 // alloca because the value needs to be live across invokes. 479 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; 480 AllocaInst *JmpBuf = 481 new AllocaInst(JBLinkTy, 0, Align, 482 "jblink", F.begin()->begin()); 483 484 std::vector<Value*> Idx; 485 Idx.push_back(Context.getNullValue(Type::Int32Ty)); 486 Idx.push_back(ConstantInt::get(Type::Int32Ty, 1)); 487 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(), 488 "OldBuf", 489 EntryBB->getTerminator()); 490 491 // Copy the JBListHead to the alloca. 492 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 493 EntryBB->getTerminator()); 494 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 495 496 // Add the new jumpbuf to the list. 497 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 498 499 // Create the catch block. The catch block is basically a big switch 500 // statement that goes to all of the invoke catch blocks. 501 BasicBlock *CatchBB = BasicBlock::Create("setjmp.catch", &F); 502 503 // Create an alloca which keeps track of which invoke is currently 504 // executing. For normal calls it contains zero. 505 AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, 506 "invokenum",EntryBB->begin()); 507 new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true, 508 EntryBB->getTerminator()); 509 510 // Insert a load in the Catch block, and a switch on its value. By default, 511 // we go to a block that just does an unwind (which is the correct action 512 // for a standard call). 513 BasicBlock *UnwindBB = BasicBlock::Create("unwindbb", &F); 514 Unwinds.push_back(new UnwindInst(UnwindBB)); 515 516 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 517 SwitchInst *CatchSwitch = 518 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 519 520 // Now that things are set up, insert the setjmp call itself. 521 522 // Split the entry block to insert the conditional branch for the setjmp. 523 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 524 "setjmp.cont"); 525 526 Idx[1] = ConstantInt::get(Type::Int32Ty, 0); 527 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(), 528 "TheJmpBuf", 529 EntryBB->getTerminator()); 530 JmpBufPtr = new BitCastInst(JmpBufPtr, PointerType::getUnqual(Type::Int8Ty), 531 "tmp", EntryBB->getTerminator()); 532 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 533 EntryBB->getTerminator()); 534 535 // Compare the return value to zero. 536 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 537 ICmpInst::ICMP_EQ, SJRet, 538 Context.getNullValue(SJRet->getType()), 539 "notunwind"); 540 // Nuke the uncond branch. 541 EntryBB->getTerminator()->eraseFromParent(); 542 543 // Put in a new condbranch in its place. 544 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 545 546 // At this point, we are all set up, rewrite each invoke instruction. 547 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 548 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch); 549 } 550 551 // We know that there is at least one unwind. 552 553 // Create three new blocks, the block to load the jmpbuf ptr and compare 554 // against null, the block to do the longjmp, and the error block for if it 555 // is null. Add them at the end of the function because they are not hot. 556 BasicBlock *UnwindHandler = BasicBlock::Create("dounwind", &F); 557 BasicBlock *UnwindBlock = BasicBlock::Create("unwind", &F); 558 BasicBlock *TermBlock = BasicBlock::Create("unwinderror", &F); 559 560 // If this function contains an invoke, restore the old jumpbuf ptr. 561 Value *BufPtr; 562 if (OldJmpBufPtr) { 563 // Before the return, insert a copy from the saved value to the new value. 564 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 565 new StoreInst(BufPtr, JBListHead, UnwindHandler); 566 } else { 567 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 568 } 569 570 // Load the JBList, if it's null, then there was no catch! 571 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 572 Context.getNullValue(BufPtr->getType()), 573 "notnull"); 574 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 575 576 // Create the block to do the longjmp. 577 // Get a pointer to the jmpbuf and longjmp. 578 std::vector<Value*> Idx; 579 Idx.push_back(Context.getNullValue(Type::Int32Ty)); 580 Idx.push_back(ConstantInt::get(Type::Int32Ty, 0)); 581 Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf", 582 UnwindBlock); 583 Idx[0] = new BitCastInst(Idx[0], PointerType::getUnqual(Type::Int8Ty), 584 "tmp", UnwindBlock); 585 Idx[1] = ConstantInt::get(Type::Int32Ty, 1); 586 CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock); 587 new UnreachableInst(UnwindBlock); 588 589 // Set up the term block ("throw without a catch"). 590 new UnreachableInst(TermBlock); 591 592 // Insert a new call to write(2, AbortMessage, AbortMessageLength); 593 writeAbortMessage(TermBlock->getTerminator()); 594 595 // Insert a call to abort() 596 CallInst::Create(AbortFn, "", 597 TermBlock->getTerminator())->setTailCall(); 598 599 600 // Replace all unwinds with a branch to the unwind handler. 601 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { 602 BranchInst::Create(UnwindHandler, Unwinds[i]); 603 Unwinds[i]->eraseFromParent(); 604 } 605 606 // Finally, for any returns from this function, if this function contains an 607 // invoke, restore the old jmpbuf pointer to its input value. 608 if (OldJmpBufPtr) { 609 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 610 ReturnInst *R = Returns[i]; 611 612 // Before the return, insert a copy from the saved value to the new value. 613 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 614 new StoreInst(OldBuf, JBListHead, true, R); 615 } 616 } 617 618 return true; 619 } 620 621 bool LowerInvoke::runOnFunction(Function &F) { 622 if (ExpensiveEHSupport) 623 return insertExpensiveEHSupport(F); 624 else 625 return insertCheapEHSupport(F); 626 } 627