1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
67 
68 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
69                                    MemorySSAUpdater *MSSAU,
70                                    bool PreserveLCSSA) {
71   bool Changed = false;
72 
73   // We re-use a vector for the in-loop predecesosrs.
74   SmallVector<BasicBlock *, 4> InLoopPredecessors;
75 
76   auto RewriteExit = [&](BasicBlock *BB) {
77     assert(InLoopPredecessors.empty() &&
78            "Must start with an empty predecessors list!");
79     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
80 
81     // See if there are any non-loop predecessors of this exit block and
82     // keep track of the in-loop predecessors.
83     bool IsDedicatedExit = true;
84     for (auto *PredBB : predecessors(BB))
85       if (L->contains(PredBB)) {
86         if (isa<IndirectBrInst>(PredBB->getTerminator()))
87           // We cannot rewrite exiting edges from an indirectbr.
88           return false;
89         if (isa<CallBrInst>(PredBB->getTerminator()))
90           // We cannot rewrite exiting edges from a callbr.
91           return false;
92 
93         InLoopPredecessors.push_back(PredBB);
94       } else {
95         IsDedicatedExit = false;
96       }
97 
98     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
99 
100     // Nothing to do if this is already a dedicated exit.
101     if (IsDedicatedExit)
102       return false;
103 
104     auto *NewExitBB = SplitBlockPredecessors(
105         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
106 
107     if (!NewExitBB)
108       LLVM_DEBUG(
109           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
110                  << *L << "\n");
111     else
112       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
113                         << NewExitBB->getName() << "\n");
114     return true;
115   };
116 
117   // Walk the exit blocks directly rather than building up a data structure for
118   // them, but only visit each one once.
119   SmallPtrSet<BasicBlock *, 4> Visited;
120   for (auto *BB : L->blocks())
121     for (auto *SuccBB : successors(BB)) {
122       // We're looking for exit blocks so skip in-loop successors.
123       if (L->contains(SuccBB))
124         continue;
125 
126       // Visit each exit block exactly once.
127       if (!Visited.insert(SuccBB).second)
128         continue;
129 
130       Changed |= RewriteExit(SuccBB);
131     }
132 
133   return Changed;
134 }
135 
136 /// Returns the instructions that use values defined in the loop.
137 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
138   SmallVector<Instruction *, 8> UsedOutside;
139 
140   for (auto *Block : L->getBlocks())
141     // FIXME: I believe that this could use copy_if if the Inst reference could
142     // be adapted into a pointer.
143     for (auto &Inst : *Block) {
144       auto Users = Inst.users();
145       if (any_of(Users, [&](User *U) {
146             auto *Use = cast<Instruction>(U);
147             return !L->contains(Use->getParent());
148           }))
149         UsedOutside.push_back(&Inst);
150     }
151 
152   return UsedOutside;
153 }
154 
155 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
156   // By definition, all loop passes need the LoopInfo analysis and the
157   // Dominator tree it depends on. Because they all participate in the loop
158   // pass manager, they must also preserve these.
159   AU.addRequired<DominatorTreeWrapperPass>();
160   AU.addPreserved<DominatorTreeWrapperPass>();
161   AU.addRequired<LoopInfoWrapperPass>();
162   AU.addPreserved<LoopInfoWrapperPass>();
163 
164   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
165   // here because users shouldn't directly get them from this header.
166   extern char &LoopSimplifyID;
167   extern char &LCSSAID;
168   AU.addRequiredID(LoopSimplifyID);
169   AU.addPreservedID(LoopSimplifyID);
170   AU.addRequiredID(LCSSAID);
171   AU.addPreservedID(LCSSAID);
172   // This is used in the LPPassManager to perform LCSSA verification on passes
173   // which preserve lcssa form
174   AU.addRequired<LCSSAVerificationPass>();
175   AU.addPreserved<LCSSAVerificationPass>();
176 
177   // Loop passes are designed to run inside of a loop pass manager which means
178   // that any function analyses they require must be required by the first loop
179   // pass in the manager (so that it is computed before the loop pass manager
180   // runs) and preserved by all loop pasess in the manager. To make this
181   // reasonably robust, the set needed for most loop passes is maintained here.
182   // If your loop pass requires an analysis not listed here, you will need to
183   // carefully audit the loop pass manager nesting structure that results.
184   AU.addRequired<AAResultsWrapperPass>();
185   AU.addPreserved<AAResultsWrapperPass>();
186   AU.addPreserved<BasicAAWrapperPass>();
187   AU.addPreserved<GlobalsAAWrapperPass>();
188   AU.addPreserved<SCEVAAWrapperPass>();
189   AU.addRequired<ScalarEvolutionWrapperPass>();
190   AU.addPreserved<ScalarEvolutionWrapperPass>();
191   // FIXME: When all loop passes preserve MemorySSA, it can be required and
192   // preserved here instead of the individual handling in each pass.
193 }
194 
195 /// Manually defined generic "LoopPass" dependency initialization. This is used
196 /// to initialize the exact set of passes from above in \c
197 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
198 /// with:
199 ///
200 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
201 ///
202 /// As-if "LoopPass" were a pass.
203 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
204   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
206   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
207   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
213   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
214 }
215 
216 /// Create MDNode for input string.
217 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
218   LLVMContext &Context = TheLoop->getHeader()->getContext();
219   Metadata *MDs[] = {
220       MDString::get(Context, Name),
221       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
222   return MDNode::get(Context, MDs);
223 }
224 
225 /// Set input string into loop metadata by keeping other values intact.
226 /// If the string is already in loop metadata update value if it is
227 /// different.
228 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
229                                    unsigned V) {
230   SmallVector<Metadata *, 4> MDs(1);
231   // If the loop already has metadata, retain it.
232   MDNode *LoopID = TheLoop->getLoopID();
233   if (LoopID) {
234     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
235       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
236       // If it is of form key = value, try to parse it.
237       if (Node->getNumOperands() == 2) {
238         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
239         if (S && S->getString().equals(StringMD)) {
240           ConstantInt *IntMD =
241               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
242           if (IntMD && IntMD->getSExtValue() == V)
243             // It is already in place. Do nothing.
244             return;
245           // We need to update the value, so just skip it here and it will
246           // be added after copying other existed nodes.
247           continue;
248         }
249       }
250       MDs.push_back(Node);
251     }
252   }
253   // Add new metadata.
254   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
255   // Replace current metadata node with new one.
256   LLVMContext &Context = TheLoop->getHeader()->getContext();
257   MDNode *NewLoopID = MDNode::get(Context, MDs);
258   // Set operand 0 to refer to the loop id itself.
259   NewLoopID->replaceOperandWith(0, NewLoopID);
260   TheLoop->setLoopID(NewLoopID);
261 }
262 
263 /// Find string metadata for loop
264 ///
265 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
266 /// operand or null otherwise.  If the string metadata is not found return
267 /// Optional's not-a-value.
268 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
269                                                             StringRef Name) {
270   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
271   if (!MD)
272     return None;
273   switch (MD->getNumOperands()) {
274   case 1:
275     return nullptr;
276   case 2:
277     return &MD->getOperand(1);
278   default:
279     llvm_unreachable("loop metadata has 0 or 1 operand");
280   }
281 }
282 
283 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
284                                                    StringRef Name) {
285   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
286   if (!MD)
287     return None;
288   switch (MD->getNumOperands()) {
289   case 1:
290     // When the value is absent it is interpreted as 'attribute set'.
291     return true;
292   case 2:
293     if (ConstantInt *IntMD =
294             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
295       return IntMD->getZExtValue();
296     return true;
297   }
298   llvm_unreachable("unexpected number of options");
299 }
300 
301 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
302   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
303 }
304 
305 Optional<ElementCount>
306 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
307   Optional<int> Width =
308       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
309 
310   if (Width.hasValue()) {
311     Optional<int> IsScalable = getOptionalIntLoopAttribute(
312         TheLoop, "llvm.loop.vectorize.scalable.enable");
313     return ElementCount::get(*Width,
314                              IsScalable.hasValue() ? *IsScalable : false);
315   }
316 
317   return None;
318 }
319 
320 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
321                                                       StringRef Name) {
322   const MDOperand *AttrMD =
323       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
324   if (!AttrMD)
325     return None;
326 
327   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
328   if (!IntMD)
329     return None;
330 
331   return IntMD->getSExtValue();
332 }
333 
334 Optional<MDNode *> llvm::makeFollowupLoopID(
335     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
336     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
337   if (!OrigLoopID) {
338     if (AlwaysNew)
339       return nullptr;
340     return None;
341   }
342 
343   assert(OrigLoopID->getOperand(0) == OrigLoopID);
344 
345   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
346   bool InheritSomeAttrs =
347       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
348   SmallVector<Metadata *, 8> MDs;
349   MDs.push_back(nullptr);
350 
351   bool Changed = false;
352   if (InheritAllAttrs || InheritSomeAttrs) {
353     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
354       MDNode *Op = cast<MDNode>(Existing.get());
355 
356       auto InheritThisAttribute = [InheritSomeAttrs,
357                                    InheritOptionsExceptPrefix](MDNode *Op) {
358         if (!InheritSomeAttrs)
359           return false;
360 
361         // Skip malformatted attribute metadata nodes.
362         if (Op->getNumOperands() == 0)
363           return true;
364         Metadata *NameMD = Op->getOperand(0).get();
365         if (!isa<MDString>(NameMD))
366           return true;
367         StringRef AttrName = cast<MDString>(NameMD)->getString();
368 
369         // Do not inherit excluded attributes.
370         return !AttrName.startswith(InheritOptionsExceptPrefix);
371       };
372 
373       if (InheritThisAttribute(Op))
374         MDs.push_back(Op);
375       else
376         Changed = true;
377     }
378   } else {
379     // Modified if we dropped at least one attribute.
380     Changed = OrigLoopID->getNumOperands() > 1;
381   }
382 
383   bool HasAnyFollowup = false;
384   for (StringRef OptionName : FollowupOptions) {
385     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
386     if (!FollowupNode)
387       continue;
388 
389     HasAnyFollowup = true;
390     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
391       MDs.push_back(Option.get());
392       Changed = true;
393     }
394   }
395 
396   // Attributes of the followup loop not specified explicity, so signal to the
397   // transformation pass to add suitable attributes.
398   if (!AlwaysNew && !HasAnyFollowup)
399     return None;
400 
401   // If no attributes were added or remove, the previous loop Id can be reused.
402   if (!AlwaysNew && !Changed)
403     return OrigLoopID;
404 
405   // No attributes is equivalent to having no !llvm.loop metadata at all.
406   if (MDs.size() == 1)
407     return nullptr;
408 
409   // Build the new loop ID.
410   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
411   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
412   return FollowupLoopID;
413 }
414 
415 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
416   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
417 }
418 
419 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
420   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
421 }
422 
423 bool llvm::hasMustProgress(const Loop *L) {
424   return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
425 }
426 
427 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
428   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
429     return TM_SuppressedByUser;
430 
431   Optional<int> Count =
432       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
433   if (Count.hasValue())
434     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
435 
436   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
437     return TM_ForcedByUser;
438 
439   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
440     return TM_ForcedByUser;
441 
442   if (hasDisableAllTransformsHint(L))
443     return TM_Disable;
444 
445   return TM_Unspecified;
446 }
447 
448 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
449   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
450     return TM_SuppressedByUser;
451 
452   Optional<int> Count =
453       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
454   if (Count.hasValue())
455     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
456 
457   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
458     return TM_ForcedByUser;
459 
460   if (hasDisableAllTransformsHint(L))
461     return TM_Disable;
462 
463   return TM_Unspecified;
464 }
465 
466 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
467   Optional<bool> Enable =
468       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
469 
470   if (Enable == false)
471     return TM_SuppressedByUser;
472 
473   Optional<ElementCount> VectorizeWidth =
474       getOptionalElementCountLoopAttribute(L);
475   Optional<int> InterleaveCount =
476       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
477 
478   // 'Forcing' vector width and interleave count to one effectively disables
479   // this tranformation.
480   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
481       InterleaveCount == 1)
482     return TM_SuppressedByUser;
483 
484   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
485     return TM_Disable;
486 
487   if (Enable == true)
488     return TM_ForcedByUser;
489 
490   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
491     return TM_Disable;
492 
493   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
494     return TM_Enable;
495 
496   if (hasDisableAllTransformsHint(L))
497     return TM_Disable;
498 
499   return TM_Unspecified;
500 }
501 
502 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
503   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
504     return TM_ForcedByUser;
505 
506   if (hasDisableAllTransformsHint(L))
507     return TM_Disable;
508 
509   return TM_Unspecified;
510 }
511 
512 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
513   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
514     return TM_SuppressedByUser;
515 
516   if (hasDisableAllTransformsHint(L))
517     return TM_Disable;
518 
519   return TM_Unspecified;
520 }
521 
522 /// Does a BFS from a given node to all of its children inside a given loop.
523 /// The returned vector of nodes includes the starting point.
524 SmallVector<DomTreeNode *, 16>
525 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
526   SmallVector<DomTreeNode *, 16> Worklist;
527   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
528     // Only include subregions in the top level loop.
529     BasicBlock *BB = DTN->getBlock();
530     if (CurLoop->contains(BB))
531       Worklist.push_back(DTN);
532   };
533 
534   AddRegionToWorklist(N);
535 
536   for (size_t I = 0; I < Worklist.size(); I++) {
537     for (DomTreeNode *Child : Worklist[I]->children())
538       AddRegionToWorklist(Child);
539   }
540 
541   return Worklist;
542 }
543 
544 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
545                           LoopInfo *LI, MemorySSA *MSSA) {
546   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
547   auto *Preheader = L->getLoopPreheader();
548   assert(Preheader && "Preheader should exist!");
549 
550   std::unique_ptr<MemorySSAUpdater> MSSAU;
551   if (MSSA)
552     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
553 
554   // Now that we know the removal is safe, remove the loop by changing the
555   // branch from the preheader to go to the single exit block.
556   //
557   // Because we're deleting a large chunk of code at once, the sequence in which
558   // we remove things is very important to avoid invalidation issues.
559 
560   // Tell ScalarEvolution that the loop is deleted. Do this before
561   // deleting the loop so that ScalarEvolution can look at the loop
562   // to determine what it needs to clean up.
563   if (SE)
564     SE->forgetLoop(L);
565 
566   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
567   assert(OldBr && "Preheader must end with a branch");
568   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
569   // Connect the preheader to the exit block. Keep the old edge to the header
570   // around to perform the dominator tree update in two separate steps
571   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
572   // preheader -> header.
573   //
574   //
575   // 0.  Preheader          1.  Preheader           2.  Preheader
576   //        |                    |   |                   |
577   //        V                    |   V                   |
578   //      Header <--\            | Header <--\           | Header <--\
579   //       |  |     |            |  |  |     |           |  |  |     |
580   //       |  V     |            |  |  V     |           |  |  V     |
581   //       | Body --/            |  | Body --/           |  | Body --/
582   //       V                     V  V                    V  V
583   //      Exit                   Exit                    Exit
584   //
585   // By doing this is two separate steps we can perform the dominator tree
586   // update without using the batch update API.
587   //
588   // Even when the loop is never executed, we cannot remove the edge from the
589   // source block to the exit block. Consider the case where the unexecuted loop
590   // branches back to an outer loop. If we deleted the loop and removed the edge
591   // coming to this inner loop, this will break the outer loop structure (by
592   // deleting the backedge of the outer loop). If the outer loop is indeed a
593   // non-loop, it will be deleted in a future iteration of loop deletion pass.
594   IRBuilder<> Builder(OldBr);
595 
596   auto *ExitBlock = L->getUniqueExitBlock();
597   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
598   if (ExitBlock) {
599     assert(ExitBlock && "Should have a unique exit block!");
600     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
601 
602     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
603     // Remove the old branch. The conditional branch becomes a new terminator.
604     OldBr->eraseFromParent();
605 
606     // Rewrite phis in the exit block to get their inputs from the Preheader
607     // instead of the exiting block.
608     for (PHINode &P : ExitBlock->phis()) {
609       // Set the zero'th element of Phi to be from the preheader and remove all
610       // other incoming values. Given the loop has dedicated exits, all other
611       // incoming values must be from the exiting blocks.
612       int PredIndex = 0;
613       P.setIncomingBlock(PredIndex, Preheader);
614       // Removes all incoming values from all other exiting blocks (including
615       // duplicate values from an exiting block).
616       // Nuke all entries except the zero'th entry which is the preheader entry.
617       // NOTE! We need to remove Incoming Values in the reverse order as done
618       // below, to keep the indices valid for deletion (removeIncomingValues
619       // updates getNumIncomingValues and shifts all values down into the
620       // operand being deleted).
621       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
622         P.removeIncomingValue(e - i, false);
623 
624       assert((P.getNumIncomingValues() == 1 &&
625               P.getIncomingBlock(PredIndex) == Preheader) &&
626              "Should have exactly one value and that's from the preheader!");
627     }
628 
629     if (DT) {
630       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
631       if (MSSA) {
632         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
633                             *DT);
634         if (VerifyMemorySSA)
635           MSSA->verifyMemorySSA();
636       }
637     }
638 
639     // Disconnect the loop body by branching directly to its exit.
640     Builder.SetInsertPoint(Preheader->getTerminator());
641     Builder.CreateBr(ExitBlock);
642     // Remove the old branch.
643     Preheader->getTerminator()->eraseFromParent();
644   } else {
645     assert(L->hasNoExitBlocks() &&
646            "Loop should have either zero or one exit blocks.");
647 
648     Builder.SetInsertPoint(OldBr);
649     Builder.CreateUnreachable();
650     Preheader->getTerminator()->eraseFromParent();
651   }
652 
653   if (DT) {
654     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
655     if (MSSA) {
656       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
657                           *DT);
658       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
659                                                    L->block_end());
660       MSSAU->removeBlocks(DeadBlockSet);
661       if (VerifyMemorySSA)
662         MSSA->verifyMemorySSA();
663     }
664   }
665 
666   // Use a map to unique and a vector to guarantee deterministic ordering.
667   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
668   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
669 
670   if (ExitBlock) {
671     // Given LCSSA form is satisfied, we should not have users of instructions
672     // within the dead loop outside of the loop. However, LCSSA doesn't take
673     // unreachable uses into account. We handle them here.
674     // We could do it after drop all references (in this case all users in the
675     // loop will be already eliminated and we have less work to do but according
676     // to API doc of User::dropAllReferences only valid operation after dropping
677     // references, is deletion. So let's substitute all usages of
678     // instruction from the loop with undef value of corresponding type first.
679     for (auto *Block : L->blocks())
680       for (Instruction &I : *Block) {
681         auto *Undef = UndefValue::get(I.getType());
682         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
683              UI != E;) {
684           Use &U = *UI;
685           ++UI;
686           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
687             if (L->contains(Usr->getParent()))
688               continue;
689           // If we have a DT then we can check that uses outside a loop only in
690           // unreachable block.
691           if (DT)
692             assert(!DT->isReachableFromEntry(U) &&
693                    "Unexpected user in reachable block");
694           U.set(Undef);
695         }
696         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
697         if (!DVI)
698           continue;
699         auto Key =
700             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
701         if (Key != DeadDebugSet.end())
702           continue;
703         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
704         DeadDebugInst.push_back(DVI);
705       }
706 
707     // After the loop has been deleted all the values defined and modified
708     // inside the loop are going to be unavailable.
709     // Since debug values in the loop have been deleted, inserting an undef
710     // dbg.value truncates the range of any dbg.value before the loop where the
711     // loop used to be. This is particularly important for constant values.
712     DIBuilder DIB(*ExitBlock->getModule());
713     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
714     assert(InsertDbgValueBefore &&
715            "There should be a non-PHI instruction in exit block, else these "
716            "instructions will have no parent.");
717     for (auto *DVI : DeadDebugInst)
718       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
719                                   DVI->getVariable(), DVI->getExpression(),
720                                   DVI->getDebugLoc(), InsertDbgValueBefore);
721   }
722 
723   // Remove the block from the reference counting scheme, so that we can
724   // delete it freely later.
725   for (auto *Block : L->blocks())
726     Block->dropAllReferences();
727 
728   if (MSSA && VerifyMemorySSA)
729     MSSA->verifyMemorySSA();
730 
731   if (LI) {
732     // Erase the instructions and the blocks without having to worry
733     // about ordering because we already dropped the references.
734     // NOTE: This iteration is safe because erasing the block does not remove
735     // its entry from the loop's block list.  We do that in the next section.
736     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
737          LpI != LpE; ++LpI)
738       (*LpI)->eraseFromParent();
739 
740     // Finally, the blocks from loopinfo.  This has to happen late because
741     // otherwise our loop iterators won't work.
742 
743     SmallPtrSet<BasicBlock *, 8> blocks;
744     blocks.insert(L->block_begin(), L->block_end());
745     for (BasicBlock *BB : blocks)
746       LI->removeBlock(BB);
747 
748     // The last step is to update LoopInfo now that we've eliminated this loop.
749     // Note: LoopInfo::erase remove the given loop and relink its subloops with
750     // its parent. While removeLoop/removeChildLoop remove the given loop but
751     // not relink its subloops, which is what we want.
752     if (Loop *ParentLoop = L->getParentLoop()) {
753       Loop::iterator I = find(*ParentLoop, L);
754       assert(I != ParentLoop->end() && "Couldn't find loop");
755       ParentLoop->removeChildLoop(I);
756     } else {
757       Loop::iterator I = find(*LI, L);
758       assert(I != LI->end() && "Couldn't find loop");
759       LI->removeLoop(I);
760     }
761     LI->destroy(L);
762   }
763 }
764 
765 /// Checks if \p L has single exit through latch block except possibly
766 /// "deoptimizing" exits. Returns branch instruction terminating the loop
767 /// latch if above check is successful, nullptr otherwise.
768 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
769   BasicBlock *Latch = L->getLoopLatch();
770   if (!Latch)
771     return nullptr;
772 
773   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
774   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
775     return nullptr;
776 
777   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
778           LatchBR->getSuccessor(1) == L->getHeader()) &&
779          "At least one edge out of the latch must go to the header");
780 
781   SmallVector<BasicBlock *, 4> ExitBlocks;
782   L->getUniqueNonLatchExitBlocks(ExitBlocks);
783   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
784         return !EB->getTerminatingDeoptimizeCall();
785       }))
786     return nullptr;
787 
788   return LatchBR;
789 }
790 
791 Optional<unsigned>
792 llvm::getLoopEstimatedTripCount(Loop *L,
793                                 unsigned *EstimatedLoopInvocationWeight) {
794   // Support loops with an exiting latch and other existing exists only
795   // deoptimize.
796   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
797   if (!LatchBranch)
798     return None;
799 
800   // To estimate the number of times the loop body was executed, we want to
801   // know the number of times the backedge was taken, vs. the number of times
802   // we exited the loop.
803   uint64_t BackedgeTakenWeight, LatchExitWeight;
804   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
805     return None;
806 
807   if (LatchBranch->getSuccessor(0) != L->getHeader())
808     std::swap(BackedgeTakenWeight, LatchExitWeight);
809 
810   if (!LatchExitWeight)
811     return None;
812 
813   if (EstimatedLoopInvocationWeight)
814     *EstimatedLoopInvocationWeight = LatchExitWeight;
815 
816   // Estimated backedge taken count is a ratio of the backedge taken weight by
817   // the weight of the edge exiting the loop, rounded to nearest.
818   uint64_t BackedgeTakenCount =
819       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
820   // Estimated trip count is one plus estimated backedge taken count.
821   return BackedgeTakenCount + 1;
822 }
823 
824 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
825                                      unsigned EstimatedloopInvocationWeight) {
826   // Support loops with an exiting latch and other existing exists only
827   // deoptimize.
828   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
829   if (!LatchBranch)
830     return false;
831 
832   // Calculate taken and exit weights.
833   unsigned LatchExitWeight = 0;
834   unsigned BackedgeTakenWeight = 0;
835 
836   if (EstimatedTripCount > 0) {
837     LatchExitWeight = EstimatedloopInvocationWeight;
838     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
839   }
840 
841   // Make a swap if back edge is taken when condition is "false".
842   if (LatchBranch->getSuccessor(0) != L->getHeader())
843     std::swap(BackedgeTakenWeight, LatchExitWeight);
844 
845   MDBuilder MDB(LatchBranch->getContext());
846 
847   // Set/Update profile metadata.
848   LatchBranch->setMetadata(
849       LLVMContext::MD_prof,
850       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
851 
852   return true;
853 }
854 
855 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
856                                               ScalarEvolution &SE) {
857   Loop *OuterL = InnerLoop->getParentLoop();
858   if (!OuterL)
859     return true;
860 
861   // Get the backedge taken count for the inner loop
862   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
863   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
864   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
865       !InnerLoopBECountSC->getType()->isIntegerTy())
866     return false;
867 
868   // Get whether count is invariant to the outer loop
869   ScalarEvolution::LoopDisposition LD =
870       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
871   if (LD != ScalarEvolution::LoopInvariant)
872     return false;
873 
874   return true;
875 }
876 
877 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
878                             Value *Right) {
879   CmpInst::Predicate P = CmpInst::ICMP_NE;
880   switch (RK) {
881   default:
882     llvm_unreachable("Unknown min/max recurrence kind");
883   case RecurKind::UMin:
884     P = CmpInst::ICMP_ULT;
885     break;
886   case RecurKind::UMax:
887     P = CmpInst::ICMP_UGT;
888     break;
889   case RecurKind::SMin:
890     P = CmpInst::ICMP_SLT;
891     break;
892   case RecurKind::SMax:
893     P = CmpInst::ICMP_SGT;
894     break;
895   case RecurKind::FMin:
896     P = CmpInst::FCMP_OLT;
897     break;
898   case RecurKind::FMax:
899     P = CmpInst::FCMP_OGT;
900     break;
901   }
902 
903   // We only match FP sequences that are 'fast', so we can unconditionally
904   // set it on any generated instructions.
905   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
906   FastMathFlags FMF;
907   FMF.setFast();
908   Builder.setFastMathFlags(FMF);
909   Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
910   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
911   return Select;
912 }
913 
914 // Helper to generate an ordered reduction.
915 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
916                                  unsigned Op, RecurKind RdxKind,
917                                  ArrayRef<Value *> RedOps) {
918   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
919 
920   // Extract and apply reduction ops in ascending order:
921   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
922   Value *Result = Acc;
923   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
924     Value *Ext =
925         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
926 
927     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
928       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
929                                    "bin.rdx");
930     } else {
931       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
932              "Invalid min/max");
933       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
934     }
935 
936     if (!RedOps.empty())
937       propagateIRFlags(Result, RedOps);
938   }
939 
940   return Result;
941 }
942 
943 // Helper to generate a log2 shuffle reduction.
944 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
945                                  unsigned Op, RecurKind RdxKind,
946                                  ArrayRef<Value *> RedOps) {
947   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
948   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
949   // and vector ops, reducing the set of values being computed by half each
950   // round.
951   assert(isPowerOf2_32(VF) &&
952          "Reduction emission only supported for pow2 vectors!");
953   Value *TmpVec = Src;
954   SmallVector<int, 32> ShuffleMask(VF);
955   for (unsigned i = VF; i != 1; i >>= 1) {
956     // Move the upper half of the vector to the lower half.
957     for (unsigned j = 0; j != i / 2; ++j)
958       ShuffleMask[j] = i / 2 + j;
959 
960     // Fill the rest of the mask with undef.
961     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
962 
963     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
964 
965     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
966       // The builder propagates its fast-math-flags setting.
967       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
968                                    "bin.rdx");
969     } else {
970       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
971              "Invalid min/max");
972       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
973     }
974     if (!RedOps.empty())
975       propagateIRFlags(TmpVec, RedOps);
976 
977     // We may compute the reassociated scalar ops in a way that does not
978     // preserve nsw/nuw etc. Conservatively, drop those flags.
979     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
980       ReductionInst->dropPoisonGeneratingFlags();
981   }
982   // The result is in the first element of the vector.
983   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
984 }
985 
986 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
987                                          const TargetTransformInfo *TTI,
988                                          Value *Src, RecurKind RdxKind,
989                                          ArrayRef<Value *> RedOps) {
990   unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
991   TargetTransformInfo::ReductionFlags RdxFlags;
992   RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
993                      RdxKind == RecurKind::FMax;
994   RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
995   if (!ForceReductionIntrinsic &&
996       !TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags))
997     return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps);
998 
999   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1000   switch (RdxKind) {
1001   case RecurKind::Add:
1002     return Builder.CreateAddReduce(Src);
1003   case RecurKind::Mul:
1004     return Builder.CreateMulReduce(Src);
1005   case RecurKind::And:
1006     return Builder.CreateAndReduce(Src);
1007   case RecurKind::Or:
1008     return Builder.CreateOrReduce(Src);
1009   case RecurKind::Xor:
1010     return Builder.CreateXorReduce(Src);
1011   case RecurKind::FAdd:
1012     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1013                                     Src);
1014   case RecurKind::FMul:
1015     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1016   case RecurKind::SMax:
1017     return Builder.CreateIntMaxReduce(Src, true);
1018   case RecurKind::SMin:
1019     return Builder.CreateIntMinReduce(Src, true);
1020   case RecurKind::UMax:
1021     return Builder.CreateIntMaxReduce(Src, false);
1022   case RecurKind::UMin:
1023     return Builder.CreateIntMinReduce(Src, false);
1024   case RecurKind::FMax:
1025     return Builder.CreateFPMaxReduce(Src);
1026   case RecurKind::FMin:
1027     return Builder.CreateFPMinReduce(Src);
1028   default:
1029     llvm_unreachable("Unhandled opcode");
1030   }
1031 }
1032 
1033 Value *llvm::createTargetReduction(IRBuilderBase &B,
1034                                    const TargetTransformInfo *TTI,
1035                                    RecurrenceDescriptor &Desc, Value *Src) {
1036   // TODO: Support in-order reductions based on the recurrence descriptor.
1037   // All ops in the reduction inherit fast-math-flags from the recurrence
1038   // descriptor.
1039   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1040   B.setFastMathFlags(Desc.getFastMathFlags());
1041   return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
1042 }
1043 
1044 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1045   auto *VecOp = dyn_cast<Instruction>(I);
1046   if (!VecOp)
1047     return;
1048   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1049                                             : dyn_cast<Instruction>(OpValue);
1050   if (!Intersection)
1051     return;
1052   const unsigned Opcode = Intersection->getOpcode();
1053   VecOp->copyIRFlags(Intersection);
1054   for (auto *V : VL) {
1055     auto *Instr = dyn_cast<Instruction>(V);
1056     if (!Instr)
1057       continue;
1058     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1059       VecOp->andIRFlags(V);
1060   }
1061 }
1062 
1063 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1064                                  ScalarEvolution &SE) {
1065   const SCEV *Zero = SE.getZero(S->getType());
1066   return SE.isAvailableAtLoopEntry(S, L) &&
1067          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1068 }
1069 
1070 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1071                                     ScalarEvolution &SE) {
1072   const SCEV *Zero = SE.getZero(S->getType());
1073   return SE.isAvailableAtLoopEntry(S, L) &&
1074          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1075 }
1076 
1077 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1078                              bool Signed) {
1079   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1080   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1081     APInt::getMinValue(BitWidth);
1082   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1083   return SE.isAvailableAtLoopEntry(S, L) &&
1084          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1085                                      SE.getConstant(Min));
1086 }
1087 
1088 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1089                              bool Signed) {
1090   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1091   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1092     APInt::getMaxValue(BitWidth);
1093   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1094   return SE.isAvailableAtLoopEntry(S, L) &&
1095          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1096                                      SE.getConstant(Max));
1097 }
1098 
1099 //===----------------------------------------------------------------------===//
1100 // rewriteLoopExitValues - Optimize IV users outside the loop.
1101 // As a side effect, reduces the amount of IV processing within the loop.
1102 //===----------------------------------------------------------------------===//
1103 
1104 // Return true if the SCEV expansion generated by the rewriter can replace the
1105 // original value. SCEV guarantees that it produces the same value, but the way
1106 // it is produced may be illegal IR.  Ideally, this function will only be
1107 // called for verification.
1108 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1109   // If an SCEV expression subsumed multiple pointers, its expansion could
1110   // reassociate the GEP changing the base pointer. This is illegal because the
1111   // final address produced by a GEP chain must be inbounds relative to its
1112   // underlying object. Otherwise basic alias analysis, among other things,
1113   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1114   // producing an expression involving multiple pointers. Until then, we must
1115   // bail out here.
1116   //
1117   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1118   // because it understands lcssa phis while SCEV does not.
1119   Value *FromPtr = FromVal;
1120   Value *ToPtr = ToVal;
1121   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1122     FromPtr = GEP->getPointerOperand();
1123 
1124   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1125     ToPtr = GEP->getPointerOperand();
1126 
1127   if (FromPtr != FromVal || ToPtr != ToVal) {
1128     // Quickly check the common case
1129     if (FromPtr == ToPtr)
1130       return true;
1131 
1132     // SCEV may have rewritten an expression that produces the GEP's pointer
1133     // operand. That's ok as long as the pointer operand has the same base
1134     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1135     // base of a recurrence. This handles the case in which SCEV expansion
1136     // converts a pointer type recurrence into a nonrecurrent pointer base
1137     // indexed by an integer recurrence.
1138 
1139     // If the GEP base pointer is a vector of pointers, abort.
1140     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1141       return false;
1142 
1143     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1144     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1145     if (FromBase == ToBase)
1146       return true;
1147 
1148     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1149                       << *FromBase << " != " << *ToBase << "\n");
1150 
1151     return false;
1152   }
1153   return true;
1154 }
1155 
1156 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1157   SmallPtrSet<const Instruction *, 8> Visited;
1158   SmallVector<const Instruction *, 8> WorkList;
1159   Visited.insert(I);
1160   WorkList.push_back(I);
1161   while (!WorkList.empty()) {
1162     const Instruction *Curr = WorkList.pop_back_val();
1163     // This use is outside the loop, nothing to do.
1164     if (!L->contains(Curr))
1165       continue;
1166     // Do we assume it is a "hard" use which will not be eliminated easily?
1167     if (Curr->mayHaveSideEffects())
1168       return true;
1169     // Otherwise, add all its users to worklist.
1170     for (auto U : Curr->users()) {
1171       auto *UI = cast<Instruction>(U);
1172       if (Visited.insert(UI).second)
1173         WorkList.push_back(UI);
1174     }
1175   }
1176   return false;
1177 }
1178 
1179 // Collect information about PHI nodes which can be transformed in
1180 // rewriteLoopExitValues.
1181 struct RewritePhi {
1182   PHINode *PN;               // For which PHI node is this replacement?
1183   unsigned Ith;              // For which incoming value?
1184   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1185   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1186   bool HighCost;               // Is this expansion a high-cost?
1187 
1188   Value *Expansion = nullptr;
1189   bool ValidRewrite = false;
1190 
1191   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1192              bool H)
1193       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1194         HighCost(H) {}
1195 };
1196 
1197 // Check whether it is possible to delete the loop after rewriting exit
1198 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1199 // aggressively.
1200 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1201   BasicBlock *Preheader = L->getLoopPreheader();
1202   // If there is no preheader, the loop will not be deleted.
1203   if (!Preheader)
1204     return false;
1205 
1206   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1207   // We obviate multiple ExitingBlocks case for simplicity.
1208   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1209   // after exit value rewriting, we can enhance the logic here.
1210   SmallVector<BasicBlock *, 4> ExitingBlocks;
1211   L->getExitingBlocks(ExitingBlocks);
1212   SmallVector<BasicBlock *, 8> ExitBlocks;
1213   L->getUniqueExitBlocks(ExitBlocks);
1214   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1215     return false;
1216 
1217   BasicBlock *ExitBlock = ExitBlocks[0];
1218   BasicBlock::iterator BI = ExitBlock->begin();
1219   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1220     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1221 
1222     // If the Incoming value of P is found in RewritePhiSet, we know it
1223     // could be rewritten to use a loop invariant value in transformation
1224     // phase later. Skip it in the loop invariant check below.
1225     bool found = false;
1226     for (const RewritePhi &Phi : RewritePhiSet) {
1227       if (!Phi.ValidRewrite)
1228         continue;
1229       unsigned i = Phi.Ith;
1230       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1231         found = true;
1232         break;
1233       }
1234     }
1235 
1236     Instruction *I;
1237     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1238       if (!L->hasLoopInvariantOperands(I))
1239         return false;
1240 
1241     ++BI;
1242   }
1243 
1244   for (auto *BB : L->blocks())
1245     if (llvm::any_of(*BB, [](Instruction &I) {
1246           return I.mayHaveSideEffects();
1247         }))
1248       return false;
1249 
1250   return true;
1251 }
1252 
1253 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1254                                 ScalarEvolution *SE,
1255                                 const TargetTransformInfo *TTI,
1256                                 SCEVExpander &Rewriter, DominatorTree *DT,
1257                                 ReplaceExitVal ReplaceExitValue,
1258                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1259   // Check a pre-condition.
1260   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1261          "Indvars did not preserve LCSSA!");
1262 
1263   SmallVector<BasicBlock*, 8> ExitBlocks;
1264   L->getUniqueExitBlocks(ExitBlocks);
1265 
1266   SmallVector<RewritePhi, 8> RewritePhiSet;
1267   // Find all values that are computed inside the loop, but used outside of it.
1268   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1269   // the exit blocks of the loop to find them.
1270   for (BasicBlock *ExitBB : ExitBlocks) {
1271     // If there are no PHI nodes in this exit block, then no values defined
1272     // inside the loop are used on this path, skip it.
1273     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1274     if (!PN) continue;
1275 
1276     unsigned NumPreds = PN->getNumIncomingValues();
1277 
1278     // Iterate over all of the PHI nodes.
1279     BasicBlock::iterator BBI = ExitBB->begin();
1280     while ((PN = dyn_cast<PHINode>(BBI++))) {
1281       if (PN->use_empty())
1282         continue; // dead use, don't replace it
1283 
1284       if (!SE->isSCEVable(PN->getType()))
1285         continue;
1286 
1287       // It's necessary to tell ScalarEvolution about this explicitly so that
1288       // it can walk the def-use list and forget all SCEVs, as it may not be
1289       // watching the PHI itself. Once the new exit value is in place, there
1290       // may not be a def-use connection between the loop and every instruction
1291       // which got a SCEVAddRecExpr for that loop.
1292       SE->forgetValue(PN);
1293 
1294       // Iterate over all of the values in all the PHI nodes.
1295       for (unsigned i = 0; i != NumPreds; ++i) {
1296         // If the value being merged in is not integer or is not defined
1297         // in the loop, skip it.
1298         Value *InVal = PN->getIncomingValue(i);
1299         if (!isa<Instruction>(InVal))
1300           continue;
1301 
1302         // If this pred is for a subloop, not L itself, skip it.
1303         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1304           continue; // The Block is in a subloop, skip it.
1305 
1306         // Check that InVal is defined in the loop.
1307         Instruction *Inst = cast<Instruction>(InVal);
1308         if (!L->contains(Inst))
1309           continue;
1310 
1311         // Okay, this instruction has a user outside of the current loop
1312         // and varies predictably *inside* the loop.  Evaluate the value it
1313         // contains when the loop exits, if possible.  We prefer to start with
1314         // expressions which are true for all exits (so as to maximize
1315         // expression reuse by the SCEVExpander), but resort to per-exit
1316         // evaluation if that fails.
1317         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1318         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1319             !SE->isLoopInvariant(ExitValue, L) ||
1320             !isSafeToExpand(ExitValue, *SE)) {
1321           // TODO: This should probably be sunk into SCEV in some way; maybe a
1322           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1323           // most SCEV expressions and other recurrence types (e.g. shift
1324           // recurrences).  Is there existing code we can reuse?
1325           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1326           if (isa<SCEVCouldNotCompute>(ExitCount))
1327             continue;
1328           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1329             if (AddRec->getLoop() == L)
1330               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1331           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1332               !SE->isLoopInvariant(ExitValue, L) ||
1333               !isSafeToExpand(ExitValue, *SE))
1334             continue;
1335         }
1336 
1337         // Computing the value outside of the loop brings no benefit if it is
1338         // definitely used inside the loop in a way which can not be optimized
1339         // away. Avoid doing so unless we know we have a value which computes
1340         // the ExitValue already. TODO: This should be merged into SCEV
1341         // expander to leverage its knowledge of existing expressions.
1342         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1343             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1344           continue;
1345 
1346         // Check if expansions of this SCEV would count as being high cost.
1347         bool HighCost = Rewriter.isHighCostExpansion(
1348             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1349 
1350         // Note that we must not perform expansions until after
1351         // we query *all* the costs, because if we perform temporary expansion
1352         // inbetween, one that we might not intend to keep, said expansion
1353         // *may* affect cost calculation of the the next SCEV's we'll query,
1354         // and next SCEV may errneously get smaller cost.
1355 
1356         // Collect all the candidate PHINodes to be rewritten.
1357         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1358       }
1359     }
1360   }
1361 
1362   // Now that we've done preliminary filtering and billed all the SCEV's,
1363   // we can perform the last sanity check - the expansion must be valid.
1364   for (RewritePhi &Phi : RewritePhiSet) {
1365     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1366                                            Phi.ExpansionPoint);
1367 
1368     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1369                       << *(Phi.Expansion) << '\n'
1370                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1371 
1372     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1373     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1374     if (!Phi.ValidRewrite) {
1375       DeadInsts.push_back(Phi.Expansion);
1376       continue;
1377     }
1378 
1379 #ifndef NDEBUG
1380     // If we reuse an instruction from a loop which is neither L nor one of
1381     // its containing loops, we end up breaking LCSSA form for this loop by
1382     // creating a new use of its instruction.
1383     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1384       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1385         if (EVL != L)
1386           assert(EVL->contains(L) && "LCSSA breach detected!");
1387 #endif
1388   }
1389 
1390   // TODO: after isValidRewrite() is an assertion, evaluate whether
1391   // it is beneficial to change how we calculate high-cost:
1392   // if we have SCEV 'A' which we know we will expand, should we calculate
1393   // the cost of other SCEV's after expanding SCEV 'A',
1394   // thus potentially giving cost bonus to those other SCEV's?
1395 
1396   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1397   int NumReplaced = 0;
1398 
1399   // Transformation.
1400   for (const RewritePhi &Phi : RewritePhiSet) {
1401     if (!Phi.ValidRewrite)
1402       continue;
1403 
1404     PHINode *PN = Phi.PN;
1405     Value *ExitVal = Phi.Expansion;
1406 
1407     // Only do the rewrite when the ExitValue can be expanded cheaply.
1408     // If LoopCanBeDel is true, rewrite exit value aggressively.
1409     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1410       DeadInsts.push_back(ExitVal);
1411       continue;
1412     }
1413 
1414     NumReplaced++;
1415     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1416     PN->setIncomingValue(Phi.Ith, ExitVal);
1417 
1418     // If this instruction is dead now, delete it. Don't do it now to avoid
1419     // invalidating iterators.
1420     if (isInstructionTriviallyDead(Inst, TLI))
1421       DeadInsts.push_back(Inst);
1422 
1423     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1424     if (PN->getNumIncomingValues() == 1 &&
1425         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1426       PN->replaceAllUsesWith(ExitVal);
1427       PN->eraseFromParent();
1428     }
1429   }
1430 
1431   // The insertion point instruction may have been deleted; clear it out
1432   // so that the rewriter doesn't trip over it later.
1433   Rewriter.clearInsertPoint();
1434   return NumReplaced;
1435 }
1436 
1437 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1438 /// \p OrigLoop.
1439 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1440                                         Loop *RemainderLoop, uint64_t UF) {
1441   assert(UF > 0 && "Zero unrolled factor is not supported");
1442   assert(UnrolledLoop != RemainderLoop &&
1443          "Unrolled and Remainder loops are expected to distinct");
1444 
1445   // Get number of iterations in the original scalar loop.
1446   unsigned OrigLoopInvocationWeight = 0;
1447   Optional<unsigned> OrigAverageTripCount =
1448       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1449   if (!OrigAverageTripCount)
1450     return;
1451 
1452   // Calculate number of iterations in unrolled loop.
1453   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1454   // Calculate number of iterations for remainder loop.
1455   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1456 
1457   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1458                             OrigLoopInvocationWeight);
1459   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1460                             OrigLoopInvocationWeight);
1461 }
1462 
1463 /// Utility that implements appending of loops onto a worklist.
1464 /// Loops are added in preorder (analogous for reverse postorder for trees),
1465 /// and the worklist is processed LIFO.
1466 template <typename RangeT>
1467 void llvm::appendReversedLoopsToWorklist(
1468     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1469   // We use an internal worklist to build up the preorder traversal without
1470   // recursion.
1471   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1472 
1473   // We walk the initial sequence of loops in reverse because we generally want
1474   // to visit defs before uses and the worklist is LIFO.
1475   for (Loop *RootL : Loops) {
1476     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1477     assert(PreOrderWorklist.empty() &&
1478            "Must start with an empty preorder walk worklist.");
1479     PreOrderWorklist.push_back(RootL);
1480     do {
1481       Loop *L = PreOrderWorklist.pop_back_val();
1482       PreOrderWorklist.append(L->begin(), L->end());
1483       PreOrderLoops.push_back(L);
1484     } while (!PreOrderWorklist.empty());
1485 
1486     Worklist.insert(std::move(PreOrderLoops));
1487     PreOrderLoops.clear();
1488   }
1489 }
1490 
1491 template <typename RangeT>
1492 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1493                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1494   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1495 }
1496 
1497 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1498     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1499 
1500 template void
1501 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1502                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1503 
1504 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1505                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1506   appendReversedLoopsToWorklist(LI, Worklist);
1507 }
1508 
1509 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1510                       LoopInfo *LI, LPPassManager *LPM) {
1511   Loop &New = *LI->AllocateLoop();
1512   if (PL)
1513     PL->addChildLoop(&New);
1514   else
1515     LI->addTopLevelLoop(&New);
1516 
1517   if (LPM)
1518     LPM->addLoop(New);
1519 
1520   // Add all of the blocks in L to the new loop.
1521   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1522        I != E; ++I)
1523     if (LI->getLoopFor(*I) == L)
1524       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1525 
1526   // Add all of the subloops to the new loop.
1527   for (Loop *I : *L)
1528     cloneLoop(I, &New, VM, LI, LPM);
1529 
1530   return &New;
1531 }
1532 
1533 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1534 /// need to use value-handles because SCEV expansion can invalidate previously
1535 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1536 /// a previous one.
1537 struct PointerBounds {
1538   TrackingVH<Value> Start;
1539   TrackingVH<Value> End;
1540 };
1541 
1542 /// Expand code for the lower and upper bound of the pointer group \p CG
1543 /// in \p TheLoop.  \return the values for the bounds.
1544 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1545                                   Loop *TheLoop, Instruction *Loc,
1546                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1547   // TODO: Add helper to retrieve pointers to CG.
1548   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1549   const SCEV *Sc = SE->getSCEV(Ptr);
1550 
1551   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1552   LLVMContext &Ctx = Loc->getContext();
1553 
1554   // Use this type for pointer arithmetic.
1555   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1556 
1557   if (SE->isLoopInvariant(Sc, TheLoop)) {
1558     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1559                       << *Ptr << "\n");
1560     // Ptr could be in the loop body. If so, expand a new one at the correct
1561     // location.
1562     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1563     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1564                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1565                         : Ptr;
1566     // We must return a half-open range, which means incrementing Sc.
1567     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1568     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1569     return {NewPtr, NewPtrPlusOne};
1570   } else {
1571     Value *Start = nullptr, *End = nullptr;
1572     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1573     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1574     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1575     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1576                       << "\n");
1577     return {Start, End};
1578   }
1579 }
1580 
1581 /// Turns a collection of checks into a collection of expanded upper and
1582 /// lower bounds for both pointers in the check.
1583 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1584 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1585              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1586   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1587 
1588   // Here we're relying on the SCEV Expander's cache to only emit code for the
1589   // same bounds once.
1590   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1591             [&](const RuntimePointerCheck &Check) {
1592               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1593                             Second =
1594                                 expandBounds(Check.second, L, Loc, Exp, SE);
1595               return std::make_pair(First, Second);
1596             });
1597 
1598   return ChecksWithBounds;
1599 }
1600 
1601 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1602     Instruction *Loc, Loop *TheLoop,
1603     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1604     ScalarEvolution *SE) {
1605   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1606   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1607   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1608   SCEVExpander Exp(*SE, DL, "induction");
1609   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1610 
1611   LLVMContext &Ctx = Loc->getContext();
1612   Instruction *FirstInst = nullptr;
1613   IRBuilder<> ChkBuilder(Loc);
1614   // Our instructions might fold to a constant.
1615   Value *MemoryRuntimeCheck = nullptr;
1616 
1617   // FIXME: this helper is currently a duplicate of the one in
1618   // LoopVectorize.cpp.
1619   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1620                          Instruction *Loc) -> Instruction * {
1621     if (FirstInst)
1622       return FirstInst;
1623     if (Instruction *I = dyn_cast<Instruction>(V))
1624       return I->getParent() == Loc->getParent() ? I : nullptr;
1625     return nullptr;
1626   };
1627 
1628   for (const auto &Check : ExpandedChecks) {
1629     const PointerBounds &A = Check.first, &B = Check.second;
1630     // Check if two pointers (A and B) conflict where conflict is computed as:
1631     // start(A) <= end(B) && start(B) <= end(A)
1632     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1633     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1634 
1635     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1636            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1637            "Trying to bounds check pointers with different address spaces");
1638 
1639     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1640     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1641 
1642     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1643     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1644     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1645     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1646 
1647     // [A|B].Start points to the first accessed byte under base [A|B].
1648     // [A|B].End points to the last accessed byte, plus one.
1649     // There is no conflict when the intervals are disjoint:
1650     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1651     //
1652     // bound0 = (B.Start < A.End)
1653     // bound1 = (A.Start < B.End)
1654     //  IsConflict = bound0 & bound1
1655     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1656     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1657     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1658     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1659     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1660     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1661     if (MemoryRuntimeCheck) {
1662       IsConflict =
1663           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1664       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1665     }
1666     MemoryRuntimeCheck = IsConflict;
1667   }
1668 
1669   if (!MemoryRuntimeCheck)
1670     return std::make_pair(nullptr, nullptr);
1671 
1672   // We have to do this trickery because the IRBuilder might fold the check to a
1673   // constant expression in which case there is no Instruction anchored in a
1674   // the block.
1675   Instruction *Check =
1676       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1677   ChkBuilder.Insert(Check, "memcheck.conflict");
1678   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1679   return std::make_pair(FirstInst, Check);
1680 }
1681