1 //===- LoopVersioning.cpp - Utility to version a loop ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a utility class to perform loop versioning. The versioned 10 // loop speculates that otherwise may-aliasing memory accesses don't overlap and 11 // emits checks to prove this. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/LoopVersioning.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/Analysis/LoopAccessAnalysis.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemorySSA.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/PassManager.h" 25 #include "llvm/InitializePasses.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Cloning.h" 29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AnnotateNoAlias("loop-version-annotate-no-alias", cl::init(true), 35 cl::Hidden, 36 cl::desc("Add no-alias annotation for instructions that " 37 "are disambiguated by memchecks")); 38 39 LoopVersioning::LoopVersioning(const LoopAccessInfo &LAI, 40 ArrayRef<RuntimePointerCheck> Checks, Loop *L, 41 LoopInfo *LI, DominatorTree *DT, 42 ScalarEvolution *SE) 43 : VersionedLoop(L), NonVersionedLoop(nullptr), 44 AliasChecks(Checks.begin(), Checks.end()), 45 Preds(LAI.getPSE().getUnionPredicate()), LAI(LAI), LI(LI), DT(DT), 46 SE(SE) { 47 assert(L->getExitBlock() && "No single exit block"); 48 assert(L->isLoopSimplifyForm() && "Loop is not in loop-simplify form"); 49 } 50 51 void LoopVersioning::versionLoop( 52 const SmallVectorImpl<Instruction *> &DefsUsedOutside) { 53 Instruction *FirstCheckInst; 54 Instruction *MemRuntimeCheck; 55 Value *SCEVRuntimeCheck; 56 Value *RuntimeCheck = nullptr; 57 58 // Add the memcheck in the original preheader (this is empty initially). 59 BasicBlock *RuntimeCheckBB = VersionedLoop->getLoopPreheader(); 60 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 61 std::tie(FirstCheckInst, MemRuntimeCheck) = 62 addRuntimeChecks(RuntimeCheckBB->getTerminator(), VersionedLoop, 63 AliasChecks, RtPtrChecking.getSE()); 64 65 SCEVExpander Exp(*SE, RuntimeCheckBB->getModule()->getDataLayout(), 66 "scev.check"); 67 SCEVRuntimeCheck = 68 Exp.expandCodeForPredicate(&Preds, RuntimeCheckBB->getTerminator()); 69 auto *CI = dyn_cast<ConstantInt>(SCEVRuntimeCheck); 70 71 // Discard the SCEV runtime check if it is always true. 72 if (CI && CI->isZero()) 73 SCEVRuntimeCheck = nullptr; 74 75 if (MemRuntimeCheck && SCEVRuntimeCheck) { 76 RuntimeCheck = BinaryOperator::Create(Instruction::Or, MemRuntimeCheck, 77 SCEVRuntimeCheck, "lver.safe"); 78 if (auto *I = dyn_cast<Instruction>(RuntimeCheck)) 79 I->insertBefore(RuntimeCheckBB->getTerminator()); 80 } else 81 RuntimeCheck = MemRuntimeCheck ? MemRuntimeCheck : SCEVRuntimeCheck; 82 83 assert(RuntimeCheck && "called even though we don't need " 84 "any runtime checks"); 85 86 // Rename the block to make the IR more readable. 87 RuntimeCheckBB->setName(VersionedLoop->getHeader()->getName() + 88 ".lver.check"); 89 90 // Create empty preheader for the loop (and after cloning for the 91 // non-versioned loop). 92 BasicBlock *PH = 93 SplitBlock(RuntimeCheckBB, RuntimeCheckBB->getTerminator(), DT, LI, 94 nullptr, VersionedLoop->getHeader()->getName() + ".ph"); 95 96 // Clone the loop including the preheader. 97 // 98 // FIXME: This does not currently preserve SimplifyLoop because the exit 99 // block is a join between the two loops. 100 SmallVector<BasicBlock *, 8> NonVersionedLoopBlocks; 101 NonVersionedLoop = 102 cloneLoopWithPreheader(PH, RuntimeCheckBB, VersionedLoop, VMap, 103 ".lver.orig", LI, DT, NonVersionedLoopBlocks); 104 remapInstructionsInBlocks(NonVersionedLoopBlocks, VMap); 105 106 // Insert the conditional branch based on the result of the memchecks. 107 Instruction *OrigTerm = RuntimeCheckBB->getTerminator(); 108 BranchInst::Create(NonVersionedLoop->getLoopPreheader(), 109 VersionedLoop->getLoopPreheader(), RuntimeCheck, OrigTerm); 110 OrigTerm->eraseFromParent(); 111 112 // The loops merge in the original exit block. This is now dominated by the 113 // memchecking block. 114 DT->changeImmediateDominator(VersionedLoop->getExitBlock(), RuntimeCheckBB); 115 116 // Adds the necessary PHI nodes for the versioned loops based on the 117 // loop-defined values used outside of the loop. 118 addPHINodes(DefsUsedOutside); 119 formDedicatedExitBlocks(NonVersionedLoop, DT, LI, nullptr, true); 120 formDedicatedExitBlocks(VersionedLoop, DT, LI, nullptr, true); 121 assert(NonVersionedLoop->isLoopSimplifyForm() && 122 VersionedLoop->isLoopSimplifyForm() && 123 "The versioned loops should be in simplify form."); 124 } 125 126 void LoopVersioning::addPHINodes( 127 const SmallVectorImpl<Instruction *> &DefsUsedOutside) { 128 BasicBlock *PHIBlock = VersionedLoop->getExitBlock(); 129 assert(PHIBlock && "No single successor to loop exit block"); 130 PHINode *PN; 131 132 // First add a single-operand PHI for each DefsUsedOutside if one does not 133 // exists yet. 134 for (auto *Inst : DefsUsedOutside) { 135 // See if we have a single-operand PHI with the value defined by the 136 // original loop. 137 for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) { 138 if (PN->getIncomingValue(0) == Inst) 139 break; 140 } 141 // If not create it. 142 if (!PN) { 143 PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".lver", 144 &PHIBlock->front()); 145 SmallVector<User*, 8> UsersToUpdate; 146 for (User *U : Inst->users()) 147 if (!VersionedLoop->contains(cast<Instruction>(U)->getParent())) 148 UsersToUpdate.push_back(U); 149 for (User *U : UsersToUpdate) 150 U->replaceUsesOfWith(Inst, PN); 151 PN->addIncoming(Inst, VersionedLoop->getExitingBlock()); 152 } 153 } 154 155 // Then for each PHI add the operand for the edge from the cloned loop. 156 for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) { 157 assert(PN->getNumOperands() == 1 && 158 "Exit block should only have on predecessor"); 159 160 // If the definition was cloned used that otherwise use the same value. 161 Value *ClonedValue = PN->getIncomingValue(0); 162 auto Mapped = VMap.find(ClonedValue); 163 if (Mapped != VMap.end()) 164 ClonedValue = Mapped->second; 165 166 PN->addIncoming(ClonedValue, NonVersionedLoop->getExitingBlock()); 167 } 168 } 169 170 void LoopVersioning::prepareNoAliasMetadata() { 171 // We need to turn the no-alias relation between pointer checking groups into 172 // no-aliasing annotations between instructions. 173 // 174 // We accomplish this by mapping each pointer checking group (a set of 175 // pointers memchecked together) to an alias scope and then also mapping each 176 // group to the list of scopes it can't alias. 177 178 const RuntimePointerChecking *RtPtrChecking = LAI.getRuntimePointerChecking(); 179 LLVMContext &Context = VersionedLoop->getHeader()->getContext(); 180 181 // First allocate an aliasing scope for each pointer checking group. 182 // 183 // While traversing through the checking groups in the loop, also create a 184 // reverse map from pointers to the pointer checking group they were assigned 185 // to. 186 MDBuilder MDB(Context); 187 MDNode *Domain = MDB.createAnonymousAliasScopeDomain("LVerDomain"); 188 189 for (const auto &Group : RtPtrChecking->CheckingGroups) { 190 GroupToScope[&Group] = MDB.createAnonymousAliasScope(Domain); 191 192 for (unsigned PtrIdx : Group.Members) 193 PtrToGroup[RtPtrChecking->getPointerInfo(PtrIdx).PointerValue] = &Group; 194 } 195 196 // Go through the checks and for each pointer group, collect the scopes for 197 // each non-aliasing pointer group. 198 DenseMap<const RuntimeCheckingPtrGroup *, SmallVector<Metadata *, 4>> 199 GroupToNonAliasingScopes; 200 201 for (const auto &Check : AliasChecks) 202 GroupToNonAliasingScopes[Check.first].push_back(GroupToScope[Check.second]); 203 204 // Finally, transform the above to actually map to scope list which is what 205 // the metadata uses. 206 207 for (auto Pair : GroupToNonAliasingScopes) 208 GroupToNonAliasingScopeList[Pair.first] = MDNode::get(Context, Pair.second); 209 } 210 211 void LoopVersioning::annotateLoopWithNoAlias() { 212 if (!AnnotateNoAlias) 213 return; 214 215 // First prepare the maps. 216 prepareNoAliasMetadata(); 217 218 // Add the scope and no-alias metadata to the instructions. 219 for (Instruction *I : LAI.getDepChecker().getMemoryInstructions()) { 220 annotateInstWithNoAlias(I); 221 } 222 } 223 224 void LoopVersioning::annotateInstWithNoAlias(Instruction *VersionedInst, 225 const Instruction *OrigInst) { 226 if (!AnnotateNoAlias) 227 return; 228 229 LLVMContext &Context = VersionedLoop->getHeader()->getContext(); 230 const Value *Ptr = isa<LoadInst>(OrigInst) 231 ? cast<LoadInst>(OrigInst)->getPointerOperand() 232 : cast<StoreInst>(OrigInst)->getPointerOperand(); 233 234 // Find the group for the pointer and then add the scope metadata. 235 auto Group = PtrToGroup.find(Ptr); 236 if (Group != PtrToGroup.end()) { 237 VersionedInst->setMetadata( 238 LLVMContext::MD_alias_scope, 239 MDNode::concatenate( 240 VersionedInst->getMetadata(LLVMContext::MD_alias_scope), 241 MDNode::get(Context, GroupToScope[Group->second]))); 242 243 // Add the no-alias metadata. 244 auto NonAliasingScopeList = GroupToNonAliasingScopeList.find(Group->second); 245 if (NonAliasingScopeList != GroupToNonAliasingScopeList.end()) 246 VersionedInst->setMetadata( 247 LLVMContext::MD_noalias, 248 MDNode::concatenate( 249 VersionedInst->getMetadata(LLVMContext::MD_noalias), 250 NonAliasingScopeList->second)); 251 } 252 } 253 254 namespace { 255 bool runImpl(LoopInfo *LI, function_ref<const LoopAccessInfo &(Loop &)> GetLAA, 256 DominatorTree *DT, ScalarEvolution *SE) { 257 // Build up a worklist of inner-loops to version. This is necessary as the 258 // act of versioning a loop creates new loops and can invalidate iterators 259 // across the loops. 260 SmallVector<Loop *, 8> Worklist; 261 262 for (Loop *TopLevelLoop : *LI) 263 for (Loop *L : depth_first(TopLevelLoop)) 264 // We only handle inner-most loops. 265 if (L->isInnermost()) 266 Worklist.push_back(L); 267 268 // Now walk the identified inner loops. 269 bool Changed = false; 270 for (Loop *L : Worklist) { 271 if (!L->isLoopSimplifyForm() || !L->isRotatedForm() || 272 !L->getExitingBlock()) 273 continue; 274 const LoopAccessInfo &LAI = GetLAA(*L); 275 if (!LAI.hasConvergentOp() && 276 (LAI.getNumRuntimePointerChecks() || 277 !LAI.getPSE().getUnionPredicate().isAlwaysTrue())) { 278 LoopVersioning LVer(LAI, LAI.getRuntimePointerChecking()->getChecks(), L, 279 LI, DT, SE); 280 LVer.versionLoop(); 281 LVer.annotateLoopWithNoAlias(); 282 Changed = true; 283 } 284 } 285 286 return Changed; 287 } 288 289 /// Also expose this is a pass. Currently this is only used for 290 /// unit-testing. It adds all memchecks necessary to remove all may-aliasing 291 /// array accesses from the loop. 292 class LoopVersioningLegacyPass : public FunctionPass { 293 public: 294 LoopVersioningLegacyPass() : FunctionPass(ID) { 295 initializeLoopVersioningLegacyPassPass(*PassRegistry::getPassRegistry()); 296 } 297 298 bool runOnFunction(Function &F) override { 299 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 300 auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & { 301 return getAnalysis<LoopAccessLegacyAnalysis>().getInfo(&L); 302 }; 303 304 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 305 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 306 307 return runImpl(LI, GetLAA, DT, SE); 308 } 309 310 void getAnalysisUsage(AnalysisUsage &AU) const override { 311 AU.addRequired<LoopInfoWrapperPass>(); 312 AU.addPreserved<LoopInfoWrapperPass>(); 313 AU.addRequired<LoopAccessLegacyAnalysis>(); 314 AU.addRequired<DominatorTreeWrapperPass>(); 315 AU.addPreserved<DominatorTreeWrapperPass>(); 316 AU.addRequired<ScalarEvolutionWrapperPass>(); 317 } 318 319 static char ID; 320 }; 321 } 322 323 #define LVER_OPTION "loop-versioning" 324 #define DEBUG_TYPE LVER_OPTION 325 326 char LoopVersioningLegacyPass::ID; 327 static const char LVer_name[] = "Loop Versioning"; 328 329 INITIALIZE_PASS_BEGIN(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false, 330 false) 331 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 332 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 333 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 334 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 335 INITIALIZE_PASS_END(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false, 336 false) 337 338 namespace llvm { 339 FunctionPass *createLoopVersioningLegacyPass() { 340 return new LoopVersioningLegacyPass(); 341 } 342 343 PreservedAnalyses LoopVersioningPass::run(Function &F, 344 FunctionAnalysisManager &AM) { 345 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 346 auto &LI = AM.getResult<LoopAnalysis>(F); 347 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 348 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 349 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 350 auto &AA = AM.getResult<AAManager>(F); 351 auto &AC = AM.getResult<AssumptionAnalysis>(F); 352 MemorySSA *MSSA = EnableMSSALoopDependency 353 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 354 : nullptr; 355 356 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 357 auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & { 358 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 359 TLI, TTI, nullptr, MSSA}; 360 return LAM.getResult<LoopAccessAnalysis>(L, AR); 361 }; 362 363 if (runImpl(&LI, GetLAA, &DT, &SE)) 364 return PreservedAnalyses::none(); 365 return PreservedAnalyses::all(); 366 } 367 } // namespace llvm 368