1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstSimplifyFolder.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 if (isa<CallBrInst>(PredBB->getTerminator())) 79 // We cannot rewrite exiting edges from a callbr. 80 return false; 81 82 InLoopPredecessors.push_back(PredBB); 83 } else { 84 IsDedicatedExit = false; 85 } 86 87 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 88 89 // Nothing to do if this is already a dedicated exit. 90 if (IsDedicatedExit) 91 return false; 92 93 auto *NewExitBB = SplitBlockPredecessors( 94 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 95 96 if (!NewExitBB) 97 LLVM_DEBUG( 98 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 99 << *L << "\n"); 100 else 101 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 102 << NewExitBB->getName() << "\n"); 103 return true; 104 }; 105 106 // Walk the exit blocks directly rather than building up a data structure for 107 // them, but only visit each one once. 108 SmallPtrSet<BasicBlock *, 4> Visited; 109 for (auto *BB : L->blocks()) 110 for (auto *SuccBB : successors(BB)) { 111 // We're looking for exit blocks so skip in-loop successors. 112 if (L->contains(SuccBB)) 113 continue; 114 115 // Visit each exit block exactly once. 116 if (!Visited.insert(SuccBB).second) 117 continue; 118 119 Changed |= RewriteExit(SuccBB); 120 } 121 122 return Changed; 123 } 124 125 /// Returns the instructions that use values defined in the loop. 126 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 127 SmallVector<Instruction *, 8> UsedOutside; 128 129 for (auto *Block : L->getBlocks()) 130 // FIXME: I believe that this could use copy_if if the Inst reference could 131 // be adapted into a pointer. 132 for (auto &Inst : *Block) { 133 auto Users = Inst.users(); 134 if (any_of(Users, [&](User *U) { 135 auto *Use = cast<Instruction>(U); 136 return !L->contains(Use->getParent()); 137 })) 138 UsedOutside.push_back(&Inst); 139 } 140 141 return UsedOutside; 142 } 143 144 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 145 // By definition, all loop passes need the LoopInfo analysis and the 146 // Dominator tree it depends on. Because they all participate in the loop 147 // pass manager, they must also preserve these. 148 AU.addRequired<DominatorTreeWrapperPass>(); 149 AU.addPreserved<DominatorTreeWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 AU.addPreserved<LoopInfoWrapperPass>(); 152 153 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 154 // here because users shouldn't directly get them from this header. 155 extern char &LoopSimplifyID; 156 extern char &LCSSAID; 157 AU.addRequiredID(LoopSimplifyID); 158 AU.addPreservedID(LoopSimplifyID); 159 AU.addRequiredID(LCSSAID); 160 AU.addPreservedID(LCSSAID); 161 // This is used in the LPPassManager to perform LCSSA verification on passes 162 // which preserve lcssa form 163 AU.addRequired<LCSSAVerificationPass>(); 164 AU.addPreserved<LCSSAVerificationPass>(); 165 166 // Loop passes are designed to run inside of a loop pass manager which means 167 // that any function analyses they require must be required by the first loop 168 // pass in the manager (so that it is computed before the loop pass manager 169 // runs) and preserved by all loop pasess in the manager. To make this 170 // reasonably robust, the set needed for most loop passes is maintained here. 171 // If your loop pass requires an analysis not listed here, you will need to 172 // carefully audit the loop pass manager nesting structure that results. 173 AU.addRequired<AAResultsWrapperPass>(); 174 AU.addPreserved<AAResultsWrapperPass>(); 175 AU.addPreserved<BasicAAWrapperPass>(); 176 AU.addPreserved<GlobalsAAWrapperPass>(); 177 AU.addPreserved<SCEVAAWrapperPass>(); 178 AU.addRequired<ScalarEvolutionWrapperPass>(); 179 AU.addPreserved<ScalarEvolutionWrapperPass>(); 180 // FIXME: When all loop passes preserve MemorySSA, it can be required and 181 // preserved here instead of the individual handling in each pass. 182 } 183 184 /// Manually defined generic "LoopPass" dependency initialization. This is used 185 /// to initialize the exact set of passes from above in \c 186 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 187 /// with: 188 /// 189 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 190 /// 191 /// As-if "LoopPass" were a pass. 192 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 193 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 196 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 203 } 204 205 /// Create MDNode for input string. 206 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 207 LLVMContext &Context = TheLoop->getHeader()->getContext(); 208 Metadata *MDs[] = { 209 MDString::get(Context, Name), 210 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 211 return MDNode::get(Context, MDs); 212 } 213 214 /// Set input string into loop metadata by keeping other values intact. 215 /// If the string is already in loop metadata update value if it is 216 /// different. 217 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 218 unsigned V) { 219 SmallVector<Metadata *, 4> MDs(1); 220 // If the loop already has metadata, retain it. 221 MDNode *LoopID = TheLoop->getLoopID(); 222 if (LoopID) { 223 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 224 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 225 // If it is of form key = value, try to parse it. 226 if (Node->getNumOperands() == 2) { 227 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 228 if (S && S->getString().equals(StringMD)) { 229 ConstantInt *IntMD = 230 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 231 if (IntMD && IntMD->getSExtValue() == V) 232 // It is already in place. Do nothing. 233 return; 234 // We need to update the value, so just skip it here and it will 235 // be added after copying other existed nodes. 236 continue; 237 } 238 } 239 MDs.push_back(Node); 240 } 241 } 242 // Add new metadata. 243 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 244 // Replace current metadata node with new one. 245 LLVMContext &Context = TheLoop->getHeader()->getContext(); 246 MDNode *NewLoopID = MDNode::get(Context, MDs); 247 // Set operand 0 to refer to the loop id itself. 248 NewLoopID->replaceOperandWith(0, NewLoopID); 249 TheLoop->setLoopID(NewLoopID); 250 } 251 252 Optional<ElementCount> 253 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 254 Optional<int> Width = 255 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 256 257 if (Width.hasValue()) { 258 Optional<int> IsScalable = getOptionalIntLoopAttribute( 259 TheLoop, "llvm.loop.vectorize.scalable.enable"); 260 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 261 } 262 263 return None; 264 } 265 266 Optional<MDNode *> llvm::makeFollowupLoopID( 267 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 268 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 269 if (!OrigLoopID) { 270 if (AlwaysNew) 271 return nullptr; 272 return None; 273 } 274 275 assert(OrigLoopID->getOperand(0) == OrigLoopID); 276 277 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 278 bool InheritSomeAttrs = 279 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 280 SmallVector<Metadata *, 8> MDs; 281 MDs.push_back(nullptr); 282 283 bool Changed = false; 284 if (InheritAllAttrs || InheritSomeAttrs) { 285 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 286 MDNode *Op = cast<MDNode>(Existing.get()); 287 288 auto InheritThisAttribute = [InheritSomeAttrs, 289 InheritOptionsExceptPrefix](MDNode *Op) { 290 if (!InheritSomeAttrs) 291 return false; 292 293 // Skip malformatted attribute metadata nodes. 294 if (Op->getNumOperands() == 0) 295 return true; 296 Metadata *NameMD = Op->getOperand(0).get(); 297 if (!isa<MDString>(NameMD)) 298 return true; 299 StringRef AttrName = cast<MDString>(NameMD)->getString(); 300 301 // Do not inherit excluded attributes. 302 return !AttrName.startswith(InheritOptionsExceptPrefix); 303 }; 304 305 if (InheritThisAttribute(Op)) 306 MDs.push_back(Op); 307 else 308 Changed = true; 309 } 310 } else { 311 // Modified if we dropped at least one attribute. 312 Changed = OrigLoopID->getNumOperands() > 1; 313 } 314 315 bool HasAnyFollowup = false; 316 for (StringRef OptionName : FollowupOptions) { 317 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 318 if (!FollowupNode) 319 continue; 320 321 HasAnyFollowup = true; 322 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 323 MDs.push_back(Option.get()); 324 Changed = true; 325 } 326 } 327 328 // Attributes of the followup loop not specified explicity, so signal to the 329 // transformation pass to add suitable attributes. 330 if (!AlwaysNew && !HasAnyFollowup) 331 return None; 332 333 // If no attributes were added or remove, the previous loop Id can be reused. 334 if (!AlwaysNew && !Changed) 335 return OrigLoopID; 336 337 // No attributes is equivalent to having no !llvm.loop metadata at all. 338 if (MDs.size() == 1) 339 return nullptr; 340 341 // Build the new loop ID. 342 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 343 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 344 return FollowupLoopID; 345 } 346 347 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 348 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 349 } 350 351 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 352 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 353 } 354 355 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 356 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 357 return TM_SuppressedByUser; 358 359 Optional<int> Count = 360 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 361 if (Count.hasValue()) 362 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 365 return TM_ForcedByUser; 366 367 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 368 return TM_ForcedByUser; 369 370 if (hasDisableAllTransformsHint(L)) 371 return TM_Disable; 372 373 return TM_Unspecified; 374 } 375 376 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 377 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 378 return TM_SuppressedByUser; 379 380 Optional<int> Count = 381 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 382 if (Count.hasValue()) 383 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 384 385 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 386 return TM_ForcedByUser; 387 388 if (hasDisableAllTransformsHint(L)) 389 return TM_Disable; 390 391 return TM_Unspecified; 392 } 393 394 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 395 Optional<bool> Enable = 396 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 397 398 if (Enable == false) 399 return TM_SuppressedByUser; 400 401 Optional<ElementCount> VectorizeWidth = 402 getOptionalElementCountLoopAttribute(L); 403 Optional<int> InterleaveCount = 404 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 405 406 // 'Forcing' vector width and interleave count to one effectively disables 407 // this tranformation. 408 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 409 InterleaveCount == 1) 410 return TM_SuppressedByUser; 411 412 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 413 return TM_Disable; 414 415 if (Enable == true) 416 return TM_ForcedByUser; 417 418 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 419 return TM_Disable; 420 421 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 422 return TM_Enable; 423 424 if (hasDisableAllTransformsHint(L)) 425 return TM_Disable; 426 427 return TM_Unspecified; 428 } 429 430 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 431 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 432 return TM_ForcedByUser; 433 434 if (hasDisableAllTransformsHint(L)) 435 return TM_Disable; 436 437 return TM_Unspecified; 438 } 439 440 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 441 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 442 return TM_SuppressedByUser; 443 444 if (hasDisableAllTransformsHint(L)) 445 return TM_Disable; 446 447 return TM_Unspecified; 448 } 449 450 /// Does a BFS from a given node to all of its children inside a given loop. 451 /// The returned vector of nodes includes the starting point. 452 SmallVector<DomTreeNode *, 16> 453 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 454 SmallVector<DomTreeNode *, 16> Worklist; 455 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 456 // Only include subregions in the top level loop. 457 BasicBlock *BB = DTN->getBlock(); 458 if (CurLoop->contains(BB)) 459 Worklist.push_back(DTN); 460 }; 461 462 AddRegionToWorklist(N); 463 464 for (size_t I = 0; I < Worklist.size(); I++) { 465 for (DomTreeNode *Child : Worklist[I]->children()) 466 AddRegionToWorklist(Child); 467 } 468 469 return Worklist; 470 } 471 472 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 473 LoopInfo *LI, MemorySSA *MSSA) { 474 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 475 auto *Preheader = L->getLoopPreheader(); 476 assert(Preheader && "Preheader should exist!"); 477 478 std::unique_ptr<MemorySSAUpdater> MSSAU; 479 if (MSSA) 480 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 481 482 // Now that we know the removal is safe, remove the loop by changing the 483 // branch from the preheader to go to the single exit block. 484 // 485 // Because we're deleting a large chunk of code at once, the sequence in which 486 // we remove things is very important to avoid invalidation issues. 487 488 // Tell ScalarEvolution that the loop is deleted. Do this before 489 // deleting the loop so that ScalarEvolution can look at the loop 490 // to determine what it needs to clean up. 491 if (SE) 492 SE->forgetLoop(L); 493 494 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 495 assert(OldBr && "Preheader must end with a branch"); 496 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 497 // Connect the preheader to the exit block. Keep the old edge to the header 498 // around to perform the dominator tree update in two separate steps 499 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 500 // preheader -> header. 501 // 502 // 503 // 0. Preheader 1. Preheader 2. Preheader 504 // | | | | 505 // V | V | 506 // Header <--\ | Header <--\ | Header <--\ 507 // | | | | | | | | | | | 508 // | V | | | V | | | V | 509 // | Body --/ | | Body --/ | | Body --/ 510 // V V V V V 511 // Exit Exit Exit 512 // 513 // By doing this is two separate steps we can perform the dominator tree 514 // update without using the batch update API. 515 // 516 // Even when the loop is never executed, we cannot remove the edge from the 517 // source block to the exit block. Consider the case where the unexecuted loop 518 // branches back to an outer loop. If we deleted the loop and removed the edge 519 // coming to this inner loop, this will break the outer loop structure (by 520 // deleting the backedge of the outer loop). If the outer loop is indeed a 521 // non-loop, it will be deleted in a future iteration of loop deletion pass. 522 IRBuilder<> Builder(OldBr); 523 524 auto *ExitBlock = L->getUniqueExitBlock(); 525 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 526 if (ExitBlock) { 527 assert(ExitBlock && "Should have a unique exit block!"); 528 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 529 530 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 531 // Remove the old branch. The conditional branch becomes a new terminator. 532 OldBr->eraseFromParent(); 533 534 // Rewrite phis in the exit block to get their inputs from the Preheader 535 // instead of the exiting block. 536 for (PHINode &P : ExitBlock->phis()) { 537 // Set the zero'th element of Phi to be from the preheader and remove all 538 // other incoming values. Given the loop has dedicated exits, all other 539 // incoming values must be from the exiting blocks. 540 int PredIndex = 0; 541 P.setIncomingBlock(PredIndex, Preheader); 542 // Removes all incoming values from all other exiting blocks (including 543 // duplicate values from an exiting block). 544 // Nuke all entries except the zero'th entry which is the preheader entry. 545 // NOTE! We need to remove Incoming Values in the reverse order as done 546 // below, to keep the indices valid for deletion (removeIncomingValues 547 // updates getNumIncomingValues and shifts all values down into the 548 // operand being deleted). 549 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 550 P.removeIncomingValue(e - i, false); 551 552 assert((P.getNumIncomingValues() == 1 && 553 P.getIncomingBlock(PredIndex) == Preheader) && 554 "Should have exactly one value and that's from the preheader!"); 555 } 556 557 if (DT) { 558 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 559 if (MSSA) { 560 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 561 *DT); 562 if (VerifyMemorySSA) 563 MSSA->verifyMemorySSA(); 564 } 565 } 566 567 // Disconnect the loop body by branching directly to its exit. 568 Builder.SetInsertPoint(Preheader->getTerminator()); 569 Builder.CreateBr(ExitBlock); 570 // Remove the old branch. 571 Preheader->getTerminator()->eraseFromParent(); 572 } else { 573 assert(L->hasNoExitBlocks() && 574 "Loop should have either zero or one exit blocks."); 575 576 Builder.SetInsertPoint(OldBr); 577 Builder.CreateUnreachable(); 578 Preheader->getTerminator()->eraseFromParent(); 579 } 580 581 if (DT) { 582 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 583 if (MSSA) { 584 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 585 *DT); 586 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 587 L->block_end()); 588 MSSAU->removeBlocks(DeadBlockSet); 589 if (VerifyMemorySSA) 590 MSSA->verifyMemorySSA(); 591 } 592 } 593 594 // Use a map to unique and a vector to guarantee deterministic ordering. 595 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 596 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 597 598 if (ExitBlock) { 599 // Given LCSSA form is satisfied, we should not have users of instructions 600 // within the dead loop outside of the loop. However, LCSSA doesn't take 601 // unreachable uses into account. We handle them here. 602 // We could do it after drop all references (in this case all users in the 603 // loop will be already eliminated and we have less work to do but according 604 // to API doc of User::dropAllReferences only valid operation after dropping 605 // references, is deletion. So let's substitute all usages of 606 // instruction from the loop with undef value of corresponding type first. 607 for (auto *Block : L->blocks()) 608 for (Instruction &I : *Block) { 609 auto *Undef = UndefValue::get(I.getType()); 610 for (Use &U : llvm::make_early_inc_range(I.uses())) { 611 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 612 if (L->contains(Usr->getParent())) 613 continue; 614 // If we have a DT then we can check that uses outside a loop only in 615 // unreachable block. 616 if (DT) 617 assert(!DT->isReachableFromEntry(U) && 618 "Unexpected user in reachable block"); 619 U.set(Undef); 620 } 621 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 622 if (!DVI) 623 continue; 624 auto Key = 625 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 626 if (Key != DeadDebugSet.end()) 627 continue; 628 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 629 DeadDebugInst.push_back(DVI); 630 } 631 632 // After the loop has been deleted all the values defined and modified 633 // inside the loop are going to be unavailable. 634 // Since debug values in the loop have been deleted, inserting an undef 635 // dbg.value truncates the range of any dbg.value before the loop where the 636 // loop used to be. This is particularly important for constant values. 637 DIBuilder DIB(*ExitBlock->getModule()); 638 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 639 assert(InsertDbgValueBefore && 640 "There should be a non-PHI instruction in exit block, else these " 641 "instructions will have no parent."); 642 for (auto *DVI : DeadDebugInst) 643 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 644 DVI->getVariable(), DVI->getExpression(), 645 DVI->getDebugLoc(), InsertDbgValueBefore); 646 } 647 648 // Remove the block from the reference counting scheme, so that we can 649 // delete it freely later. 650 for (auto *Block : L->blocks()) 651 Block->dropAllReferences(); 652 653 if (MSSA && VerifyMemorySSA) 654 MSSA->verifyMemorySSA(); 655 656 if (LI) { 657 // Erase the instructions and the blocks without having to worry 658 // about ordering because we already dropped the references. 659 // NOTE: This iteration is safe because erasing the block does not remove 660 // its entry from the loop's block list. We do that in the next section. 661 for (BasicBlock *BB : L->blocks()) 662 BB->eraseFromParent(); 663 664 // Finally, the blocks from loopinfo. This has to happen late because 665 // otherwise our loop iterators won't work. 666 667 SmallPtrSet<BasicBlock *, 8> blocks; 668 blocks.insert(L->block_begin(), L->block_end()); 669 for (BasicBlock *BB : blocks) 670 LI->removeBlock(BB); 671 672 // The last step is to update LoopInfo now that we've eliminated this loop. 673 // Note: LoopInfo::erase remove the given loop and relink its subloops with 674 // its parent. While removeLoop/removeChildLoop remove the given loop but 675 // not relink its subloops, which is what we want. 676 if (Loop *ParentLoop = L->getParentLoop()) { 677 Loop::iterator I = find(*ParentLoop, L); 678 assert(I != ParentLoop->end() && "Couldn't find loop"); 679 ParentLoop->removeChildLoop(I); 680 } else { 681 Loop::iterator I = find(*LI, L); 682 assert(I != LI->end() && "Couldn't find loop"); 683 LI->removeLoop(I); 684 } 685 LI->destroy(L); 686 } 687 } 688 689 static Loop *getOutermostLoop(Loop *L) { 690 while (Loop *Parent = L->getParentLoop()) 691 L = Parent; 692 return L; 693 } 694 695 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 696 LoopInfo &LI, MemorySSA *MSSA) { 697 auto *Latch = L->getLoopLatch(); 698 assert(Latch && "multiple latches not yet supported"); 699 auto *Header = L->getHeader(); 700 Loop *OutermostLoop = getOutermostLoop(L); 701 702 SE.forgetLoop(L); 703 704 std::unique_ptr<MemorySSAUpdater> MSSAU; 705 if (MSSA) 706 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 707 708 // Update the CFG and domtree. We chose to special case a couple of 709 // of common cases for code quality and test readability reasons. 710 [&]() -> void { 711 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 712 if (!BI->isConditional()) { 713 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 714 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 715 MSSAU.get()); 716 return; 717 } 718 719 // Conditional latch/exit - note that latch can be shared by inner 720 // and outer loop so the other target doesn't need to an exit 721 if (L->isLoopExiting(Latch)) { 722 // TODO: Generalize ConstantFoldTerminator so that it can be used 723 // here without invalidating LCSSA or MemorySSA. (Tricky case for 724 // LCSSA: header is an exit block of a preceeding sibling loop w/o 725 // dedicated exits.) 726 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 727 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 728 729 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 730 Header->removePredecessor(Latch, true); 731 732 IRBuilder<> Builder(BI); 733 auto *NewBI = Builder.CreateBr(ExitBB); 734 // Transfer the metadata to the new branch instruction (minus the 735 // loop info since this is no longer a loop) 736 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 737 LLVMContext::MD_annotation}); 738 739 BI->eraseFromParent(); 740 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 741 if (MSSA) 742 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 743 return; 744 } 745 } 746 747 // General case. By splitting the backedge, and then explicitly making it 748 // unreachable we gracefully handle corner cases such as switch and invoke 749 // termiantors. 750 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 751 752 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 753 (void)changeToUnreachable(BackedgeBB->getTerminator(), 754 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 755 }(); 756 757 // Erase (and destroy) this loop instance. Handles relinking sub-loops 758 // and blocks within the loop as needed. 759 LI.erase(L); 760 761 // If the loop we broke had a parent, then changeToUnreachable might have 762 // caused a block to be removed from the parent loop (see loop_nest_lcssa 763 // test case in zero-btc.ll for an example), thus changing the parent's 764 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 765 // loop which might have a had a block removed. 766 if (OutermostLoop != L) 767 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 768 } 769 770 771 /// Checks if \p L has an exiting latch branch. There may also be other 772 /// exiting blocks. Returns branch instruction terminating the loop 773 /// latch if above check is successful, nullptr otherwise. 774 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 775 BasicBlock *Latch = L->getLoopLatch(); 776 if (!Latch) 777 return nullptr; 778 779 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 780 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 781 return nullptr; 782 783 assert((LatchBR->getSuccessor(0) == L->getHeader() || 784 LatchBR->getSuccessor(1) == L->getHeader()) && 785 "At least one edge out of the latch must go to the header"); 786 787 return LatchBR; 788 } 789 790 /// Return the estimated trip count for any exiting branch which dominates 791 /// the loop latch. 792 static Optional<uint64_t> 793 getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L, 794 uint64_t &OrigExitWeight) { 795 // To estimate the number of times the loop body was executed, we want to 796 // know the number of times the backedge was taken, vs. the number of times 797 // we exited the loop. 798 uint64_t LoopWeight, ExitWeight; 799 if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight)) 800 return None; 801 802 if (L->contains(ExitingBranch->getSuccessor(1))) 803 std::swap(LoopWeight, ExitWeight); 804 805 if (!ExitWeight) 806 // Don't have a way to return predicated infinite 807 return None; 808 809 OrigExitWeight = ExitWeight; 810 811 // Estimated exit count is a ratio of the loop weight by the weight of the 812 // edge exiting the loop, rounded to nearest. 813 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 814 // Estimated trip count is one plus estimated exit count. 815 return ExitCount + 1; 816 } 817 818 Optional<unsigned> 819 llvm::getLoopEstimatedTripCount(Loop *L, 820 unsigned *EstimatedLoopInvocationWeight) { 821 // Currently we take the estimate exit count only from the loop latch, 822 // ignoring other exiting blocks. This can overestimate the trip count 823 // if we exit through another exit, but can never underestimate it. 824 // TODO: incorporate information from other exits 825 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 826 uint64_t ExitWeight; 827 if (Optional<uint64_t> EstTripCount = 828 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 829 if (EstimatedLoopInvocationWeight) 830 *EstimatedLoopInvocationWeight = ExitWeight; 831 return *EstTripCount; 832 } 833 } 834 return None; 835 } 836 837 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 838 unsigned EstimatedloopInvocationWeight) { 839 // At the moment, we currently support changing the estimate trip count of 840 // the latch branch only. We could extend this API to manipulate estimated 841 // trip counts for any exit. 842 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 843 if (!LatchBranch) 844 return false; 845 846 // Calculate taken and exit weights. 847 unsigned LatchExitWeight = 0; 848 unsigned BackedgeTakenWeight = 0; 849 850 if (EstimatedTripCount > 0) { 851 LatchExitWeight = EstimatedloopInvocationWeight; 852 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 853 } 854 855 // Make a swap if back edge is taken when condition is "false". 856 if (LatchBranch->getSuccessor(0) != L->getHeader()) 857 std::swap(BackedgeTakenWeight, LatchExitWeight); 858 859 MDBuilder MDB(LatchBranch->getContext()); 860 861 // Set/Update profile metadata. 862 LatchBranch->setMetadata( 863 LLVMContext::MD_prof, 864 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 865 866 return true; 867 } 868 869 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 870 ScalarEvolution &SE) { 871 Loop *OuterL = InnerLoop->getParentLoop(); 872 if (!OuterL) 873 return true; 874 875 // Get the backedge taken count for the inner loop 876 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 877 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 878 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 879 !InnerLoopBECountSC->getType()->isIntegerTy()) 880 return false; 881 882 // Get whether count is invariant to the outer loop 883 ScalarEvolution::LoopDisposition LD = 884 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 885 if (LD != ScalarEvolution::LoopInvariant) 886 return false; 887 888 return true; 889 } 890 891 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 892 switch (RK) { 893 default: 894 llvm_unreachable("Unknown min/max recurrence kind"); 895 case RecurKind::UMin: 896 return CmpInst::ICMP_ULT; 897 case RecurKind::UMax: 898 return CmpInst::ICMP_UGT; 899 case RecurKind::SMin: 900 return CmpInst::ICMP_SLT; 901 case RecurKind::SMax: 902 return CmpInst::ICMP_SGT; 903 case RecurKind::FMin: 904 return CmpInst::FCMP_OLT; 905 case RecurKind::FMax: 906 return CmpInst::FCMP_OGT; 907 } 908 } 909 910 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, 911 RecurKind RK, Value *Left, Value *Right) { 912 if (auto VTy = dyn_cast<VectorType>(Left->getType())) 913 StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal); 914 Value *Cmp = 915 Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp"); 916 return Builder.CreateSelect(Cmp, Left, Right, "rdx.select"); 917 } 918 919 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 920 Value *Right) { 921 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 922 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 923 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 924 return Select; 925 } 926 927 // Helper to generate an ordered reduction. 928 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 929 unsigned Op, RecurKind RdxKind) { 930 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 931 932 // Extract and apply reduction ops in ascending order: 933 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 934 Value *Result = Acc; 935 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 936 Value *Ext = 937 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 938 939 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 940 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 941 "bin.rdx"); 942 } else { 943 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 944 "Invalid min/max"); 945 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 946 } 947 } 948 949 return Result; 950 } 951 952 // Helper to generate a log2 shuffle reduction. 953 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 954 unsigned Op, RecurKind RdxKind) { 955 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 956 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 957 // and vector ops, reducing the set of values being computed by half each 958 // round. 959 assert(isPowerOf2_32(VF) && 960 "Reduction emission only supported for pow2 vectors!"); 961 // Note: fast-math-flags flags are controlled by the builder configuration 962 // and are assumed to apply to all generated arithmetic instructions. Other 963 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 964 // of the builder configuration, and since they're not passed explicitly, 965 // will never be relevant here. Note that it would be generally unsound to 966 // propagate these from an intrinsic call to the expansion anyways as we/ 967 // change the order of operations. 968 Value *TmpVec = Src; 969 SmallVector<int, 32> ShuffleMask(VF); 970 for (unsigned i = VF; i != 1; i >>= 1) { 971 // Move the upper half of the vector to the lower half. 972 for (unsigned j = 0; j != i / 2; ++j) 973 ShuffleMask[j] = i / 2 + j; 974 975 // Fill the rest of the mask with undef. 976 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 977 978 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 979 980 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 981 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 982 "bin.rdx"); 983 } else { 984 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 985 "Invalid min/max"); 986 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 987 } 988 } 989 // The result is in the first element of the vector. 990 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 991 } 992 993 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder, 994 const TargetTransformInfo *TTI, 995 Value *Src, 996 const RecurrenceDescriptor &Desc, 997 PHINode *OrigPhi) { 998 assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind( 999 Desc.getRecurrenceKind()) && 1000 "Unexpected reduction kind"); 1001 Value *InitVal = Desc.getRecurrenceStartValue(); 1002 Value *NewVal = nullptr; 1003 1004 // First use the original phi to determine the new value we're trying to 1005 // select from in the loop. 1006 SelectInst *SI = nullptr; 1007 for (auto *U : OrigPhi->users()) { 1008 if ((SI = dyn_cast<SelectInst>(U))) 1009 break; 1010 } 1011 assert(SI && "One user of the original phi should be a select"); 1012 1013 if (SI->getTrueValue() == OrigPhi) 1014 NewVal = SI->getFalseValue(); 1015 else { 1016 assert(SI->getFalseValue() == OrigPhi && 1017 "At least one input to the select should be the original Phi"); 1018 NewVal = SI->getTrueValue(); 1019 } 1020 1021 // Create a splat vector with the new value and compare this to the vector 1022 // we want to reduce. 1023 ElementCount EC = cast<VectorType>(Src->getType())->getElementCount(); 1024 Value *Right = Builder.CreateVectorSplat(EC, InitVal); 1025 Value *Cmp = 1026 Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp"); 1027 1028 // If any predicate is true it means that we want to select the new value. 1029 Cmp = Builder.CreateOrReduce(Cmp); 1030 return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select"); 1031 } 1032 1033 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1034 const TargetTransformInfo *TTI, 1035 Value *Src, RecurKind RdxKind) { 1036 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1037 switch (RdxKind) { 1038 case RecurKind::Add: 1039 return Builder.CreateAddReduce(Src); 1040 case RecurKind::Mul: 1041 return Builder.CreateMulReduce(Src); 1042 case RecurKind::And: 1043 return Builder.CreateAndReduce(Src); 1044 case RecurKind::Or: 1045 return Builder.CreateOrReduce(Src); 1046 case RecurKind::Xor: 1047 return Builder.CreateXorReduce(Src); 1048 case RecurKind::FMulAdd: 1049 case RecurKind::FAdd: 1050 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1051 Src); 1052 case RecurKind::FMul: 1053 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1054 case RecurKind::SMax: 1055 return Builder.CreateIntMaxReduce(Src, true); 1056 case RecurKind::SMin: 1057 return Builder.CreateIntMinReduce(Src, true); 1058 case RecurKind::UMax: 1059 return Builder.CreateIntMaxReduce(Src, false); 1060 case RecurKind::UMin: 1061 return Builder.CreateIntMinReduce(Src, false); 1062 case RecurKind::FMax: 1063 return Builder.CreateFPMaxReduce(Src); 1064 case RecurKind::FMin: 1065 return Builder.CreateFPMinReduce(Src); 1066 default: 1067 llvm_unreachable("Unhandled opcode"); 1068 } 1069 } 1070 1071 Value *llvm::createTargetReduction(IRBuilderBase &B, 1072 const TargetTransformInfo *TTI, 1073 const RecurrenceDescriptor &Desc, Value *Src, 1074 PHINode *OrigPhi) { 1075 // TODO: Support in-order reductions based on the recurrence descriptor. 1076 // All ops in the reduction inherit fast-math-flags from the recurrence 1077 // descriptor. 1078 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1079 B.setFastMathFlags(Desc.getFastMathFlags()); 1080 1081 RecurKind RK = Desc.getRecurrenceKind(); 1082 if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 1083 return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi); 1084 1085 return createSimpleTargetReduction(B, TTI, Src, RK); 1086 } 1087 1088 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1089 const RecurrenceDescriptor &Desc, 1090 Value *Src, Value *Start) { 1091 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1092 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1093 "Unexpected reduction kind"); 1094 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1095 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1096 1097 return B.CreateFAddReduce(Start, Src); 1098 } 1099 1100 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1101 auto *VecOp = dyn_cast<Instruction>(I); 1102 if (!VecOp) 1103 return; 1104 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1105 : dyn_cast<Instruction>(OpValue); 1106 if (!Intersection) 1107 return; 1108 const unsigned Opcode = Intersection->getOpcode(); 1109 VecOp->copyIRFlags(Intersection); 1110 for (auto *V : VL) { 1111 auto *Instr = dyn_cast<Instruction>(V); 1112 if (!Instr) 1113 continue; 1114 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1115 VecOp->andIRFlags(V); 1116 } 1117 } 1118 1119 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1120 ScalarEvolution &SE) { 1121 const SCEV *Zero = SE.getZero(S->getType()); 1122 return SE.isAvailableAtLoopEntry(S, L) && 1123 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1124 } 1125 1126 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1127 ScalarEvolution &SE) { 1128 const SCEV *Zero = SE.getZero(S->getType()); 1129 return SE.isAvailableAtLoopEntry(S, L) && 1130 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1131 } 1132 1133 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1134 bool Signed) { 1135 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1136 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1137 APInt::getMinValue(BitWidth); 1138 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1139 return SE.isAvailableAtLoopEntry(S, L) && 1140 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1141 SE.getConstant(Min)); 1142 } 1143 1144 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1145 bool Signed) { 1146 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1147 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1148 APInt::getMaxValue(BitWidth); 1149 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1150 return SE.isAvailableAtLoopEntry(S, L) && 1151 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1152 SE.getConstant(Max)); 1153 } 1154 1155 //===----------------------------------------------------------------------===// 1156 // rewriteLoopExitValues - Optimize IV users outside the loop. 1157 // As a side effect, reduces the amount of IV processing within the loop. 1158 //===----------------------------------------------------------------------===// 1159 1160 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1161 SmallPtrSet<const Instruction *, 8> Visited; 1162 SmallVector<const Instruction *, 8> WorkList; 1163 Visited.insert(I); 1164 WorkList.push_back(I); 1165 while (!WorkList.empty()) { 1166 const Instruction *Curr = WorkList.pop_back_val(); 1167 // This use is outside the loop, nothing to do. 1168 if (!L->contains(Curr)) 1169 continue; 1170 // Do we assume it is a "hard" use which will not be eliminated easily? 1171 if (Curr->mayHaveSideEffects()) 1172 return true; 1173 // Otherwise, add all its users to worklist. 1174 for (auto U : Curr->users()) { 1175 auto *UI = cast<Instruction>(U); 1176 if (Visited.insert(UI).second) 1177 WorkList.push_back(UI); 1178 } 1179 } 1180 return false; 1181 } 1182 1183 // Collect information about PHI nodes which can be transformed in 1184 // rewriteLoopExitValues. 1185 struct RewritePhi { 1186 PHINode *PN; // For which PHI node is this replacement? 1187 unsigned Ith; // For which incoming value? 1188 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1189 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1190 bool HighCost; // Is this expansion a high-cost? 1191 1192 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1193 bool H) 1194 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1195 HighCost(H) {} 1196 }; 1197 1198 // Check whether it is possible to delete the loop after rewriting exit 1199 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1200 // aggressively. 1201 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1202 BasicBlock *Preheader = L->getLoopPreheader(); 1203 // If there is no preheader, the loop will not be deleted. 1204 if (!Preheader) 1205 return false; 1206 1207 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1208 // We obviate multiple ExitingBlocks case for simplicity. 1209 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1210 // after exit value rewriting, we can enhance the logic here. 1211 SmallVector<BasicBlock *, 4> ExitingBlocks; 1212 L->getExitingBlocks(ExitingBlocks); 1213 SmallVector<BasicBlock *, 8> ExitBlocks; 1214 L->getUniqueExitBlocks(ExitBlocks); 1215 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1216 return false; 1217 1218 BasicBlock *ExitBlock = ExitBlocks[0]; 1219 BasicBlock::iterator BI = ExitBlock->begin(); 1220 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1221 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1222 1223 // If the Incoming value of P is found in RewritePhiSet, we know it 1224 // could be rewritten to use a loop invariant value in transformation 1225 // phase later. Skip it in the loop invariant check below. 1226 bool found = false; 1227 for (const RewritePhi &Phi : RewritePhiSet) { 1228 unsigned i = Phi.Ith; 1229 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1230 found = true; 1231 break; 1232 } 1233 } 1234 1235 Instruction *I; 1236 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1237 if (!L->hasLoopInvariantOperands(I)) 1238 return false; 1239 1240 ++BI; 1241 } 1242 1243 for (auto *BB : L->blocks()) 1244 if (llvm::any_of(*BB, [](Instruction &I) { 1245 return I.mayHaveSideEffects(); 1246 })) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1253 ScalarEvolution *SE, 1254 const TargetTransformInfo *TTI, 1255 SCEVExpander &Rewriter, DominatorTree *DT, 1256 ReplaceExitVal ReplaceExitValue, 1257 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1258 // Check a pre-condition. 1259 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1260 "Indvars did not preserve LCSSA!"); 1261 1262 SmallVector<BasicBlock*, 8> ExitBlocks; 1263 L->getUniqueExitBlocks(ExitBlocks); 1264 1265 SmallVector<RewritePhi, 8> RewritePhiSet; 1266 // Find all values that are computed inside the loop, but used outside of it. 1267 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1268 // the exit blocks of the loop to find them. 1269 for (BasicBlock *ExitBB : ExitBlocks) { 1270 // If there are no PHI nodes in this exit block, then no values defined 1271 // inside the loop are used on this path, skip it. 1272 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1273 if (!PN) continue; 1274 1275 unsigned NumPreds = PN->getNumIncomingValues(); 1276 1277 // Iterate over all of the PHI nodes. 1278 BasicBlock::iterator BBI = ExitBB->begin(); 1279 while ((PN = dyn_cast<PHINode>(BBI++))) { 1280 if (PN->use_empty()) 1281 continue; // dead use, don't replace it 1282 1283 if (!SE->isSCEVable(PN->getType())) 1284 continue; 1285 1286 // Iterate over all of the values in all the PHI nodes. 1287 for (unsigned i = 0; i != NumPreds; ++i) { 1288 // If the value being merged in is not integer or is not defined 1289 // in the loop, skip it. 1290 Value *InVal = PN->getIncomingValue(i); 1291 if (!isa<Instruction>(InVal)) 1292 continue; 1293 1294 // If this pred is for a subloop, not L itself, skip it. 1295 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1296 continue; // The Block is in a subloop, skip it. 1297 1298 // Check that InVal is defined in the loop. 1299 Instruction *Inst = cast<Instruction>(InVal); 1300 if (!L->contains(Inst)) 1301 continue; 1302 1303 // Okay, this instruction has a user outside of the current loop 1304 // and varies predictably *inside* the loop. Evaluate the value it 1305 // contains when the loop exits, if possible. We prefer to start with 1306 // expressions which are true for all exits (so as to maximize 1307 // expression reuse by the SCEVExpander), but resort to per-exit 1308 // evaluation if that fails. 1309 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1310 if (isa<SCEVCouldNotCompute>(ExitValue) || 1311 !SE->isLoopInvariant(ExitValue, L) || 1312 !isSafeToExpand(ExitValue, *SE)) { 1313 // TODO: This should probably be sunk into SCEV in some way; maybe a 1314 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1315 // most SCEV expressions and other recurrence types (e.g. shift 1316 // recurrences). Is there existing code we can reuse? 1317 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1318 if (isa<SCEVCouldNotCompute>(ExitCount)) 1319 continue; 1320 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1321 if (AddRec->getLoop() == L) 1322 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1323 if (isa<SCEVCouldNotCompute>(ExitValue) || 1324 !SE->isLoopInvariant(ExitValue, L) || 1325 !isSafeToExpand(ExitValue, *SE)) 1326 continue; 1327 } 1328 1329 // Computing the value outside of the loop brings no benefit if it is 1330 // definitely used inside the loop in a way which can not be optimized 1331 // away. Avoid doing so unless we know we have a value which computes 1332 // the ExitValue already. TODO: This should be merged into SCEV 1333 // expander to leverage its knowledge of existing expressions. 1334 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1335 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1336 continue; 1337 1338 // Check if expansions of this SCEV would count as being high cost. 1339 bool HighCost = Rewriter.isHighCostExpansion( 1340 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1341 1342 // Note that we must not perform expansions until after 1343 // we query *all* the costs, because if we perform temporary expansion 1344 // inbetween, one that we might not intend to keep, said expansion 1345 // *may* affect cost calculation of the the next SCEV's we'll query, 1346 // and next SCEV may errneously get smaller cost. 1347 1348 // Collect all the candidate PHINodes to be rewritten. 1349 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1350 } 1351 } 1352 } 1353 1354 // TODO: evaluate whether it is beneficial to change how we calculate 1355 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1356 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1357 // potentially giving cost bonus to those other SCEV's? 1358 1359 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1360 int NumReplaced = 0; 1361 1362 // Transformation. 1363 for (const RewritePhi &Phi : RewritePhiSet) { 1364 PHINode *PN = Phi.PN; 1365 1366 // Only do the rewrite when the ExitValue can be expanded cheaply. 1367 // If LoopCanBeDel is true, rewrite exit value aggressively. 1368 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) 1369 continue; 1370 1371 Value *ExitVal = Rewriter.expandCodeFor( 1372 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1373 1374 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1375 << '\n' 1376 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1377 1378 #ifndef NDEBUG 1379 // If we reuse an instruction from a loop which is neither L nor one of 1380 // its containing loops, we end up breaking LCSSA form for this loop by 1381 // creating a new use of its instruction. 1382 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1383 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1384 if (EVL != L) 1385 assert(EVL->contains(L) && "LCSSA breach detected!"); 1386 #endif 1387 1388 NumReplaced++; 1389 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1390 PN->setIncomingValue(Phi.Ith, ExitVal); 1391 // It's necessary to tell ScalarEvolution about this explicitly so that 1392 // it can walk the def-use list and forget all SCEVs, as it may not be 1393 // watching the PHI itself. Once the new exit value is in place, there 1394 // may not be a def-use connection between the loop and every instruction 1395 // which got a SCEVAddRecExpr for that loop. 1396 SE->forgetValue(PN); 1397 1398 // If this instruction is dead now, delete it. Don't do it now to avoid 1399 // invalidating iterators. 1400 if (isInstructionTriviallyDead(Inst, TLI)) 1401 DeadInsts.push_back(Inst); 1402 1403 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1404 if (PN->getNumIncomingValues() == 1 && 1405 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1406 PN->replaceAllUsesWith(ExitVal); 1407 PN->eraseFromParent(); 1408 } 1409 } 1410 1411 // The insertion point instruction may have been deleted; clear it out 1412 // so that the rewriter doesn't trip over it later. 1413 Rewriter.clearInsertPoint(); 1414 return NumReplaced; 1415 } 1416 1417 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1418 /// \p OrigLoop. 1419 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1420 Loop *RemainderLoop, uint64_t UF) { 1421 assert(UF > 0 && "Zero unrolled factor is not supported"); 1422 assert(UnrolledLoop != RemainderLoop && 1423 "Unrolled and Remainder loops are expected to distinct"); 1424 1425 // Get number of iterations in the original scalar loop. 1426 unsigned OrigLoopInvocationWeight = 0; 1427 Optional<unsigned> OrigAverageTripCount = 1428 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1429 if (!OrigAverageTripCount) 1430 return; 1431 1432 // Calculate number of iterations in unrolled loop. 1433 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1434 // Calculate number of iterations for remainder loop. 1435 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1436 1437 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1438 OrigLoopInvocationWeight); 1439 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1440 OrigLoopInvocationWeight); 1441 } 1442 1443 /// Utility that implements appending of loops onto a worklist. 1444 /// Loops are added in preorder (analogous for reverse postorder for trees), 1445 /// and the worklist is processed LIFO. 1446 template <typename RangeT> 1447 void llvm::appendReversedLoopsToWorklist( 1448 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1449 // We use an internal worklist to build up the preorder traversal without 1450 // recursion. 1451 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1452 1453 // We walk the initial sequence of loops in reverse because we generally want 1454 // to visit defs before uses and the worklist is LIFO. 1455 for (Loop *RootL : Loops) { 1456 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1457 assert(PreOrderWorklist.empty() && 1458 "Must start with an empty preorder walk worklist."); 1459 PreOrderWorklist.push_back(RootL); 1460 do { 1461 Loop *L = PreOrderWorklist.pop_back_val(); 1462 PreOrderWorklist.append(L->begin(), L->end()); 1463 PreOrderLoops.push_back(L); 1464 } while (!PreOrderWorklist.empty()); 1465 1466 Worklist.insert(std::move(PreOrderLoops)); 1467 PreOrderLoops.clear(); 1468 } 1469 } 1470 1471 template <typename RangeT> 1472 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1473 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1474 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1475 } 1476 1477 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1478 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1479 1480 template void 1481 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1482 SmallPriorityWorklist<Loop *, 4> &Worklist); 1483 1484 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1485 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1486 appendReversedLoopsToWorklist(LI, Worklist); 1487 } 1488 1489 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1490 LoopInfo *LI, LPPassManager *LPM) { 1491 Loop &New = *LI->AllocateLoop(); 1492 if (PL) 1493 PL->addChildLoop(&New); 1494 else 1495 LI->addTopLevelLoop(&New); 1496 1497 if (LPM) 1498 LPM->addLoop(New); 1499 1500 // Add all of the blocks in L to the new loop. 1501 for (BasicBlock *BB : L->blocks()) 1502 if (LI->getLoopFor(BB) == L) 1503 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1504 1505 // Add all of the subloops to the new loop. 1506 for (Loop *I : *L) 1507 cloneLoop(I, &New, VM, LI, LPM); 1508 1509 return &New; 1510 } 1511 1512 /// IR Values for the lower and upper bounds of a pointer evolution. We 1513 /// need to use value-handles because SCEV expansion can invalidate previously 1514 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1515 /// a previous one. 1516 struct PointerBounds { 1517 TrackingVH<Value> Start; 1518 TrackingVH<Value> End; 1519 }; 1520 1521 /// Expand code for the lower and upper bound of the pointer group \p CG 1522 /// in \p TheLoop. \return the values for the bounds. 1523 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1524 Loop *TheLoop, Instruction *Loc, 1525 SCEVExpander &Exp) { 1526 LLVMContext &Ctx = Loc->getContext(); 1527 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); 1528 1529 Value *Start = nullptr, *End = nullptr; 1530 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1531 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1532 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1533 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1534 return {Start, End}; 1535 } 1536 1537 /// Turns a collection of checks into a collection of expanded upper and 1538 /// lower bounds for both pointers in the check. 1539 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1540 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1541 Instruction *Loc, SCEVExpander &Exp) { 1542 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1543 1544 // Here we're relying on the SCEV Expander's cache to only emit code for the 1545 // same bounds once. 1546 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1547 [&](const RuntimePointerCheck &Check) { 1548 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1549 Second = expandBounds(Check.second, L, Loc, Exp); 1550 return std::make_pair(First, Second); 1551 }); 1552 1553 return ChecksWithBounds; 1554 } 1555 1556 Value *llvm::addRuntimeChecks( 1557 Instruction *Loc, Loop *TheLoop, 1558 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1559 SCEVExpander &Exp) { 1560 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1561 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1562 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1563 1564 LLVMContext &Ctx = Loc->getContext(); 1565 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1566 Loc->getModule()->getDataLayout()); 1567 ChkBuilder.SetInsertPoint(Loc); 1568 // Our instructions might fold to a constant. 1569 Value *MemoryRuntimeCheck = nullptr; 1570 1571 for (const auto &Check : ExpandedChecks) { 1572 const PointerBounds &A = Check.first, &B = Check.second; 1573 // Check if two pointers (A and B) conflict where conflict is computed as: 1574 // start(A) <= end(B) && start(B) <= end(A) 1575 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1576 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1577 1578 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1579 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1580 "Trying to bounds check pointers with different address spaces"); 1581 1582 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1583 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1584 1585 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1586 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1587 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1588 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1589 1590 // [A|B].Start points to the first accessed byte under base [A|B]. 1591 // [A|B].End points to the last accessed byte, plus one. 1592 // There is no conflict when the intervals are disjoint: 1593 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1594 // 1595 // bound0 = (B.Start < A.End) 1596 // bound1 = (A.Start < B.End) 1597 // IsConflict = bound0 & bound1 1598 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1599 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1600 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1601 if (MemoryRuntimeCheck) { 1602 IsConflict = 1603 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1604 } 1605 MemoryRuntimeCheck = IsConflict; 1606 } 1607 1608 return MemoryRuntimeCheck; 1609 } 1610 1611 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1612 unsigned MSSAThreshold, 1613 MemorySSA &MSSA, 1614 AAResults &AA) { 1615 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1616 if (!TI || !TI->isConditional()) 1617 return {}; 1618 1619 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1620 // The case with the condition outside the loop should already be handled 1621 // earlier. 1622 if (!CondI || !L.contains(CondI)) 1623 return {}; 1624 1625 SmallVector<Instruction *> InstToDuplicate; 1626 InstToDuplicate.push_back(CondI); 1627 1628 SmallVector<Value *, 4> WorkList; 1629 WorkList.append(CondI->op_begin(), CondI->op_end()); 1630 1631 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1632 SmallVector<MemoryLocation, 4> AccessedLocs; 1633 while (!WorkList.empty()) { 1634 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1635 if (!I || !L.contains(I)) 1636 continue; 1637 1638 // TODO: support additional instructions. 1639 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1640 return {}; 1641 1642 // Do not duplicate volatile and atomic loads. 1643 if (auto *LI = dyn_cast<LoadInst>(I)) 1644 if (LI->isVolatile() || LI->isAtomic()) 1645 return {}; 1646 1647 InstToDuplicate.push_back(I); 1648 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1649 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1650 // Queue the defining access to check for alias checks. 1651 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1652 AccessedLocs.push_back(MemoryLocation::get(I)); 1653 } else { 1654 // MemoryDefs may clobber the location or may be atomic memory 1655 // operations. Bail out. 1656 return {}; 1657 } 1658 } 1659 WorkList.append(I->op_begin(), I->op_end()); 1660 } 1661 1662 if (InstToDuplicate.empty()) 1663 return {}; 1664 1665 SmallVector<BasicBlock *, 4> ExitingBlocks; 1666 L.getExitingBlocks(ExitingBlocks); 1667 auto HasNoClobbersOnPath = 1668 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1669 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1670 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1671 -> Optional<IVConditionInfo> { 1672 IVConditionInfo Info; 1673 // First, collect all blocks in the loop that are on a patch from Succ 1674 // to the header. 1675 SmallVector<BasicBlock *, 4> WorkList; 1676 WorkList.push_back(Succ); 1677 WorkList.push_back(Header); 1678 SmallPtrSet<BasicBlock *, 4> Seen; 1679 Seen.insert(Header); 1680 Info.PathIsNoop &= 1681 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1682 1683 while (!WorkList.empty()) { 1684 BasicBlock *Current = WorkList.pop_back_val(); 1685 if (!L.contains(Current)) 1686 continue; 1687 const auto &SeenIns = Seen.insert(Current); 1688 if (!SeenIns.second) 1689 continue; 1690 1691 Info.PathIsNoop &= all_of( 1692 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1693 WorkList.append(succ_begin(Current), succ_end(Current)); 1694 } 1695 1696 // Require at least 2 blocks on a path through the loop. This skips 1697 // paths that directly exit the loop. 1698 if (Seen.size() < 2) 1699 return {}; 1700 1701 // Next, check if there are any MemoryDefs that are on the path through 1702 // the loop (in the Seen set) and they may-alias any of the locations in 1703 // AccessedLocs. If that is the case, they may modify the condition and 1704 // partial unswitching is not possible. 1705 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1706 while (!AccessesToCheck.empty()) { 1707 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1708 auto SeenI = SeenAccesses.insert(Current); 1709 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1710 continue; 1711 1712 // Bail out if exceeded the threshold. 1713 if (SeenAccesses.size() >= MSSAThreshold) 1714 return {}; 1715 1716 // MemoryUse are read-only accesses. 1717 if (isa<MemoryUse>(Current)) 1718 continue; 1719 1720 // For a MemoryDef, check if is aliases any of the location feeding 1721 // the original condition. 1722 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1723 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1724 return isModSet( 1725 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1726 })) 1727 return {}; 1728 } 1729 1730 for (Use &U : Current->uses()) 1731 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1732 } 1733 1734 // We could also allow loops with known trip counts without mustprogress, 1735 // but ScalarEvolution may not be available. 1736 Info.PathIsNoop &= isMustProgress(&L); 1737 1738 // If the path is considered a no-op so far, check if it reaches a 1739 // single exit block without any phis. This ensures no values from the 1740 // loop are used outside of the loop. 1741 if (Info.PathIsNoop) { 1742 for (auto *Exiting : ExitingBlocks) { 1743 if (!Seen.contains(Exiting)) 1744 continue; 1745 for (auto *Succ : successors(Exiting)) { 1746 if (L.contains(Succ)) 1747 continue; 1748 1749 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1750 (!Info.ExitForPath || Info.ExitForPath == Succ); 1751 if (!Info.PathIsNoop) 1752 break; 1753 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1754 "cannot have multiple exit blocks"); 1755 Info.ExitForPath = Succ; 1756 } 1757 } 1758 } 1759 if (!Info.ExitForPath) 1760 Info.PathIsNoop = false; 1761 1762 Info.InstToDuplicate = InstToDuplicate; 1763 return Info; 1764 }; 1765 1766 // If we branch to the same successor, partial unswitching will not be 1767 // beneficial. 1768 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1769 return {}; 1770 1771 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1772 AccessesToCheck)) { 1773 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1774 return Info; 1775 } 1776 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1777 AccessesToCheck)) { 1778 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1779 return Info; 1780 } 1781 1782 return {}; 1783 } 1784