1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSAUpdater.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 #define DEBUG_TYPE "loop-utils"
46 
47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
48 
49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
50                                    MemorySSAUpdater *MSSAU,
51                                    bool PreserveLCSSA) {
52   bool Changed = false;
53 
54   // We re-use a vector for the in-loop predecesosrs.
55   SmallVector<BasicBlock *, 4> InLoopPredecessors;
56 
57   auto RewriteExit = [&](BasicBlock *BB) {
58     assert(InLoopPredecessors.empty() &&
59            "Must start with an empty predecessors list!");
60     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
61 
62     // See if there are any non-loop predecessors of this exit block and
63     // keep track of the in-loop predecessors.
64     bool IsDedicatedExit = true;
65     for (auto *PredBB : predecessors(BB))
66       if (L->contains(PredBB)) {
67         if (isa<IndirectBrInst>(PredBB->getTerminator()))
68           // We cannot rewrite exiting edges from an indirectbr.
69           return false;
70         if (isa<CallBrInst>(PredBB->getTerminator()))
71           // We cannot rewrite exiting edges from a callbr.
72           return false;
73 
74         InLoopPredecessors.push_back(PredBB);
75       } else {
76         IsDedicatedExit = false;
77       }
78 
79     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
80 
81     // Nothing to do if this is already a dedicated exit.
82     if (IsDedicatedExit)
83       return false;
84 
85     auto *NewExitBB = SplitBlockPredecessors(
86         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
87 
88     if (!NewExitBB)
89       LLVM_DEBUG(
90           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
91                  << *L << "\n");
92     else
93       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
94                         << NewExitBB->getName() << "\n");
95     return true;
96   };
97 
98   // Walk the exit blocks directly rather than building up a data structure for
99   // them, but only visit each one once.
100   SmallPtrSet<BasicBlock *, 4> Visited;
101   for (auto *BB : L->blocks())
102     for (auto *SuccBB : successors(BB)) {
103       // We're looking for exit blocks so skip in-loop successors.
104       if (L->contains(SuccBB))
105         continue;
106 
107       // Visit each exit block exactly once.
108       if (!Visited.insert(SuccBB).second)
109         continue;
110 
111       Changed |= RewriteExit(SuccBB);
112     }
113 
114   return Changed;
115 }
116 
117 /// Returns the instructions that use values defined in the loop.
118 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
119   SmallVector<Instruction *, 8> UsedOutside;
120 
121   for (auto *Block : L->getBlocks())
122     // FIXME: I believe that this could use copy_if if the Inst reference could
123     // be adapted into a pointer.
124     for (auto &Inst : *Block) {
125       auto Users = Inst.users();
126       if (any_of(Users, [&](User *U) {
127             auto *Use = cast<Instruction>(U);
128             return !L->contains(Use->getParent());
129           }))
130         UsedOutside.push_back(&Inst);
131     }
132 
133   return UsedOutside;
134 }
135 
136 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
137   // By definition, all loop passes need the LoopInfo analysis and the
138   // Dominator tree it depends on. Because they all participate in the loop
139   // pass manager, they must also preserve these.
140   AU.addRequired<DominatorTreeWrapperPass>();
141   AU.addPreserved<DominatorTreeWrapperPass>();
142   AU.addRequired<LoopInfoWrapperPass>();
143   AU.addPreserved<LoopInfoWrapperPass>();
144 
145   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
146   // here because users shouldn't directly get them from this header.
147   extern char &LoopSimplifyID;
148   extern char &LCSSAID;
149   AU.addRequiredID(LoopSimplifyID);
150   AU.addPreservedID(LoopSimplifyID);
151   AU.addRequiredID(LCSSAID);
152   AU.addPreservedID(LCSSAID);
153   // This is used in the LPPassManager to perform LCSSA verification on passes
154   // which preserve lcssa form
155   AU.addRequired<LCSSAVerificationPass>();
156   AU.addPreserved<LCSSAVerificationPass>();
157 
158   // Loop passes are designed to run inside of a loop pass manager which means
159   // that any function analyses they require must be required by the first loop
160   // pass in the manager (so that it is computed before the loop pass manager
161   // runs) and preserved by all loop pasess in the manager. To make this
162   // reasonably robust, the set needed for most loop passes is maintained here.
163   // If your loop pass requires an analysis not listed here, you will need to
164   // carefully audit the loop pass manager nesting structure that results.
165   AU.addRequired<AAResultsWrapperPass>();
166   AU.addPreserved<AAResultsWrapperPass>();
167   AU.addPreserved<BasicAAWrapperPass>();
168   AU.addPreserved<GlobalsAAWrapperPass>();
169   AU.addPreserved<SCEVAAWrapperPass>();
170   AU.addRequired<ScalarEvolutionWrapperPass>();
171   AU.addPreserved<ScalarEvolutionWrapperPass>();
172 }
173 
174 /// Manually defined generic "LoopPass" dependency initialization. This is used
175 /// to initialize the exact set of passes from above in \c
176 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
177 /// with:
178 ///
179 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
180 ///
181 /// As-if "LoopPass" were a pass.
182 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
183   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
184   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
186   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
187   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
188   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
189   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
190   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
192 }
193 
194 /// Create MDNode for input string.
195 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
196   LLVMContext &Context = TheLoop->getHeader()->getContext();
197   Metadata *MDs[] = {
198       MDString::get(Context, Name),
199       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
200   return MDNode::get(Context, MDs);
201 }
202 
203 /// Set input string into loop metadata by keeping other values intact.
204 /// If the string is already in loop metadata update value if it is
205 /// different.
206 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
207                                    unsigned V) {
208   SmallVector<Metadata *, 4> MDs(1);
209   // If the loop already has metadata, retain it.
210   MDNode *LoopID = TheLoop->getLoopID();
211   if (LoopID) {
212     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
213       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
214       // If it is of form key = value, try to parse it.
215       if (Node->getNumOperands() == 2) {
216         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
217         if (S && S->getString().equals(StringMD)) {
218           ConstantInt *IntMD =
219               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
220           if (IntMD && IntMD->getSExtValue() == V)
221             // It is already in place. Do nothing.
222             return;
223           // We need to update the value, so just skip it here and it will
224           // be added after copying other existed nodes.
225           continue;
226         }
227       }
228       MDs.push_back(Node);
229     }
230   }
231   // Add new metadata.
232   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
233   // Replace current metadata node with new one.
234   LLVMContext &Context = TheLoop->getHeader()->getContext();
235   MDNode *NewLoopID = MDNode::get(Context, MDs);
236   // Set operand 0 to refer to the loop id itself.
237   NewLoopID->replaceOperandWith(0, NewLoopID);
238   TheLoop->setLoopID(NewLoopID);
239 }
240 
241 /// Find string metadata for loop
242 ///
243 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
244 /// operand or null otherwise.  If the string metadata is not found return
245 /// Optional's not-a-value.
246 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
247                                                             StringRef Name) {
248   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
249   if (!MD)
250     return None;
251   switch (MD->getNumOperands()) {
252   case 1:
253     return nullptr;
254   case 2:
255     return &MD->getOperand(1);
256   default:
257     llvm_unreachable("loop metadata has 0 or 1 operand");
258   }
259 }
260 
261 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
262                                                    StringRef Name) {
263   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
264   if (!MD)
265     return None;
266   switch (MD->getNumOperands()) {
267   case 1:
268     // When the value is absent it is interpreted as 'attribute set'.
269     return true;
270   case 2:
271     if (ConstantInt *IntMD =
272             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
273       return IntMD->getZExtValue();
274     return true;
275   }
276   llvm_unreachable("unexpected number of options");
277 }
278 
279 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
280   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
281 }
282 
283 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
284                                                       StringRef Name) {
285   const MDOperand *AttrMD =
286       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
287   if (!AttrMD)
288     return None;
289 
290   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
291   if (!IntMD)
292     return None;
293 
294   return IntMD->getSExtValue();
295 }
296 
297 Optional<MDNode *> llvm::makeFollowupLoopID(
298     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
299     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
300   if (!OrigLoopID) {
301     if (AlwaysNew)
302       return nullptr;
303     return None;
304   }
305 
306   assert(OrigLoopID->getOperand(0) == OrigLoopID);
307 
308   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
309   bool InheritSomeAttrs =
310       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
311   SmallVector<Metadata *, 8> MDs;
312   MDs.push_back(nullptr);
313 
314   bool Changed = false;
315   if (InheritAllAttrs || InheritSomeAttrs) {
316     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
317       MDNode *Op = cast<MDNode>(Existing.get());
318 
319       auto InheritThisAttribute = [InheritSomeAttrs,
320                                    InheritOptionsExceptPrefix](MDNode *Op) {
321         if (!InheritSomeAttrs)
322           return false;
323 
324         // Skip malformatted attribute metadata nodes.
325         if (Op->getNumOperands() == 0)
326           return true;
327         Metadata *NameMD = Op->getOperand(0).get();
328         if (!isa<MDString>(NameMD))
329           return true;
330         StringRef AttrName = cast<MDString>(NameMD)->getString();
331 
332         // Do not inherit excluded attributes.
333         return !AttrName.startswith(InheritOptionsExceptPrefix);
334       };
335 
336       if (InheritThisAttribute(Op))
337         MDs.push_back(Op);
338       else
339         Changed = true;
340     }
341   } else {
342     // Modified if we dropped at least one attribute.
343     Changed = OrigLoopID->getNumOperands() > 1;
344   }
345 
346   bool HasAnyFollowup = false;
347   for (StringRef OptionName : FollowupOptions) {
348     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
349     if (!FollowupNode)
350       continue;
351 
352     HasAnyFollowup = true;
353     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
354       MDs.push_back(Option.get());
355       Changed = true;
356     }
357   }
358 
359   // Attributes of the followup loop not specified explicity, so signal to the
360   // transformation pass to add suitable attributes.
361   if (!AlwaysNew && !HasAnyFollowup)
362     return None;
363 
364   // If no attributes were added or remove, the previous loop Id can be reused.
365   if (!AlwaysNew && !Changed)
366     return OrigLoopID;
367 
368   // No attributes is equivalent to having no !llvm.loop metadata at all.
369   if (MDs.size() == 1)
370     return nullptr;
371 
372   // Build the new loop ID.
373   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
374   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
375   return FollowupLoopID;
376 }
377 
378 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
379   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
380 }
381 
382 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
383   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
384     return TM_SuppressedByUser;
385 
386   Optional<int> Count =
387       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
388   if (Count.hasValue())
389     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
390 
391   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
392     return TM_ForcedByUser;
393 
394   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
395     return TM_ForcedByUser;
396 
397   if (hasDisableAllTransformsHint(L))
398     return TM_Disable;
399 
400   return TM_Unspecified;
401 }
402 
403 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
404   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
405     return TM_SuppressedByUser;
406 
407   Optional<int> Count =
408       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
409   if (Count.hasValue())
410     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
411 
412   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
413     return TM_ForcedByUser;
414 
415   if (hasDisableAllTransformsHint(L))
416     return TM_Disable;
417 
418   return TM_Unspecified;
419 }
420 
421 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
422   Optional<bool> Enable =
423       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
424 
425   if (Enable == false)
426     return TM_SuppressedByUser;
427 
428   Optional<int> VectorizeWidth =
429       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
430   Optional<int> InterleaveCount =
431       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
432 
433   // 'Forcing' vector width and interleave count to one effectively disables
434   // this tranformation.
435   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
436     return TM_SuppressedByUser;
437 
438   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
439     return TM_Disable;
440 
441   if (Enable == true)
442     return TM_ForcedByUser;
443 
444   if (VectorizeWidth == 1 && InterleaveCount == 1)
445     return TM_Disable;
446 
447   if (VectorizeWidth > 1 || InterleaveCount > 1)
448     return TM_Enable;
449 
450   if (hasDisableAllTransformsHint(L))
451     return TM_Disable;
452 
453   return TM_Unspecified;
454 }
455 
456 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
457   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
458     return TM_ForcedByUser;
459 
460   if (hasDisableAllTransformsHint(L))
461     return TM_Disable;
462 
463   return TM_Unspecified;
464 }
465 
466 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
467   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
468     return TM_SuppressedByUser;
469 
470   if (hasDisableAllTransformsHint(L))
471     return TM_Disable;
472 
473   return TM_Unspecified;
474 }
475 
476 /// Does a BFS from a given node to all of its children inside a given loop.
477 /// The returned vector of nodes includes the starting point.
478 SmallVector<DomTreeNode *, 16>
479 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
480   SmallVector<DomTreeNode *, 16> Worklist;
481   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
482     // Only include subregions in the top level loop.
483     BasicBlock *BB = DTN->getBlock();
484     if (CurLoop->contains(BB))
485       Worklist.push_back(DTN);
486   };
487 
488   AddRegionToWorklist(N);
489 
490   for (size_t I = 0; I < Worklist.size(); I++)
491     for (DomTreeNode *Child : Worklist[I]->getChildren())
492       AddRegionToWorklist(Child);
493 
494   return Worklist;
495 }
496 
497 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
498                           ScalarEvolution *SE = nullptr,
499                           LoopInfo *LI = nullptr) {
500   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
501   auto *Preheader = L->getLoopPreheader();
502   assert(Preheader && "Preheader should exist!");
503 
504   // Now that we know the removal is safe, remove the loop by changing the
505   // branch from the preheader to go to the single exit block.
506   //
507   // Because we're deleting a large chunk of code at once, the sequence in which
508   // we remove things is very important to avoid invalidation issues.
509 
510   // Tell ScalarEvolution that the loop is deleted. Do this before
511   // deleting the loop so that ScalarEvolution can look at the loop
512   // to determine what it needs to clean up.
513   if (SE)
514     SE->forgetLoop(L);
515 
516   auto *ExitBlock = L->getUniqueExitBlock();
517   assert(ExitBlock && "Should have a unique exit block!");
518   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
519 
520   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
521   assert(OldBr && "Preheader must end with a branch");
522   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
523   // Connect the preheader to the exit block. Keep the old edge to the header
524   // around to perform the dominator tree update in two separate steps
525   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
526   // preheader -> header.
527   //
528   //
529   // 0.  Preheader          1.  Preheader           2.  Preheader
530   //        |                    |   |                   |
531   //        V                    |   V                   |
532   //      Header <--\            | Header <--\           | Header <--\
533   //       |  |     |            |  |  |     |           |  |  |     |
534   //       |  V     |            |  |  V     |           |  |  V     |
535   //       | Body --/            |  | Body --/           |  | Body --/
536   //       V                     V  V                    V  V
537   //      Exit                   Exit                    Exit
538   //
539   // By doing this is two separate steps we can perform the dominator tree
540   // update without using the batch update API.
541   //
542   // Even when the loop is never executed, we cannot remove the edge from the
543   // source block to the exit block. Consider the case where the unexecuted loop
544   // branches back to an outer loop. If we deleted the loop and removed the edge
545   // coming to this inner loop, this will break the outer loop structure (by
546   // deleting the backedge of the outer loop). If the outer loop is indeed a
547   // non-loop, it will be deleted in a future iteration of loop deletion pass.
548   IRBuilder<> Builder(OldBr);
549   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
550   // Remove the old branch. The conditional branch becomes a new terminator.
551   OldBr->eraseFromParent();
552 
553   // Rewrite phis in the exit block to get their inputs from the Preheader
554   // instead of the exiting block.
555   for (PHINode &P : ExitBlock->phis()) {
556     // Set the zero'th element of Phi to be from the preheader and remove all
557     // other incoming values. Given the loop has dedicated exits, all other
558     // incoming values must be from the exiting blocks.
559     int PredIndex = 0;
560     P.setIncomingBlock(PredIndex, Preheader);
561     // Removes all incoming values from all other exiting blocks (including
562     // duplicate values from an exiting block).
563     // Nuke all entries except the zero'th entry which is the preheader entry.
564     // NOTE! We need to remove Incoming Values in the reverse order as done
565     // below, to keep the indices valid for deletion (removeIncomingValues
566     // updates getNumIncomingValues and shifts all values down into the operand
567     // being deleted).
568     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
569       P.removeIncomingValue(e - i, false);
570 
571     assert((P.getNumIncomingValues() == 1 &&
572             P.getIncomingBlock(PredIndex) == Preheader) &&
573            "Should have exactly one value and that's from the preheader!");
574   }
575 
576   // Disconnect the loop body by branching directly to its exit.
577   Builder.SetInsertPoint(Preheader->getTerminator());
578   Builder.CreateBr(ExitBlock);
579   // Remove the old branch.
580   Preheader->getTerminator()->eraseFromParent();
581 
582   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
583   if (DT) {
584     // Update the dominator tree by informing it about the new edge from the
585     // preheader to the exit and the removed edge.
586     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
587                       {DominatorTree::Delete, Preheader, L->getHeader()}});
588   }
589 
590   // Use a map to unique and a vector to guarantee deterministic ordering.
591   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
592   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
593 
594   // Given LCSSA form is satisfied, we should not have users of instructions
595   // within the dead loop outside of the loop. However, LCSSA doesn't take
596   // unreachable uses into account. We handle them here.
597   // We could do it after drop all references (in this case all users in the
598   // loop will be already eliminated and we have less work to do but according
599   // to API doc of User::dropAllReferences only valid operation after dropping
600   // references, is deletion. So let's substitute all usages of
601   // instruction from the loop with undef value of corresponding type first.
602   for (auto *Block : L->blocks())
603     for (Instruction &I : *Block) {
604       auto *Undef = UndefValue::get(I.getType());
605       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
606         Use &U = *UI;
607         ++UI;
608         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
609           if (L->contains(Usr->getParent()))
610             continue;
611         // If we have a DT then we can check that uses outside a loop only in
612         // unreachable block.
613         if (DT)
614           assert(!DT->isReachableFromEntry(U) &&
615                  "Unexpected user in reachable block");
616         U.set(Undef);
617       }
618       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
619       if (!DVI)
620         continue;
621       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
622       if (Key != DeadDebugSet.end())
623         continue;
624       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
625       DeadDebugInst.push_back(DVI);
626     }
627 
628   // After the loop has been deleted all the values defined and modified
629   // inside the loop are going to be unavailable.
630   // Since debug values in the loop have been deleted, inserting an undef
631   // dbg.value truncates the range of any dbg.value before the loop where the
632   // loop used to be. This is particularly important for constant values.
633   DIBuilder DIB(*ExitBlock->getModule());
634   Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
635   assert(InsertDbgValueBefore &&
636          "There should be a non-PHI instruction in exit block, else these "
637          "instructions will have no parent.");
638   for (auto *DVI : DeadDebugInst)
639     DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
640                                 DVI->getVariable(), DVI->getExpression(),
641                                 DVI->getDebugLoc(), InsertDbgValueBefore);
642 
643   // Remove the block from the reference counting scheme, so that we can
644   // delete it freely later.
645   for (auto *Block : L->blocks())
646     Block->dropAllReferences();
647 
648   if (LI) {
649     // Erase the instructions and the blocks without having to worry
650     // about ordering because we already dropped the references.
651     // NOTE: This iteration is safe because erasing the block does not remove
652     // its entry from the loop's block list.  We do that in the next section.
653     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
654          LpI != LpE; ++LpI)
655       (*LpI)->eraseFromParent();
656 
657     // Finally, the blocks from loopinfo.  This has to happen late because
658     // otherwise our loop iterators won't work.
659 
660     SmallPtrSet<BasicBlock *, 8> blocks;
661     blocks.insert(L->block_begin(), L->block_end());
662     for (BasicBlock *BB : blocks)
663       LI->removeBlock(BB);
664 
665     // The last step is to update LoopInfo now that we've eliminated this loop.
666     LI->erase(L);
667   }
668 }
669 
670 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
671   // Support loops with an exiting latch and other existing exists only
672   // deoptimize.
673 
674   // Get the branch weights for the loop's backedge.
675   BasicBlock *Latch = L->getLoopLatch();
676   if (!Latch)
677     return None;
678   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
679   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
680     return None;
681 
682   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
683           LatchBR->getSuccessor(1) == L->getHeader()) &&
684          "At least one edge out of the latch must go to the header");
685 
686   SmallVector<BasicBlock *, 4> ExitBlocks;
687   L->getUniqueNonLatchExitBlocks(ExitBlocks);
688   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
689         return !EB->getTerminatingDeoptimizeCall();
690       }))
691     return None;
692 
693   // To estimate the number of times the loop body was executed, we want to
694   // know the number of times the backedge was taken, vs. the number of times
695   // we exited the loop.
696   uint64_t TrueVal, FalseVal;
697   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
698     return None;
699 
700   if (!TrueVal || !FalseVal)
701     return 0;
702 
703   // Divide the count of the backedge by the count of the edge exiting the loop,
704   // rounding to nearest.
705   if (LatchBR->getSuccessor(0) == L->getHeader())
706     return (TrueVal + (FalseVal / 2)) / FalseVal;
707   else
708     return (FalseVal + (TrueVal / 2)) / TrueVal;
709 }
710 
711 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
712                                               ScalarEvolution &SE) {
713   Loop *OuterL = InnerLoop->getParentLoop();
714   if (!OuterL)
715     return true;
716 
717   // Get the backedge taken count for the inner loop
718   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
719   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
720   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
721       !InnerLoopBECountSC->getType()->isIntegerTy())
722     return false;
723 
724   // Get whether count is invariant to the outer loop
725   ScalarEvolution::LoopDisposition LD =
726       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
727   if (LD != ScalarEvolution::LoopInvariant)
728     return false;
729 
730   return true;
731 }
732 
733 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
734                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
735                             Value *Left, Value *Right) {
736   CmpInst::Predicate P = CmpInst::ICMP_NE;
737   switch (RK) {
738   default:
739     llvm_unreachable("Unknown min/max recurrence kind");
740   case RecurrenceDescriptor::MRK_UIntMin:
741     P = CmpInst::ICMP_ULT;
742     break;
743   case RecurrenceDescriptor::MRK_UIntMax:
744     P = CmpInst::ICMP_UGT;
745     break;
746   case RecurrenceDescriptor::MRK_SIntMin:
747     P = CmpInst::ICMP_SLT;
748     break;
749   case RecurrenceDescriptor::MRK_SIntMax:
750     P = CmpInst::ICMP_SGT;
751     break;
752   case RecurrenceDescriptor::MRK_FloatMin:
753     P = CmpInst::FCMP_OLT;
754     break;
755   case RecurrenceDescriptor::MRK_FloatMax:
756     P = CmpInst::FCMP_OGT;
757     break;
758   }
759 
760   // We only match FP sequences that are 'fast', so we can unconditionally
761   // set it on any generated instructions.
762   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
763   FastMathFlags FMF;
764   FMF.setFast();
765   Builder.setFastMathFlags(FMF);
766 
767   Value *Cmp;
768   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
769       RK == RecurrenceDescriptor::MRK_FloatMax)
770     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
771   else
772     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
773 
774   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
775   return Select;
776 }
777 
778 // Helper to generate an ordered reduction.
779 Value *
780 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
781                           unsigned Op,
782                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
783                           ArrayRef<Value *> RedOps) {
784   unsigned VF = Src->getType()->getVectorNumElements();
785 
786   // Extract and apply reduction ops in ascending order:
787   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
788   Value *Result = Acc;
789   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
790     Value *Ext =
791         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
792 
793     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
794       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
795                                    "bin.rdx");
796     } else {
797       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
798              "Invalid min/max");
799       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
800     }
801 
802     if (!RedOps.empty())
803       propagateIRFlags(Result, RedOps);
804   }
805 
806   return Result;
807 }
808 
809 // Helper to generate a log2 shuffle reduction.
810 Value *
811 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
812                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
813                           ArrayRef<Value *> RedOps) {
814   unsigned VF = Src->getType()->getVectorNumElements();
815   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
816   // and vector ops, reducing the set of values being computed by half each
817   // round.
818   assert(isPowerOf2_32(VF) &&
819          "Reduction emission only supported for pow2 vectors!");
820   Value *TmpVec = Src;
821   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
822   for (unsigned i = VF; i != 1; i >>= 1) {
823     // Move the upper half of the vector to the lower half.
824     for (unsigned j = 0; j != i / 2; ++j)
825       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
826 
827     // Fill the rest of the mask with undef.
828     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
829               UndefValue::get(Builder.getInt32Ty()));
830 
831     Value *Shuf = Builder.CreateShuffleVector(
832         TmpVec, UndefValue::get(TmpVec->getType()),
833         ConstantVector::get(ShuffleMask), "rdx.shuf");
834 
835     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
836       // The builder propagates its fast-math-flags setting.
837       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
838                                    "bin.rdx");
839     } else {
840       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
841              "Invalid min/max");
842       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
843     }
844     if (!RedOps.empty())
845       propagateIRFlags(TmpVec, RedOps);
846   }
847   // The result is in the first element of the vector.
848   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
849 }
850 
851 /// Create a simple vector reduction specified by an opcode and some
852 /// flags (if generating min/max reductions).
853 Value *llvm::createSimpleTargetReduction(
854     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
855     Value *Src, TargetTransformInfo::ReductionFlags Flags,
856     ArrayRef<Value *> RedOps) {
857   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
858 
859   std::function<Value *()> BuildFunc;
860   using RD = RecurrenceDescriptor;
861   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
862 
863   switch (Opcode) {
864   case Instruction::Add:
865     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
866     break;
867   case Instruction::Mul:
868     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
869     break;
870   case Instruction::And:
871     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
872     break;
873   case Instruction::Or:
874     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
875     break;
876   case Instruction::Xor:
877     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
878     break;
879   case Instruction::FAdd:
880     BuildFunc = [&]() {
881       auto Rdx = Builder.CreateFAddReduce(
882           Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
883       return Rdx;
884     };
885     break;
886   case Instruction::FMul:
887     BuildFunc = [&]() {
888       Type *Ty = Src->getType()->getVectorElementType();
889       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
890       return Rdx;
891     };
892     break;
893   case Instruction::ICmp:
894     if (Flags.IsMaxOp) {
895       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
896       BuildFunc = [&]() {
897         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
898       };
899     } else {
900       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
901       BuildFunc = [&]() {
902         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
903       };
904     }
905     break;
906   case Instruction::FCmp:
907     if (Flags.IsMaxOp) {
908       MinMaxKind = RD::MRK_FloatMax;
909       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
910     } else {
911       MinMaxKind = RD::MRK_FloatMin;
912       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
913     }
914     break;
915   default:
916     llvm_unreachable("Unhandled opcode");
917     break;
918   }
919   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
920     return BuildFunc();
921   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
922 }
923 
924 /// Create a vector reduction using a given recurrence descriptor.
925 Value *llvm::createTargetReduction(IRBuilder<> &B,
926                                    const TargetTransformInfo *TTI,
927                                    RecurrenceDescriptor &Desc, Value *Src,
928                                    bool NoNaN) {
929   // TODO: Support in-order reductions based on the recurrence descriptor.
930   using RD = RecurrenceDescriptor;
931   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
932   TargetTransformInfo::ReductionFlags Flags;
933   Flags.NoNaN = NoNaN;
934 
935   // All ops in the reduction inherit fast-math-flags from the recurrence
936   // descriptor.
937   IRBuilder<>::FastMathFlagGuard FMFGuard(B);
938   B.setFastMathFlags(Desc.getFastMathFlags());
939 
940   switch (RecKind) {
941   case RD::RK_FloatAdd:
942     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
943   case RD::RK_FloatMult:
944     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
945   case RD::RK_IntegerAdd:
946     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
947   case RD::RK_IntegerMult:
948     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
949   case RD::RK_IntegerAnd:
950     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
951   case RD::RK_IntegerOr:
952     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
953   case RD::RK_IntegerXor:
954     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
955   case RD::RK_IntegerMinMax: {
956     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
957     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
958     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
959     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
960   }
961   case RD::RK_FloatMinMax: {
962     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
963     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
964   }
965   default:
966     llvm_unreachable("Unhandled RecKind");
967   }
968 }
969 
970 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
971   auto *VecOp = dyn_cast<Instruction>(I);
972   if (!VecOp)
973     return;
974   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
975                                             : dyn_cast<Instruction>(OpValue);
976   if (!Intersection)
977     return;
978   const unsigned Opcode = Intersection->getOpcode();
979   VecOp->copyIRFlags(Intersection);
980   for (auto *V : VL) {
981     auto *Instr = dyn_cast<Instruction>(V);
982     if (!Instr)
983       continue;
984     if (OpValue == nullptr || Opcode == Instr->getOpcode())
985       VecOp->andIRFlags(V);
986   }
987 }
988 
989 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
990                                  ScalarEvolution &SE) {
991   const SCEV *Zero = SE.getZero(S->getType());
992   return SE.isAvailableAtLoopEntry(S, L) &&
993          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
994 }
995 
996 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
997                                     ScalarEvolution &SE) {
998   const SCEV *Zero = SE.getZero(S->getType());
999   return SE.isAvailableAtLoopEntry(S, L) &&
1000          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1001 }
1002 
1003 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1004                              bool Signed) {
1005   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1006   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1007     APInt::getMinValue(BitWidth);
1008   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1009   return SE.isAvailableAtLoopEntry(S, L) &&
1010          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1011                                      SE.getConstant(Min));
1012 }
1013 
1014 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1015                              bool Signed) {
1016   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1017   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1018     APInt::getMaxValue(BitWidth);
1019   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1020   return SE.isAvailableAtLoopEntry(S, L) &&
1021          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1022                                      SE.getConstant(Max));
1023 }
1024