1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 #define DEBUG_TYPE "loop-utils"
58 
59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
61 
62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
63                                    MemorySSAUpdater *MSSAU,
64                                    bool PreserveLCSSA) {
65   bool Changed = false;
66 
67   // We re-use a vector for the in-loop predecesosrs.
68   SmallVector<BasicBlock *, 4> InLoopPredecessors;
69 
70   auto RewriteExit = [&](BasicBlock *BB) {
71     assert(InLoopPredecessors.empty() &&
72            "Must start with an empty predecessors list!");
73     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
74 
75     // See if there are any non-loop predecessors of this exit block and
76     // keep track of the in-loop predecessors.
77     bool IsDedicatedExit = true;
78     for (auto *PredBB : predecessors(BB))
79       if (L->contains(PredBB)) {
80         if (isa<IndirectBrInst>(PredBB->getTerminator()))
81           // We cannot rewrite exiting edges from an indirectbr.
82           return false;
83         if (isa<CallBrInst>(PredBB->getTerminator()))
84           // We cannot rewrite exiting edges from a callbr.
85           return false;
86 
87         InLoopPredecessors.push_back(PredBB);
88       } else {
89         IsDedicatedExit = false;
90       }
91 
92     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
93 
94     // Nothing to do if this is already a dedicated exit.
95     if (IsDedicatedExit)
96       return false;
97 
98     auto *NewExitBB = SplitBlockPredecessors(
99         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
100 
101     if (!NewExitBB)
102       LLVM_DEBUG(
103           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
104                  << *L << "\n");
105     else
106       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
107                         << NewExitBB->getName() << "\n");
108     return true;
109   };
110 
111   // Walk the exit blocks directly rather than building up a data structure for
112   // them, but only visit each one once.
113   SmallPtrSet<BasicBlock *, 4> Visited;
114   for (auto *BB : L->blocks())
115     for (auto *SuccBB : successors(BB)) {
116       // We're looking for exit blocks so skip in-loop successors.
117       if (L->contains(SuccBB))
118         continue;
119 
120       // Visit each exit block exactly once.
121       if (!Visited.insert(SuccBB).second)
122         continue;
123 
124       Changed |= RewriteExit(SuccBB);
125     }
126 
127   return Changed;
128 }
129 
130 /// Returns the instructions that use values defined in the loop.
131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
132   SmallVector<Instruction *, 8> UsedOutside;
133 
134   for (auto *Block : L->getBlocks())
135     // FIXME: I believe that this could use copy_if if the Inst reference could
136     // be adapted into a pointer.
137     for (auto &Inst : *Block) {
138       auto Users = Inst.users();
139       if (any_of(Users, [&](User *U) {
140             auto *Use = cast<Instruction>(U);
141             return !L->contains(Use->getParent());
142           }))
143         UsedOutside.push_back(&Inst);
144     }
145 
146   return UsedOutside;
147 }
148 
149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
150   // By definition, all loop passes need the LoopInfo analysis and the
151   // Dominator tree it depends on. Because they all participate in the loop
152   // pass manager, they must also preserve these.
153   AU.addRequired<DominatorTreeWrapperPass>();
154   AU.addPreserved<DominatorTreeWrapperPass>();
155   AU.addRequired<LoopInfoWrapperPass>();
156   AU.addPreserved<LoopInfoWrapperPass>();
157 
158   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
159   // here because users shouldn't directly get them from this header.
160   extern char &LoopSimplifyID;
161   extern char &LCSSAID;
162   AU.addRequiredID(LoopSimplifyID);
163   AU.addPreservedID(LoopSimplifyID);
164   AU.addRequiredID(LCSSAID);
165   AU.addPreservedID(LCSSAID);
166   // This is used in the LPPassManager to perform LCSSA verification on passes
167   // which preserve lcssa form
168   AU.addRequired<LCSSAVerificationPass>();
169   AU.addPreserved<LCSSAVerificationPass>();
170 
171   // Loop passes are designed to run inside of a loop pass manager which means
172   // that any function analyses they require must be required by the first loop
173   // pass in the manager (so that it is computed before the loop pass manager
174   // runs) and preserved by all loop pasess in the manager. To make this
175   // reasonably robust, the set needed for most loop passes is maintained here.
176   // If your loop pass requires an analysis not listed here, you will need to
177   // carefully audit the loop pass manager nesting structure that results.
178   AU.addRequired<AAResultsWrapperPass>();
179   AU.addPreserved<AAResultsWrapperPass>();
180   AU.addPreserved<BasicAAWrapperPass>();
181   AU.addPreserved<GlobalsAAWrapperPass>();
182   AU.addPreserved<SCEVAAWrapperPass>();
183   AU.addRequired<ScalarEvolutionWrapperPass>();
184   AU.addPreserved<ScalarEvolutionWrapperPass>();
185   // FIXME: When all loop passes preserve MemorySSA, it can be required and
186   // preserved here instead of the individual handling in each pass.
187 }
188 
189 /// Manually defined generic "LoopPass" dependency initialization. This is used
190 /// to initialize the exact set of passes from above in \c
191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
192 /// with:
193 ///
194 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
195 ///
196 /// As-if "LoopPass" were a pass.
197 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
198   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
199   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
200   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
201   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
202   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
203   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
206   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
208 }
209 
210 /// Create MDNode for input string.
211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
212   LLVMContext &Context = TheLoop->getHeader()->getContext();
213   Metadata *MDs[] = {
214       MDString::get(Context, Name),
215       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
216   return MDNode::get(Context, MDs);
217 }
218 
219 /// Set input string into loop metadata by keeping other values intact.
220 /// If the string is already in loop metadata update value if it is
221 /// different.
222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
223                                    unsigned V) {
224   SmallVector<Metadata *, 4> MDs(1);
225   // If the loop already has metadata, retain it.
226   MDNode *LoopID = TheLoop->getLoopID();
227   if (LoopID) {
228     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
229       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
230       // If it is of form key = value, try to parse it.
231       if (Node->getNumOperands() == 2) {
232         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
233         if (S && S->getString().equals(StringMD)) {
234           ConstantInt *IntMD =
235               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
236           if (IntMD && IntMD->getSExtValue() == V)
237             // It is already in place. Do nothing.
238             return;
239           // We need to update the value, so just skip it here and it will
240           // be added after copying other existed nodes.
241           continue;
242         }
243       }
244       MDs.push_back(Node);
245     }
246   }
247   // Add new metadata.
248   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
249   // Replace current metadata node with new one.
250   LLVMContext &Context = TheLoop->getHeader()->getContext();
251   MDNode *NewLoopID = MDNode::get(Context, MDs);
252   // Set operand 0 to refer to the loop id itself.
253   NewLoopID->replaceOperandWith(0, NewLoopID);
254   TheLoop->setLoopID(NewLoopID);
255 }
256 
257 Optional<ElementCount>
258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
259   Optional<int> Width =
260       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
261 
262   if (Width.hasValue()) {
263     Optional<int> IsScalable = getOptionalIntLoopAttribute(
264         TheLoop, "llvm.loop.vectorize.scalable.enable");
265     return ElementCount::get(*Width, IsScalable.getValueOr(false));
266   }
267 
268   return None;
269 }
270 
271 Optional<MDNode *> llvm::makeFollowupLoopID(
272     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
273     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
274   if (!OrigLoopID) {
275     if (AlwaysNew)
276       return nullptr;
277     return None;
278   }
279 
280   assert(OrigLoopID->getOperand(0) == OrigLoopID);
281 
282   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
283   bool InheritSomeAttrs =
284       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
285   SmallVector<Metadata *, 8> MDs;
286   MDs.push_back(nullptr);
287 
288   bool Changed = false;
289   if (InheritAllAttrs || InheritSomeAttrs) {
290     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
291       MDNode *Op = cast<MDNode>(Existing.get());
292 
293       auto InheritThisAttribute = [InheritSomeAttrs,
294                                    InheritOptionsExceptPrefix](MDNode *Op) {
295         if (!InheritSomeAttrs)
296           return false;
297 
298         // Skip malformatted attribute metadata nodes.
299         if (Op->getNumOperands() == 0)
300           return true;
301         Metadata *NameMD = Op->getOperand(0).get();
302         if (!isa<MDString>(NameMD))
303           return true;
304         StringRef AttrName = cast<MDString>(NameMD)->getString();
305 
306         // Do not inherit excluded attributes.
307         return !AttrName.startswith(InheritOptionsExceptPrefix);
308       };
309 
310       if (InheritThisAttribute(Op))
311         MDs.push_back(Op);
312       else
313         Changed = true;
314     }
315   } else {
316     // Modified if we dropped at least one attribute.
317     Changed = OrigLoopID->getNumOperands() > 1;
318   }
319 
320   bool HasAnyFollowup = false;
321   for (StringRef OptionName : FollowupOptions) {
322     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
323     if (!FollowupNode)
324       continue;
325 
326     HasAnyFollowup = true;
327     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
328       MDs.push_back(Option.get());
329       Changed = true;
330     }
331   }
332 
333   // Attributes of the followup loop not specified explicity, so signal to the
334   // transformation pass to add suitable attributes.
335   if (!AlwaysNew && !HasAnyFollowup)
336     return None;
337 
338   // If no attributes were added or remove, the previous loop Id can be reused.
339   if (!AlwaysNew && !Changed)
340     return OrigLoopID;
341 
342   // No attributes is equivalent to having no !llvm.loop metadata at all.
343   if (MDs.size() == 1)
344     return nullptr;
345 
346   // Build the new loop ID.
347   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
348   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
349   return FollowupLoopID;
350 }
351 
352 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
353   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
354 }
355 
356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
357   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
358 }
359 
360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
361   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
362     return TM_SuppressedByUser;
363 
364   Optional<int> Count =
365       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
366   if (Count.hasValue())
367     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
368 
369   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
370     return TM_ForcedByUser;
371 
372   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
373     return TM_ForcedByUser;
374 
375   if (hasDisableAllTransformsHint(L))
376     return TM_Disable;
377 
378   return TM_Unspecified;
379 }
380 
381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
382   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
383     return TM_SuppressedByUser;
384 
385   Optional<int> Count =
386       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
387   if (Count.hasValue())
388     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
389 
390   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
391     return TM_ForcedByUser;
392 
393   if (hasDisableAllTransformsHint(L))
394     return TM_Disable;
395 
396   return TM_Unspecified;
397 }
398 
399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
400   Optional<bool> Enable =
401       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
402 
403   if (Enable == false)
404     return TM_SuppressedByUser;
405 
406   Optional<ElementCount> VectorizeWidth =
407       getOptionalElementCountLoopAttribute(L);
408   Optional<int> InterleaveCount =
409       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
410 
411   // 'Forcing' vector width and interleave count to one effectively disables
412   // this tranformation.
413   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
414       InterleaveCount == 1)
415     return TM_SuppressedByUser;
416 
417   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
418     return TM_Disable;
419 
420   if (Enable == true)
421     return TM_ForcedByUser;
422 
423   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
424     return TM_Disable;
425 
426   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
427     return TM_Enable;
428 
429   if (hasDisableAllTransformsHint(L))
430     return TM_Disable;
431 
432   return TM_Unspecified;
433 }
434 
435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
436   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
437     return TM_ForcedByUser;
438 
439   if (hasDisableAllTransformsHint(L))
440     return TM_Disable;
441 
442   return TM_Unspecified;
443 }
444 
445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
446   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
447     return TM_SuppressedByUser;
448 
449   if (hasDisableAllTransformsHint(L))
450     return TM_Disable;
451 
452   return TM_Unspecified;
453 }
454 
455 /// Does a BFS from a given node to all of its children inside a given loop.
456 /// The returned vector of nodes includes the starting point.
457 SmallVector<DomTreeNode *, 16>
458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
459   SmallVector<DomTreeNode *, 16> Worklist;
460   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
461     // Only include subregions in the top level loop.
462     BasicBlock *BB = DTN->getBlock();
463     if (CurLoop->contains(BB))
464       Worklist.push_back(DTN);
465   };
466 
467   AddRegionToWorklist(N);
468 
469   for (size_t I = 0; I < Worklist.size(); I++) {
470     for (DomTreeNode *Child : Worklist[I]->children())
471       AddRegionToWorklist(Child);
472   }
473 
474   return Worklist;
475 }
476 
477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
478                           LoopInfo *LI, MemorySSA *MSSA) {
479   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
480   auto *Preheader = L->getLoopPreheader();
481   assert(Preheader && "Preheader should exist!");
482 
483   std::unique_ptr<MemorySSAUpdater> MSSAU;
484   if (MSSA)
485     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
486 
487   // Now that we know the removal is safe, remove the loop by changing the
488   // branch from the preheader to go to the single exit block.
489   //
490   // Because we're deleting a large chunk of code at once, the sequence in which
491   // we remove things is very important to avoid invalidation issues.
492 
493   // Tell ScalarEvolution that the loop is deleted. Do this before
494   // deleting the loop so that ScalarEvolution can look at the loop
495   // to determine what it needs to clean up.
496   if (SE)
497     SE->forgetLoop(L);
498 
499   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
500   assert(OldBr && "Preheader must end with a branch");
501   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
502   // Connect the preheader to the exit block. Keep the old edge to the header
503   // around to perform the dominator tree update in two separate steps
504   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
505   // preheader -> header.
506   //
507   //
508   // 0.  Preheader          1.  Preheader           2.  Preheader
509   //        |                    |   |                   |
510   //        V                    |   V                   |
511   //      Header <--\            | Header <--\           | Header <--\
512   //       |  |     |            |  |  |     |           |  |  |     |
513   //       |  V     |            |  |  V     |           |  |  V     |
514   //       | Body --/            |  | Body --/           |  | Body --/
515   //       V                     V  V                    V  V
516   //      Exit                   Exit                    Exit
517   //
518   // By doing this is two separate steps we can perform the dominator tree
519   // update without using the batch update API.
520   //
521   // Even when the loop is never executed, we cannot remove the edge from the
522   // source block to the exit block. Consider the case where the unexecuted loop
523   // branches back to an outer loop. If we deleted the loop and removed the edge
524   // coming to this inner loop, this will break the outer loop structure (by
525   // deleting the backedge of the outer loop). If the outer loop is indeed a
526   // non-loop, it will be deleted in a future iteration of loop deletion pass.
527   IRBuilder<> Builder(OldBr);
528 
529   auto *ExitBlock = L->getUniqueExitBlock();
530   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
531   if (ExitBlock) {
532     assert(ExitBlock && "Should have a unique exit block!");
533     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
534 
535     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
536     // Remove the old branch. The conditional branch becomes a new terminator.
537     OldBr->eraseFromParent();
538 
539     // Rewrite phis in the exit block to get their inputs from the Preheader
540     // instead of the exiting block.
541     for (PHINode &P : ExitBlock->phis()) {
542       // Set the zero'th element of Phi to be from the preheader and remove all
543       // other incoming values. Given the loop has dedicated exits, all other
544       // incoming values must be from the exiting blocks.
545       int PredIndex = 0;
546       P.setIncomingBlock(PredIndex, Preheader);
547       // Removes all incoming values from all other exiting blocks (including
548       // duplicate values from an exiting block).
549       // Nuke all entries except the zero'th entry which is the preheader entry.
550       // NOTE! We need to remove Incoming Values in the reverse order as done
551       // below, to keep the indices valid for deletion (removeIncomingValues
552       // updates getNumIncomingValues and shifts all values down into the
553       // operand being deleted).
554       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
555         P.removeIncomingValue(e - i, false);
556 
557       assert((P.getNumIncomingValues() == 1 &&
558               P.getIncomingBlock(PredIndex) == Preheader) &&
559              "Should have exactly one value and that's from the preheader!");
560     }
561 
562     if (DT) {
563       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
564       if (MSSA) {
565         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
566                             *DT);
567         if (VerifyMemorySSA)
568           MSSA->verifyMemorySSA();
569       }
570     }
571 
572     // Disconnect the loop body by branching directly to its exit.
573     Builder.SetInsertPoint(Preheader->getTerminator());
574     Builder.CreateBr(ExitBlock);
575     // Remove the old branch.
576     Preheader->getTerminator()->eraseFromParent();
577   } else {
578     assert(L->hasNoExitBlocks() &&
579            "Loop should have either zero or one exit blocks.");
580 
581     Builder.SetInsertPoint(OldBr);
582     Builder.CreateUnreachable();
583     Preheader->getTerminator()->eraseFromParent();
584   }
585 
586   if (DT) {
587     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
588     if (MSSA) {
589       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
590                           *DT);
591       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
592                                                    L->block_end());
593       MSSAU->removeBlocks(DeadBlockSet);
594       if (VerifyMemorySSA)
595         MSSA->verifyMemorySSA();
596     }
597   }
598 
599   // Use a map to unique and a vector to guarantee deterministic ordering.
600   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
601   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
602 
603   if (ExitBlock) {
604     // Given LCSSA form is satisfied, we should not have users of instructions
605     // within the dead loop outside of the loop. However, LCSSA doesn't take
606     // unreachable uses into account. We handle them here.
607     // We could do it after drop all references (in this case all users in the
608     // loop will be already eliminated and we have less work to do but according
609     // to API doc of User::dropAllReferences only valid operation after dropping
610     // references, is deletion. So let's substitute all usages of
611     // instruction from the loop with undef value of corresponding type first.
612     for (auto *Block : L->blocks())
613       for (Instruction &I : *Block) {
614         auto *Undef = UndefValue::get(I.getType());
615         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
616              UI != E;) {
617           Use &U = *UI;
618           ++UI;
619           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
620             if (L->contains(Usr->getParent()))
621               continue;
622           // If we have a DT then we can check that uses outside a loop only in
623           // unreachable block.
624           if (DT)
625             assert(!DT->isReachableFromEntry(U) &&
626                    "Unexpected user in reachable block");
627           U.set(Undef);
628         }
629         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
630         if (!DVI)
631           continue;
632         auto Key =
633             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
634         if (Key != DeadDebugSet.end())
635           continue;
636         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
637         DeadDebugInst.push_back(DVI);
638       }
639 
640     // After the loop has been deleted all the values defined and modified
641     // inside the loop are going to be unavailable.
642     // Since debug values in the loop have been deleted, inserting an undef
643     // dbg.value truncates the range of any dbg.value before the loop where the
644     // loop used to be. This is particularly important for constant values.
645     DIBuilder DIB(*ExitBlock->getModule());
646     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
647     assert(InsertDbgValueBefore &&
648            "There should be a non-PHI instruction in exit block, else these "
649            "instructions will have no parent.");
650     for (auto *DVI : DeadDebugInst)
651       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
652                                   DVI->getVariable(), DVI->getExpression(),
653                                   DVI->getDebugLoc(), InsertDbgValueBefore);
654   }
655 
656   // Remove the block from the reference counting scheme, so that we can
657   // delete it freely later.
658   for (auto *Block : L->blocks())
659     Block->dropAllReferences();
660 
661   if (MSSA && VerifyMemorySSA)
662     MSSA->verifyMemorySSA();
663 
664   if (LI) {
665     // Erase the instructions and the blocks without having to worry
666     // about ordering because we already dropped the references.
667     // NOTE: This iteration is safe because erasing the block does not remove
668     // its entry from the loop's block list.  We do that in the next section.
669     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
670          LpI != LpE; ++LpI)
671       (*LpI)->eraseFromParent();
672 
673     // Finally, the blocks from loopinfo.  This has to happen late because
674     // otherwise our loop iterators won't work.
675 
676     SmallPtrSet<BasicBlock *, 8> blocks;
677     blocks.insert(L->block_begin(), L->block_end());
678     for (BasicBlock *BB : blocks)
679       LI->removeBlock(BB);
680 
681     // The last step is to update LoopInfo now that we've eliminated this loop.
682     // Note: LoopInfo::erase remove the given loop and relink its subloops with
683     // its parent. While removeLoop/removeChildLoop remove the given loop but
684     // not relink its subloops, which is what we want.
685     if (Loop *ParentLoop = L->getParentLoop()) {
686       Loop::iterator I = find(*ParentLoop, L);
687       assert(I != ParentLoop->end() && "Couldn't find loop");
688       ParentLoop->removeChildLoop(I);
689     } else {
690       Loop::iterator I = find(*LI, L);
691       assert(I != LI->end() && "Couldn't find loop");
692       LI->removeLoop(I);
693     }
694     LI->destroy(L);
695   }
696 }
697 
698 static Loop *getOutermostLoop(Loop *L) {
699   while (Loop *Parent = L->getParentLoop())
700     L = Parent;
701   return L;
702 }
703 
704 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
705                              LoopInfo &LI, MemorySSA *MSSA) {
706   auto *Latch = L->getLoopLatch();
707   assert(Latch && "multiple latches not yet supported");
708   auto *Header = L->getHeader();
709   Loop *OutermostLoop = getOutermostLoop(L);
710 
711   SE.forgetLoop(L);
712 
713   std::unique_ptr<MemorySSAUpdater> MSSAU;
714   if (MSSA)
715     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
716 
717   // Update the CFG and domtree.  We chose to special case a couple of
718   // of common cases for code quality and test readability reasons.
719   [&]() -> void {
720     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
721       if (!BI->isConditional()) {
722         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
723         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
724                                   MSSAU.get());
725         return;
726       }
727 
728       // Conditional latch/exit - note that latch can be shared by inner
729       // and outer loop so the other target doesn't need to an exit
730       if (L->isLoopExiting(Latch)) {
731         // TODO: Generalize ConstantFoldTerminator so that it can be used
732         // here without invalidating LCSSA.  (Tricky case: header is an exit
733         // block of a preceeding sibling loop w/o dedicated exits.)
734         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
735         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
736 
737         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
738         Header->removePredecessor(Latch, true);
739 
740         IRBuilder<> Builder(BI);
741         auto *NewBI = Builder.CreateBr(ExitBB);
742         // Transfer the metadata to the new branch instruction.
743         NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
744                                   LLVMContext::MD_annotation});
745 
746         BI->eraseFromParent();
747         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
748         return;
749       }
750 
751       // General case.  By splitting the backedge, and then explicitly making it
752       // unreachable we gracefully handle corner cases such as switch and invoke
753       // termiantors.
754       auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
755 
756       DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
757       (void)changeToUnreachable(BackedgeBB->getTerminator(),
758                                 /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
759     }
760   }();
761 
762   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
763   // and blocks within the loop as needed.
764   LI.erase(L);
765 
766   // If the loop we broke had a parent, then changeToUnreachable might have
767   // caused a block to be removed from the parent loop (see loop_nest_lcssa
768   // test case in zero-btc.ll for an example), thus changing the parent's
769   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
770   // loop which might have a had a block removed.
771   if (OutermostLoop != L)
772     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
773 }
774 
775 
776 /// Checks if \p L has single exit through latch block except possibly
777 /// "deoptimizing" exits. Returns branch instruction terminating the loop
778 /// latch if above check is successful, nullptr otherwise.
779 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
780   BasicBlock *Latch = L->getLoopLatch();
781   if (!Latch)
782     return nullptr;
783 
784   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
785   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
786     return nullptr;
787 
788   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
789           LatchBR->getSuccessor(1) == L->getHeader()) &&
790          "At least one edge out of the latch must go to the header");
791 
792   SmallVector<BasicBlock *, 4> ExitBlocks;
793   L->getUniqueNonLatchExitBlocks(ExitBlocks);
794   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
795         return !EB->getTerminatingDeoptimizeCall();
796       }))
797     return nullptr;
798 
799   return LatchBR;
800 }
801 
802 Optional<unsigned>
803 llvm::getLoopEstimatedTripCount(Loop *L,
804                                 unsigned *EstimatedLoopInvocationWeight) {
805   // Support loops with an exiting latch and other existing exists only
806   // deoptimize.
807   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
808   if (!LatchBranch)
809     return None;
810 
811   // To estimate the number of times the loop body was executed, we want to
812   // know the number of times the backedge was taken, vs. the number of times
813   // we exited the loop.
814   uint64_t BackedgeTakenWeight, LatchExitWeight;
815   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
816     return None;
817 
818   if (LatchBranch->getSuccessor(0) != L->getHeader())
819     std::swap(BackedgeTakenWeight, LatchExitWeight);
820 
821   if (!LatchExitWeight)
822     return None;
823 
824   if (EstimatedLoopInvocationWeight)
825     *EstimatedLoopInvocationWeight = LatchExitWeight;
826 
827   // Estimated backedge taken count is a ratio of the backedge taken weight by
828   // the weight of the edge exiting the loop, rounded to nearest.
829   uint64_t BackedgeTakenCount =
830       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
831   // Estimated trip count is one plus estimated backedge taken count.
832   return BackedgeTakenCount + 1;
833 }
834 
835 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
836                                      unsigned EstimatedloopInvocationWeight) {
837   // Support loops with an exiting latch and other existing exists only
838   // deoptimize.
839   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
840   if (!LatchBranch)
841     return false;
842 
843   // Calculate taken and exit weights.
844   unsigned LatchExitWeight = 0;
845   unsigned BackedgeTakenWeight = 0;
846 
847   if (EstimatedTripCount > 0) {
848     LatchExitWeight = EstimatedloopInvocationWeight;
849     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
850   }
851 
852   // Make a swap if back edge is taken when condition is "false".
853   if (LatchBranch->getSuccessor(0) != L->getHeader())
854     std::swap(BackedgeTakenWeight, LatchExitWeight);
855 
856   MDBuilder MDB(LatchBranch->getContext());
857 
858   // Set/Update profile metadata.
859   LatchBranch->setMetadata(
860       LLVMContext::MD_prof,
861       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
862 
863   return true;
864 }
865 
866 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
867                                               ScalarEvolution &SE) {
868   Loop *OuterL = InnerLoop->getParentLoop();
869   if (!OuterL)
870     return true;
871 
872   // Get the backedge taken count for the inner loop
873   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
874   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
875   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
876       !InnerLoopBECountSC->getType()->isIntegerTy())
877     return false;
878 
879   // Get whether count is invariant to the outer loop
880   ScalarEvolution::LoopDisposition LD =
881       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
882   if (LD != ScalarEvolution::LoopInvariant)
883     return false;
884 
885   return true;
886 }
887 
888 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
889                             Value *Right) {
890   CmpInst::Predicate Pred;
891   switch (RK) {
892   default:
893     llvm_unreachable("Unknown min/max recurrence kind");
894   case RecurKind::UMin:
895     Pred = CmpInst::ICMP_ULT;
896     break;
897   case RecurKind::UMax:
898     Pred = CmpInst::ICMP_UGT;
899     break;
900   case RecurKind::SMin:
901     Pred = CmpInst::ICMP_SLT;
902     break;
903   case RecurKind::SMax:
904     Pred = CmpInst::ICMP_SGT;
905     break;
906   case RecurKind::FMin:
907     Pred = CmpInst::FCMP_OLT;
908     break;
909   case RecurKind::FMax:
910     Pred = CmpInst::FCMP_OGT;
911     break;
912   }
913 
914   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
915   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
916   return Select;
917 }
918 
919 // Helper to generate an ordered reduction.
920 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
921                                  unsigned Op, RecurKind RdxKind,
922                                  ArrayRef<Value *> RedOps) {
923   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
924 
925   // Extract and apply reduction ops in ascending order:
926   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
927   Value *Result = Acc;
928   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
929     Value *Ext =
930         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
931 
932     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
933       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
934                                    "bin.rdx");
935     } else {
936       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
937              "Invalid min/max");
938       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
939     }
940 
941     if (!RedOps.empty())
942       propagateIRFlags(Result, RedOps);
943   }
944 
945   return Result;
946 }
947 
948 // Helper to generate a log2 shuffle reduction.
949 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
950                                  unsigned Op, RecurKind RdxKind,
951                                  ArrayRef<Value *> RedOps) {
952   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
953   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
954   // and vector ops, reducing the set of values being computed by half each
955   // round.
956   assert(isPowerOf2_32(VF) &&
957          "Reduction emission only supported for pow2 vectors!");
958   Value *TmpVec = Src;
959   SmallVector<int, 32> ShuffleMask(VF);
960   for (unsigned i = VF; i != 1; i >>= 1) {
961     // Move the upper half of the vector to the lower half.
962     for (unsigned j = 0; j != i / 2; ++j)
963       ShuffleMask[j] = i / 2 + j;
964 
965     // Fill the rest of the mask with undef.
966     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
967 
968     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
969 
970     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
971       // The builder propagates its fast-math-flags setting.
972       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
973                                    "bin.rdx");
974     } else {
975       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
976              "Invalid min/max");
977       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
978     }
979     if (!RedOps.empty())
980       propagateIRFlags(TmpVec, RedOps);
981 
982     // We may compute the reassociated scalar ops in a way that does not
983     // preserve nsw/nuw etc. Conservatively, drop those flags.
984     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
985       ReductionInst->dropPoisonGeneratingFlags();
986   }
987   // The result is in the first element of the vector.
988   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
989 }
990 
991 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
992                                          const TargetTransformInfo *TTI,
993                                          Value *Src, RecurKind RdxKind,
994                                          ArrayRef<Value *> RedOps) {
995   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
996   switch (RdxKind) {
997   case RecurKind::Add:
998     return Builder.CreateAddReduce(Src);
999   case RecurKind::Mul:
1000     return Builder.CreateMulReduce(Src);
1001   case RecurKind::And:
1002     return Builder.CreateAndReduce(Src);
1003   case RecurKind::Or:
1004     return Builder.CreateOrReduce(Src);
1005   case RecurKind::Xor:
1006     return Builder.CreateXorReduce(Src);
1007   case RecurKind::FAdd:
1008     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1009                                     Src);
1010   case RecurKind::FMul:
1011     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1012   case RecurKind::SMax:
1013     return Builder.CreateIntMaxReduce(Src, true);
1014   case RecurKind::SMin:
1015     return Builder.CreateIntMinReduce(Src, true);
1016   case RecurKind::UMax:
1017     return Builder.CreateIntMaxReduce(Src, false);
1018   case RecurKind::UMin:
1019     return Builder.CreateIntMinReduce(Src, false);
1020   case RecurKind::FMax:
1021     return Builder.CreateFPMaxReduce(Src);
1022   case RecurKind::FMin:
1023     return Builder.CreateFPMinReduce(Src);
1024   default:
1025     llvm_unreachable("Unhandled opcode");
1026   }
1027 }
1028 
1029 Value *llvm::createTargetReduction(IRBuilderBase &B,
1030                                    const TargetTransformInfo *TTI,
1031                                    const RecurrenceDescriptor &Desc,
1032                                    Value *Src) {
1033   // TODO: Support in-order reductions based on the recurrence descriptor.
1034   // All ops in the reduction inherit fast-math-flags from the recurrence
1035   // descriptor.
1036   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1037   B.setFastMathFlags(Desc.getFastMathFlags());
1038   return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
1039 }
1040 
1041 Value *llvm::createOrderedReduction(IRBuilderBase &B,
1042                                     const RecurrenceDescriptor &Desc,
1043                                     Value *Src, Value *Start) {
1044   assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&
1045          "Unexpected reduction kind");
1046   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1047   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1048 
1049   return B.CreateFAddReduce(Start, Src);
1050 }
1051 
1052 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1053   auto *VecOp = dyn_cast<Instruction>(I);
1054   if (!VecOp)
1055     return;
1056   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1057                                             : dyn_cast<Instruction>(OpValue);
1058   if (!Intersection)
1059     return;
1060   const unsigned Opcode = Intersection->getOpcode();
1061   VecOp->copyIRFlags(Intersection);
1062   for (auto *V : VL) {
1063     auto *Instr = dyn_cast<Instruction>(V);
1064     if (!Instr)
1065       continue;
1066     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1067       VecOp->andIRFlags(V);
1068   }
1069 }
1070 
1071 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1072                                  ScalarEvolution &SE) {
1073   const SCEV *Zero = SE.getZero(S->getType());
1074   return SE.isAvailableAtLoopEntry(S, L) &&
1075          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1076 }
1077 
1078 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1079                                     ScalarEvolution &SE) {
1080   const SCEV *Zero = SE.getZero(S->getType());
1081   return SE.isAvailableAtLoopEntry(S, L) &&
1082          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1083 }
1084 
1085 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1086                              bool Signed) {
1087   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1088   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1089     APInt::getMinValue(BitWidth);
1090   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1091   return SE.isAvailableAtLoopEntry(S, L) &&
1092          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1093                                      SE.getConstant(Min));
1094 }
1095 
1096 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1097                              bool Signed) {
1098   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1099   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1100     APInt::getMaxValue(BitWidth);
1101   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1102   return SE.isAvailableAtLoopEntry(S, L) &&
1103          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1104                                      SE.getConstant(Max));
1105 }
1106 
1107 //===----------------------------------------------------------------------===//
1108 // rewriteLoopExitValues - Optimize IV users outside the loop.
1109 // As a side effect, reduces the amount of IV processing within the loop.
1110 //===----------------------------------------------------------------------===//
1111 
1112 // Return true if the SCEV expansion generated by the rewriter can replace the
1113 // original value. SCEV guarantees that it produces the same value, but the way
1114 // it is produced may be illegal IR.  Ideally, this function will only be
1115 // called for verification.
1116 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1117   // If an SCEV expression subsumed multiple pointers, its expansion could
1118   // reassociate the GEP changing the base pointer. This is illegal because the
1119   // final address produced by a GEP chain must be inbounds relative to its
1120   // underlying object. Otherwise basic alias analysis, among other things,
1121   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1122   // producing an expression involving multiple pointers. Until then, we must
1123   // bail out here.
1124   //
1125   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1126   // because it understands lcssa phis while SCEV does not.
1127   Value *FromPtr = FromVal;
1128   Value *ToPtr = ToVal;
1129   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1130     FromPtr = GEP->getPointerOperand();
1131 
1132   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1133     ToPtr = GEP->getPointerOperand();
1134 
1135   if (FromPtr != FromVal || ToPtr != ToVal) {
1136     // Quickly check the common case
1137     if (FromPtr == ToPtr)
1138       return true;
1139 
1140     // SCEV may have rewritten an expression that produces the GEP's pointer
1141     // operand. That's ok as long as the pointer operand has the same base
1142     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1143     // base of a recurrence. This handles the case in which SCEV expansion
1144     // converts a pointer type recurrence into a nonrecurrent pointer base
1145     // indexed by an integer recurrence.
1146 
1147     // If the GEP base pointer is a vector of pointers, abort.
1148     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1149       return false;
1150 
1151     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1152     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1153     if (FromBase == ToBase)
1154       return true;
1155 
1156     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1157                       << *FromBase << " != " << *ToBase << "\n");
1158 
1159     return false;
1160   }
1161   return true;
1162 }
1163 
1164 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1165   SmallPtrSet<const Instruction *, 8> Visited;
1166   SmallVector<const Instruction *, 8> WorkList;
1167   Visited.insert(I);
1168   WorkList.push_back(I);
1169   while (!WorkList.empty()) {
1170     const Instruction *Curr = WorkList.pop_back_val();
1171     // This use is outside the loop, nothing to do.
1172     if (!L->contains(Curr))
1173       continue;
1174     // Do we assume it is a "hard" use which will not be eliminated easily?
1175     if (Curr->mayHaveSideEffects())
1176       return true;
1177     // Otherwise, add all its users to worklist.
1178     for (auto U : Curr->users()) {
1179       auto *UI = cast<Instruction>(U);
1180       if (Visited.insert(UI).second)
1181         WorkList.push_back(UI);
1182     }
1183   }
1184   return false;
1185 }
1186 
1187 // Collect information about PHI nodes which can be transformed in
1188 // rewriteLoopExitValues.
1189 struct RewritePhi {
1190   PHINode *PN;               // For which PHI node is this replacement?
1191   unsigned Ith;              // For which incoming value?
1192   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1193   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1194   bool HighCost;               // Is this expansion a high-cost?
1195 
1196   Value *Expansion = nullptr;
1197   bool ValidRewrite = false;
1198 
1199   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1200              bool H)
1201       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1202         HighCost(H) {}
1203 };
1204 
1205 // Check whether it is possible to delete the loop after rewriting exit
1206 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1207 // aggressively.
1208 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1209   BasicBlock *Preheader = L->getLoopPreheader();
1210   // If there is no preheader, the loop will not be deleted.
1211   if (!Preheader)
1212     return false;
1213 
1214   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1215   // We obviate multiple ExitingBlocks case for simplicity.
1216   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1217   // after exit value rewriting, we can enhance the logic here.
1218   SmallVector<BasicBlock *, 4> ExitingBlocks;
1219   L->getExitingBlocks(ExitingBlocks);
1220   SmallVector<BasicBlock *, 8> ExitBlocks;
1221   L->getUniqueExitBlocks(ExitBlocks);
1222   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1223     return false;
1224 
1225   BasicBlock *ExitBlock = ExitBlocks[0];
1226   BasicBlock::iterator BI = ExitBlock->begin();
1227   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1228     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1229 
1230     // If the Incoming value of P is found in RewritePhiSet, we know it
1231     // could be rewritten to use a loop invariant value in transformation
1232     // phase later. Skip it in the loop invariant check below.
1233     bool found = false;
1234     for (const RewritePhi &Phi : RewritePhiSet) {
1235       if (!Phi.ValidRewrite)
1236         continue;
1237       unsigned i = Phi.Ith;
1238       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1239         found = true;
1240         break;
1241       }
1242     }
1243 
1244     Instruction *I;
1245     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1246       if (!L->hasLoopInvariantOperands(I))
1247         return false;
1248 
1249     ++BI;
1250   }
1251 
1252   for (auto *BB : L->blocks())
1253     if (llvm::any_of(*BB, [](Instruction &I) {
1254           return I.mayHaveSideEffects();
1255         }))
1256       return false;
1257 
1258   return true;
1259 }
1260 
1261 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1262                                 ScalarEvolution *SE,
1263                                 const TargetTransformInfo *TTI,
1264                                 SCEVExpander &Rewriter, DominatorTree *DT,
1265                                 ReplaceExitVal ReplaceExitValue,
1266                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1267   // Check a pre-condition.
1268   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1269          "Indvars did not preserve LCSSA!");
1270 
1271   SmallVector<BasicBlock*, 8> ExitBlocks;
1272   L->getUniqueExitBlocks(ExitBlocks);
1273 
1274   SmallVector<RewritePhi, 8> RewritePhiSet;
1275   // Find all values that are computed inside the loop, but used outside of it.
1276   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1277   // the exit blocks of the loop to find them.
1278   for (BasicBlock *ExitBB : ExitBlocks) {
1279     // If there are no PHI nodes in this exit block, then no values defined
1280     // inside the loop are used on this path, skip it.
1281     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1282     if (!PN) continue;
1283 
1284     unsigned NumPreds = PN->getNumIncomingValues();
1285 
1286     // Iterate over all of the PHI nodes.
1287     BasicBlock::iterator BBI = ExitBB->begin();
1288     while ((PN = dyn_cast<PHINode>(BBI++))) {
1289       if (PN->use_empty())
1290         continue; // dead use, don't replace it
1291 
1292       if (!SE->isSCEVable(PN->getType()))
1293         continue;
1294 
1295       // It's necessary to tell ScalarEvolution about this explicitly so that
1296       // it can walk the def-use list and forget all SCEVs, as it may not be
1297       // watching the PHI itself. Once the new exit value is in place, there
1298       // may not be a def-use connection between the loop and every instruction
1299       // which got a SCEVAddRecExpr for that loop.
1300       SE->forgetValue(PN);
1301 
1302       // Iterate over all of the values in all the PHI nodes.
1303       for (unsigned i = 0; i != NumPreds; ++i) {
1304         // If the value being merged in is not integer or is not defined
1305         // in the loop, skip it.
1306         Value *InVal = PN->getIncomingValue(i);
1307         if (!isa<Instruction>(InVal))
1308           continue;
1309 
1310         // If this pred is for a subloop, not L itself, skip it.
1311         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1312           continue; // The Block is in a subloop, skip it.
1313 
1314         // Check that InVal is defined in the loop.
1315         Instruction *Inst = cast<Instruction>(InVal);
1316         if (!L->contains(Inst))
1317           continue;
1318 
1319         // Okay, this instruction has a user outside of the current loop
1320         // and varies predictably *inside* the loop.  Evaluate the value it
1321         // contains when the loop exits, if possible.  We prefer to start with
1322         // expressions which are true for all exits (so as to maximize
1323         // expression reuse by the SCEVExpander), but resort to per-exit
1324         // evaluation if that fails.
1325         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1326         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1327             !SE->isLoopInvariant(ExitValue, L) ||
1328             !isSafeToExpand(ExitValue, *SE)) {
1329           // TODO: This should probably be sunk into SCEV in some way; maybe a
1330           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1331           // most SCEV expressions and other recurrence types (e.g. shift
1332           // recurrences).  Is there existing code we can reuse?
1333           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1334           if (isa<SCEVCouldNotCompute>(ExitCount))
1335             continue;
1336           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1337             if (AddRec->getLoop() == L)
1338               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1339           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1340               !SE->isLoopInvariant(ExitValue, L) ||
1341               !isSafeToExpand(ExitValue, *SE))
1342             continue;
1343         }
1344 
1345         // Computing the value outside of the loop brings no benefit if it is
1346         // definitely used inside the loop in a way which can not be optimized
1347         // away. Avoid doing so unless we know we have a value which computes
1348         // the ExitValue already. TODO: This should be merged into SCEV
1349         // expander to leverage its knowledge of existing expressions.
1350         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1351             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1352           continue;
1353 
1354         // Check if expansions of this SCEV would count as being high cost.
1355         bool HighCost = Rewriter.isHighCostExpansion(
1356             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1357 
1358         // Note that we must not perform expansions until after
1359         // we query *all* the costs, because if we perform temporary expansion
1360         // inbetween, one that we might not intend to keep, said expansion
1361         // *may* affect cost calculation of the the next SCEV's we'll query,
1362         // and next SCEV may errneously get smaller cost.
1363 
1364         // Collect all the candidate PHINodes to be rewritten.
1365         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1366       }
1367     }
1368   }
1369 
1370   // Now that we've done preliminary filtering and billed all the SCEV's,
1371   // we can perform the last sanity check - the expansion must be valid.
1372   for (RewritePhi &Phi : RewritePhiSet) {
1373     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1374                                            Phi.ExpansionPoint);
1375 
1376     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1377                       << *(Phi.Expansion) << '\n'
1378                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1379 
1380     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1381     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1382     if (!Phi.ValidRewrite) {
1383       DeadInsts.push_back(Phi.Expansion);
1384       continue;
1385     }
1386 
1387 #ifndef NDEBUG
1388     // If we reuse an instruction from a loop which is neither L nor one of
1389     // its containing loops, we end up breaking LCSSA form for this loop by
1390     // creating a new use of its instruction.
1391     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1392       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1393         if (EVL != L)
1394           assert(EVL->contains(L) && "LCSSA breach detected!");
1395 #endif
1396   }
1397 
1398   // TODO: after isValidRewrite() is an assertion, evaluate whether
1399   // it is beneficial to change how we calculate high-cost:
1400   // if we have SCEV 'A' which we know we will expand, should we calculate
1401   // the cost of other SCEV's after expanding SCEV 'A',
1402   // thus potentially giving cost bonus to those other SCEV's?
1403 
1404   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1405   int NumReplaced = 0;
1406 
1407   // Transformation.
1408   for (const RewritePhi &Phi : RewritePhiSet) {
1409     if (!Phi.ValidRewrite)
1410       continue;
1411 
1412     PHINode *PN = Phi.PN;
1413     Value *ExitVal = Phi.Expansion;
1414 
1415     // Only do the rewrite when the ExitValue can be expanded cheaply.
1416     // If LoopCanBeDel is true, rewrite exit value aggressively.
1417     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1418       DeadInsts.push_back(ExitVal);
1419       continue;
1420     }
1421 
1422     NumReplaced++;
1423     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1424     PN->setIncomingValue(Phi.Ith, ExitVal);
1425 
1426     // If this instruction is dead now, delete it. Don't do it now to avoid
1427     // invalidating iterators.
1428     if (isInstructionTriviallyDead(Inst, TLI))
1429       DeadInsts.push_back(Inst);
1430 
1431     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1432     if (PN->getNumIncomingValues() == 1 &&
1433         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1434       PN->replaceAllUsesWith(ExitVal);
1435       PN->eraseFromParent();
1436     }
1437   }
1438 
1439   // The insertion point instruction may have been deleted; clear it out
1440   // so that the rewriter doesn't trip over it later.
1441   Rewriter.clearInsertPoint();
1442   return NumReplaced;
1443 }
1444 
1445 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1446 /// \p OrigLoop.
1447 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1448                                         Loop *RemainderLoop, uint64_t UF) {
1449   assert(UF > 0 && "Zero unrolled factor is not supported");
1450   assert(UnrolledLoop != RemainderLoop &&
1451          "Unrolled and Remainder loops are expected to distinct");
1452 
1453   // Get number of iterations in the original scalar loop.
1454   unsigned OrigLoopInvocationWeight = 0;
1455   Optional<unsigned> OrigAverageTripCount =
1456       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1457   if (!OrigAverageTripCount)
1458     return;
1459 
1460   // Calculate number of iterations in unrolled loop.
1461   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1462   // Calculate number of iterations for remainder loop.
1463   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1464 
1465   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1466                             OrigLoopInvocationWeight);
1467   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1468                             OrigLoopInvocationWeight);
1469 }
1470 
1471 /// Utility that implements appending of loops onto a worklist.
1472 /// Loops are added in preorder (analogous for reverse postorder for trees),
1473 /// and the worklist is processed LIFO.
1474 template <typename RangeT>
1475 void llvm::appendReversedLoopsToWorklist(
1476     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1477   // We use an internal worklist to build up the preorder traversal without
1478   // recursion.
1479   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1480 
1481   // We walk the initial sequence of loops in reverse because we generally want
1482   // to visit defs before uses and the worklist is LIFO.
1483   for (Loop *RootL : Loops) {
1484     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1485     assert(PreOrderWorklist.empty() &&
1486            "Must start with an empty preorder walk worklist.");
1487     PreOrderWorklist.push_back(RootL);
1488     do {
1489       Loop *L = PreOrderWorklist.pop_back_val();
1490       PreOrderWorklist.append(L->begin(), L->end());
1491       PreOrderLoops.push_back(L);
1492     } while (!PreOrderWorklist.empty());
1493 
1494     Worklist.insert(std::move(PreOrderLoops));
1495     PreOrderLoops.clear();
1496   }
1497 }
1498 
1499 template <typename RangeT>
1500 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1501                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1502   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1503 }
1504 
1505 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1506     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1507 
1508 template void
1509 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1510                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1511 
1512 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1513                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1514   appendReversedLoopsToWorklist(LI, Worklist);
1515 }
1516 
1517 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1518                       LoopInfo *LI, LPPassManager *LPM) {
1519   Loop &New = *LI->AllocateLoop();
1520   if (PL)
1521     PL->addChildLoop(&New);
1522   else
1523     LI->addTopLevelLoop(&New);
1524 
1525   if (LPM)
1526     LPM->addLoop(New);
1527 
1528   // Add all of the blocks in L to the new loop.
1529   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1530        I != E; ++I)
1531     if (LI->getLoopFor(*I) == L)
1532       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1533 
1534   // Add all of the subloops to the new loop.
1535   for (Loop *I : *L)
1536     cloneLoop(I, &New, VM, LI, LPM);
1537 
1538   return &New;
1539 }
1540 
1541 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1542 /// need to use value-handles because SCEV expansion can invalidate previously
1543 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1544 /// a previous one.
1545 struct PointerBounds {
1546   TrackingVH<Value> Start;
1547   TrackingVH<Value> End;
1548 };
1549 
1550 /// Expand code for the lower and upper bound of the pointer group \p CG
1551 /// in \p TheLoop.  \return the values for the bounds.
1552 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1553                                   Loop *TheLoop, Instruction *Loc,
1554                                   SCEVExpander &Exp) {
1555   LLVMContext &Ctx = Loc->getContext();
1556   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
1557 
1558   Value *Start = nullptr, *End = nullptr;
1559   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1560   Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1561   End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1562   LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1563   return {Start, End};
1564 }
1565 
1566 /// Turns a collection of checks into a collection of expanded upper and
1567 /// lower bounds for both pointers in the check.
1568 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1569 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1570              Instruction *Loc, SCEVExpander &Exp) {
1571   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1572 
1573   // Here we're relying on the SCEV Expander's cache to only emit code for the
1574   // same bounds once.
1575   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1576             [&](const RuntimePointerCheck &Check) {
1577               PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
1578                             Second = expandBounds(Check.second, L, Loc, Exp);
1579               return std::make_pair(First, Second);
1580             });
1581 
1582   return ChecksWithBounds;
1583 }
1584 
1585 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1586     Instruction *Loc, Loop *TheLoop,
1587     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1588     SCEVExpander &Exp) {
1589   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1590   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1591   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
1592 
1593   LLVMContext &Ctx = Loc->getContext();
1594   Instruction *FirstInst = nullptr;
1595   IRBuilder<> ChkBuilder(Loc);
1596   // Our instructions might fold to a constant.
1597   Value *MemoryRuntimeCheck = nullptr;
1598 
1599   // FIXME: this helper is currently a duplicate of the one in
1600   // LoopVectorize.cpp.
1601   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1602                          Instruction *Loc) -> Instruction * {
1603     if (FirstInst)
1604       return FirstInst;
1605     if (Instruction *I = dyn_cast<Instruction>(V))
1606       return I->getParent() == Loc->getParent() ? I : nullptr;
1607     return nullptr;
1608   };
1609 
1610   for (const auto &Check : ExpandedChecks) {
1611     const PointerBounds &A = Check.first, &B = Check.second;
1612     // Check if two pointers (A and B) conflict where conflict is computed as:
1613     // start(A) <= end(B) && start(B) <= end(A)
1614     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1615     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1616 
1617     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1618            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1619            "Trying to bounds check pointers with different address spaces");
1620 
1621     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1622     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1623 
1624     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1625     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1626     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1627     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1628 
1629     // [A|B].Start points to the first accessed byte under base [A|B].
1630     // [A|B].End points to the last accessed byte, plus one.
1631     // There is no conflict when the intervals are disjoint:
1632     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1633     //
1634     // bound0 = (B.Start < A.End)
1635     // bound1 = (A.Start < B.End)
1636     //  IsConflict = bound0 & bound1
1637     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1638     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1639     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1640     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1641     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1642     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1643     if (MemoryRuntimeCheck) {
1644       IsConflict =
1645           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1646       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1647     }
1648     MemoryRuntimeCheck = IsConflict;
1649   }
1650 
1651   if (!MemoryRuntimeCheck)
1652     return std::make_pair(nullptr, nullptr);
1653 
1654   // We have to do this trickery because the IRBuilder might fold the check to a
1655   // constant expression in which case there is no Instruction anchored in a
1656   // the block.
1657   Instruction *Check =
1658       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1659   ChkBuilder.Insert(Check, "memcheck.conflict");
1660   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1661   return std::make_pair(FirstInst, Check);
1662 }
1663 
1664 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
1665                                                       unsigned MSSAThreshold,
1666                                                       MemorySSA &MSSA,
1667                                                       AAResults &AA) {
1668   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1669   if (!TI || !TI->isConditional())
1670     return {};
1671 
1672   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1673   // The case with the condition outside the loop should already be handled
1674   // earlier.
1675   if (!CondI || !L.contains(CondI))
1676     return {};
1677 
1678   SmallVector<Instruction *> InstToDuplicate;
1679   InstToDuplicate.push_back(CondI);
1680 
1681   SmallVector<Value *, 4> WorkList;
1682   WorkList.append(CondI->op_begin(), CondI->op_end());
1683 
1684   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1685   SmallVector<MemoryLocation, 4> AccessedLocs;
1686   while (!WorkList.empty()) {
1687     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1688     if (!I || !L.contains(I))
1689       continue;
1690 
1691     // TODO: support additional instructions.
1692     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1693       return {};
1694 
1695     // Do not duplicate volatile and atomic loads.
1696     if (auto *LI = dyn_cast<LoadInst>(I))
1697       if (LI->isVolatile() || LI->isAtomic())
1698         return {};
1699 
1700     InstToDuplicate.push_back(I);
1701     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1702       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1703         // Queue the defining access to check for alias checks.
1704         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1705         AccessedLocs.push_back(MemoryLocation::get(I));
1706       } else {
1707         // MemoryDefs may clobber the location or may be atomic memory
1708         // operations. Bail out.
1709         return {};
1710       }
1711     }
1712     WorkList.append(I->op_begin(), I->op_end());
1713   }
1714 
1715   if (InstToDuplicate.empty())
1716     return {};
1717 
1718   SmallVector<BasicBlock *, 4> ExitingBlocks;
1719   L.getExitingBlocks(ExitingBlocks);
1720   auto HasNoClobbersOnPath =
1721       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1722        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1723                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1724       -> Optional<IVConditionInfo> {
1725     IVConditionInfo Info;
1726     // First, collect all blocks in the loop that are on a patch from Succ
1727     // to the header.
1728     SmallVector<BasicBlock *, 4> WorkList;
1729     WorkList.push_back(Succ);
1730     WorkList.push_back(Header);
1731     SmallPtrSet<BasicBlock *, 4> Seen;
1732     Seen.insert(Header);
1733     Info.PathIsNoop &=
1734         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1735 
1736     while (!WorkList.empty()) {
1737       BasicBlock *Current = WorkList.pop_back_val();
1738       if (!L.contains(Current))
1739         continue;
1740       const auto &SeenIns = Seen.insert(Current);
1741       if (!SeenIns.second)
1742         continue;
1743 
1744       Info.PathIsNoop &= all_of(
1745           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1746       WorkList.append(succ_begin(Current), succ_end(Current));
1747     }
1748 
1749     // Require at least 2 blocks on a path through the loop. This skips
1750     // paths that directly exit the loop.
1751     if (Seen.size() < 2)
1752       return {};
1753 
1754     // Next, check if there are any MemoryDefs that are on the path through
1755     // the loop (in the Seen set) and they may-alias any of the locations in
1756     // AccessedLocs. If that is the case, they may modify the condition and
1757     // partial unswitching is not possible.
1758     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1759     while (!AccessesToCheck.empty()) {
1760       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1761       auto SeenI = SeenAccesses.insert(Current);
1762       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1763         continue;
1764 
1765       // Bail out if exceeded the threshold.
1766       if (SeenAccesses.size() >= MSSAThreshold)
1767         return {};
1768 
1769       // MemoryUse are read-only accesses.
1770       if (isa<MemoryUse>(Current))
1771         continue;
1772 
1773       // For a MemoryDef, check if is aliases any of the location feeding
1774       // the original condition.
1775       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1776         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1777               return isModSet(
1778                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1779             }))
1780           return {};
1781       }
1782 
1783       for (Use &U : Current->uses())
1784         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1785     }
1786 
1787     // We could also allow loops with known trip counts without mustprogress,
1788     // but ScalarEvolution may not be available.
1789     Info.PathIsNoop &= isMustProgress(&L);
1790 
1791     // If the path is considered a no-op so far, check if it reaches a
1792     // single exit block without any phis. This ensures no values from the
1793     // loop are used outside of the loop.
1794     if (Info.PathIsNoop) {
1795       for (auto *Exiting : ExitingBlocks) {
1796         if (!Seen.contains(Exiting))
1797           continue;
1798         for (auto *Succ : successors(Exiting)) {
1799           if (L.contains(Succ))
1800             continue;
1801 
1802           Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
1803                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1804           if (!Info.PathIsNoop)
1805             break;
1806           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1807                  "cannot have multiple exit blocks");
1808           Info.ExitForPath = Succ;
1809         }
1810       }
1811     }
1812     if (!Info.ExitForPath)
1813       Info.PathIsNoop = false;
1814 
1815     Info.InstToDuplicate = InstToDuplicate;
1816     return Info;
1817   };
1818 
1819   // If we branch to the same successor, partial unswitching will not be
1820   // beneficial.
1821   if (TI->getSuccessor(0) == TI->getSuccessor(1))
1822     return {};
1823 
1824   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
1825                                       AccessesToCheck)) {
1826     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
1827     return Info;
1828   }
1829   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
1830                                       AccessesToCheck)) {
1831     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
1832     return Info;
1833   }
1834 
1835   return {};
1836 }
1837