1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/IR/ValueHandle.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 #define DEBUG_TYPE "loop-utils" 34 35 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 36 SmallPtrSetImpl<Instruction *> &Set) { 37 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 38 if (!Set.count(dyn_cast<Instruction>(*Use))) 39 return false; 40 return true; 41 } 42 43 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 44 switch (Kind) { 45 default: 46 break; 47 case RK_IntegerAdd: 48 case RK_IntegerMult: 49 case RK_IntegerOr: 50 case RK_IntegerAnd: 51 case RK_IntegerXor: 52 case RK_IntegerMinMax: 53 return true; 54 } 55 return false; 56 } 57 58 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 59 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 60 } 61 62 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 63 switch (Kind) { 64 default: 65 break; 66 case RK_IntegerAdd: 67 case RK_IntegerMult: 68 case RK_FloatAdd: 69 case RK_FloatMult: 70 return true; 71 } 72 return false; 73 } 74 75 Instruction * 76 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 77 SmallPtrSetImpl<Instruction *> &Visited, 78 SmallPtrSetImpl<Instruction *> &CI) { 79 if (!Phi->hasOneUse()) 80 return Phi; 81 82 const APInt *M = nullptr; 83 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 84 85 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 86 // with a new integer type of the corresponding bit width. 87 if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 88 m_And(m_APInt(M), m_Instruction(I))))) { 89 int32_t Bits = (*M + 1).exactLogBase2(); 90 if (Bits > 0) { 91 RT = IntegerType::get(Phi->getContext(), Bits); 92 Visited.insert(Phi); 93 CI.insert(J); 94 return J; 95 } 96 } 97 return Phi; 98 } 99 100 bool RecurrenceDescriptor::getSourceExtensionKind( 101 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 102 SmallPtrSetImpl<Instruction *> &Visited, 103 SmallPtrSetImpl<Instruction *> &CI) { 104 105 SmallVector<Instruction *, 8> Worklist; 106 bool FoundOneOperand = false; 107 unsigned DstSize = RT->getPrimitiveSizeInBits(); 108 Worklist.push_back(Exit); 109 110 // Traverse the instructions in the reduction expression, beginning with the 111 // exit value. 112 while (!Worklist.empty()) { 113 Instruction *I = Worklist.pop_back_val(); 114 for (Use &U : I->operands()) { 115 116 // Terminate the traversal if the operand is not an instruction, or we 117 // reach the starting value. 118 Instruction *J = dyn_cast<Instruction>(U.get()); 119 if (!J || J == Start) 120 continue; 121 122 // Otherwise, investigate the operation if it is also in the expression. 123 if (Visited.count(J)) { 124 Worklist.push_back(J); 125 continue; 126 } 127 128 // If the operand is not in Visited, it is not a reduction operation, but 129 // it does feed into one. Make sure it is either a single-use sign- or 130 // zero-extend instruction. 131 CastInst *Cast = dyn_cast<CastInst>(J); 132 bool IsSExtInst = isa<SExtInst>(J); 133 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 134 return false; 135 136 // Ensure the source type of the extend is no larger than the reduction 137 // type. It is not necessary for the types to be identical. 138 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 139 if (SrcSize > DstSize) 140 return false; 141 142 // Furthermore, ensure that all such extends are of the same kind. 143 if (FoundOneOperand) { 144 if (IsSigned != IsSExtInst) 145 return false; 146 } else { 147 FoundOneOperand = true; 148 IsSigned = IsSExtInst; 149 } 150 151 // Lastly, if the source type of the extend matches the reduction type, 152 // add the extend to CI so that we can avoid accounting for it in the 153 // cost model. 154 if (SrcSize == DstSize) 155 CI.insert(Cast); 156 } 157 } 158 return true; 159 } 160 161 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 162 Loop *TheLoop, bool HasFunNoNaNAttr, 163 RecurrenceDescriptor &RedDes) { 164 if (Phi->getNumIncomingValues() != 2) 165 return false; 166 167 // Reduction variables are only found in the loop header block. 168 if (Phi->getParent() != TheLoop->getHeader()) 169 return false; 170 171 // Obtain the reduction start value from the value that comes from the loop 172 // preheader. 173 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 174 175 // ExitInstruction is the single value which is used outside the loop. 176 // We only allow for a single reduction value to be used outside the loop. 177 // This includes users of the reduction, variables (which form a cycle 178 // which ends in the phi node). 179 Instruction *ExitInstruction = nullptr; 180 // Indicates that we found a reduction operation in our scan. 181 bool FoundReduxOp = false; 182 183 // We start with the PHI node and scan for all of the users of this 184 // instruction. All users must be instructions that can be used as reduction 185 // variables (such as ADD). We must have a single out-of-block user. The cycle 186 // must include the original PHI. 187 bool FoundStartPHI = false; 188 189 // To recognize min/max patterns formed by a icmp select sequence, we store 190 // the number of instruction we saw from the recognized min/max pattern, 191 // to make sure we only see exactly the two instructions. 192 unsigned NumCmpSelectPatternInst = 0; 193 InstDesc ReduxDesc(false, nullptr); 194 195 // Data used for determining if the recurrence has been type-promoted. 196 Type *RecurrenceType = Phi->getType(); 197 SmallPtrSet<Instruction *, 4> CastInsts; 198 Instruction *Start = Phi; 199 bool IsSigned = false; 200 201 SmallPtrSet<Instruction *, 8> VisitedInsts; 202 SmallVector<Instruction *, 8> Worklist; 203 204 // Return early if the recurrence kind does not match the type of Phi. If the 205 // recurrence kind is arithmetic, we attempt to look through AND operations 206 // resulting from the type promotion performed by InstCombine. Vector 207 // operations are not limited to the legal integer widths, so we may be able 208 // to evaluate the reduction in the narrower width. 209 if (RecurrenceType->isFloatingPointTy()) { 210 if (!isFloatingPointRecurrenceKind(Kind)) 211 return false; 212 } else { 213 if (!isIntegerRecurrenceKind(Kind)) 214 return false; 215 if (isArithmeticRecurrenceKind(Kind)) 216 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 217 } 218 219 Worklist.push_back(Start); 220 VisitedInsts.insert(Start); 221 222 // A value in the reduction can be used: 223 // - By the reduction: 224 // - Reduction operation: 225 // - One use of reduction value (safe). 226 // - Multiple use of reduction value (not safe). 227 // - PHI: 228 // - All uses of the PHI must be the reduction (safe). 229 // - Otherwise, not safe. 230 // - By one instruction outside of the loop (safe). 231 // - By further instructions outside of the loop (not safe). 232 // - By an instruction that is not part of the reduction (not safe). 233 // This is either: 234 // * An instruction type other than PHI or the reduction operation. 235 // * A PHI in the header other than the initial PHI. 236 while (!Worklist.empty()) { 237 Instruction *Cur = Worklist.back(); 238 Worklist.pop_back(); 239 240 // No Users. 241 // If the instruction has no users then this is a broken chain and can't be 242 // a reduction variable. 243 if (Cur->use_empty()) 244 return false; 245 246 bool IsAPhi = isa<PHINode>(Cur); 247 248 // A header PHI use other than the original PHI. 249 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 250 return false; 251 252 // Reductions of instructions such as Div, and Sub is only possible if the 253 // LHS is the reduction variable. 254 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 255 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 256 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 257 return false; 258 259 // Any reduction instruction must be of one of the allowed kinds. We ignore 260 // the starting value (the Phi or an AND instruction if the Phi has been 261 // type-promoted). 262 if (Cur != Start) { 263 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 264 if (!ReduxDesc.isRecurrence()) 265 return false; 266 } 267 268 // A reduction operation must only have one use of the reduction value. 269 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 270 hasMultipleUsesOf(Cur, VisitedInsts)) 271 return false; 272 273 // All inputs to a PHI node must be a reduction value. 274 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 275 return false; 276 277 if (Kind == RK_IntegerMinMax && 278 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 279 ++NumCmpSelectPatternInst; 280 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 281 ++NumCmpSelectPatternInst; 282 283 // Check whether we found a reduction operator. 284 FoundReduxOp |= !IsAPhi && Cur != Start; 285 286 // Process users of current instruction. Push non-PHI nodes after PHI nodes 287 // onto the stack. This way we are going to have seen all inputs to PHI 288 // nodes once we get to them. 289 SmallVector<Instruction *, 8> NonPHIs; 290 SmallVector<Instruction *, 8> PHIs; 291 for (User *U : Cur->users()) { 292 Instruction *UI = cast<Instruction>(U); 293 294 // Check if we found the exit user. 295 BasicBlock *Parent = UI->getParent(); 296 if (!TheLoop->contains(Parent)) { 297 // Exit if you find multiple outside users or if the header phi node is 298 // being used. In this case the user uses the value of the previous 299 // iteration, in which case we would loose "VF-1" iterations of the 300 // reduction operation if we vectorize. 301 if (ExitInstruction != nullptr || Cur == Phi) 302 return false; 303 304 // The instruction used by an outside user must be the last instruction 305 // before we feed back to the reduction phi. Otherwise, we loose VF-1 306 // operations on the value. 307 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 308 return false; 309 310 ExitInstruction = Cur; 311 continue; 312 } 313 314 // Process instructions only once (termination). Each reduction cycle 315 // value must only be used once, except by phi nodes and min/max 316 // reductions which are represented as a cmp followed by a select. 317 InstDesc IgnoredVal(false, nullptr); 318 if (VisitedInsts.insert(UI).second) { 319 if (isa<PHINode>(UI)) 320 PHIs.push_back(UI); 321 else 322 NonPHIs.push_back(UI); 323 } else if (!isa<PHINode>(UI) && 324 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 325 !isa<SelectInst>(UI)) || 326 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 327 return false; 328 329 // Remember that we completed the cycle. 330 if (UI == Phi) 331 FoundStartPHI = true; 332 } 333 Worklist.append(PHIs.begin(), PHIs.end()); 334 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 335 } 336 337 // This means we have seen one but not the other instruction of the 338 // pattern or more than just a select and cmp. 339 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 340 NumCmpSelectPatternInst != 2) 341 return false; 342 343 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 344 return false; 345 346 // If we think Phi may have been type-promoted, we also need to ensure that 347 // all source operands of the reduction are either SExtInsts or ZEstInsts. If 348 // so, we will be able to evaluate the reduction in the narrower bit width. 349 if (Start != Phi) 350 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 351 IsSigned, VisitedInsts, CastInsts)) 352 return false; 353 354 // We found a reduction var if we have reached the original phi node and we 355 // only have a single instruction with out-of-loop users. 356 357 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 358 // is saved as part of the RecurrenceDescriptor. 359 360 // Save the description of this reduction variable. 361 RecurrenceDescriptor RD( 362 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 363 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 364 RedDes = RD; 365 366 return true; 367 } 368 369 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 370 /// pattern corresponding to a min(X, Y) or max(X, Y). 371 RecurrenceDescriptor::InstDesc 372 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 373 374 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 375 "Expect a select instruction"); 376 Instruction *Cmp = nullptr; 377 SelectInst *Select = nullptr; 378 379 // We must handle the select(cmp()) as a single instruction. Advance to the 380 // select. 381 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 382 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 383 return InstDesc(false, I); 384 return InstDesc(Select, Prev.getMinMaxKind()); 385 } 386 387 // Only handle single use cases for now. 388 if (!(Select = dyn_cast<SelectInst>(I))) 389 return InstDesc(false, I); 390 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 391 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 392 return InstDesc(false, I); 393 if (!Cmp->hasOneUse()) 394 return InstDesc(false, I); 395 396 Value *CmpLeft; 397 Value *CmpRight; 398 399 // Look for a min/max pattern. 400 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 401 return InstDesc(Select, MRK_UIntMin); 402 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 403 return InstDesc(Select, MRK_UIntMax); 404 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 405 return InstDesc(Select, MRK_SIntMax); 406 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 407 return InstDesc(Select, MRK_SIntMin); 408 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 409 return InstDesc(Select, MRK_FloatMin); 410 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 411 return InstDesc(Select, MRK_FloatMax); 412 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 413 return InstDesc(Select, MRK_FloatMin); 414 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 415 return InstDesc(Select, MRK_FloatMax); 416 417 return InstDesc(false, I); 418 } 419 420 RecurrenceDescriptor::InstDesc 421 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 422 InstDesc &Prev, bool HasFunNoNaNAttr) { 423 bool FP = I->getType()->isFloatingPointTy(); 424 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 425 if (!UAI && FP && !I->hasUnsafeAlgebra()) 426 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 427 428 switch (I->getOpcode()) { 429 default: 430 return InstDesc(false, I); 431 case Instruction::PHI: 432 return InstDesc(I, Prev.getMinMaxKind()); 433 case Instruction::Sub: 434 case Instruction::Add: 435 return InstDesc(Kind == RK_IntegerAdd, I); 436 case Instruction::Mul: 437 return InstDesc(Kind == RK_IntegerMult, I); 438 case Instruction::And: 439 return InstDesc(Kind == RK_IntegerAnd, I); 440 case Instruction::Or: 441 return InstDesc(Kind == RK_IntegerOr, I); 442 case Instruction::Xor: 443 return InstDesc(Kind == RK_IntegerXor, I); 444 case Instruction::FMul: 445 return InstDesc(Kind == RK_FloatMult, I, UAI); 446 case Instruction::FSub: 447 case Instruction::FAdd: 448 return InstDesc(Kind == RK_FloatAdd, I, UAI); 449 case Instruction::FCmp: 450 case Instruction::ICmp: 451 case Instruction::Select: 452 if (Kind != RK_IntegerMinMax && 453 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 454 return InstDesc(false, I); 455 return isMinMaxSelectCmpPattern(I, Prev); 456 } 457 } 458 459 bool RecurrenceDescriptor::hasMultipleUsesOf( 460 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 461 unsigned NumUses = 0; 462 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 463 ++Use) { 464 if (Insts.count(dyn_cast<Instruction>(*Use))) 465 ++NumUses; 466 if (NumUses > 1) 467 return true; 468 } 469 470 return false; 471 } 472 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 473 RecurrenceDescriptor &RedDes) { 474 475 bool HasFunNoNaNAttr = false; 476 BasicBlock *Header = TheLoop->getHeader(); 477 Function &F = *Header->getParent(); 478 if (F.hasFnAttribute("no-nans-fp-math")) 479 HasFunNoNaNAttr = 480 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 481 482 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 483 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 484 return true; 485 } 486 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 487 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 488 return true; 489 } 490 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 491 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 492 return true; 493 } 494 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 495 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 496 return true; 497 } 498 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 499 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 500 return true; 501 } 502 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 503 RedDes)) { 504 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 505 return true; 506 } 507 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 508 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 509 return true; 510 } 511 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 512 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 513 return true; 514 } 515 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 516 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 517 return true; 518 } 519 // Not a reduction of known type. 520 return false; 521 } 522 523 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 524 DominatorTree *DT) { 525 526 // Ensure the phi node is in the loop header and has two incoming values. 527 if (Phi->getParent() != TheLoop->getHeader() || 528 Phi->getNumIncomingValues() != 2) 529 return false; 530 531 // Ensure the loop has a preheader and a single latch block. The loop 532 // vectorizer will need the latch to set up the next iteration of the loop. 533 auto *Preheader = TheLoop->getLoopPreheader(); 534 auto *Latch = TheLoop->getLoopLatch(); 535 if (!Preheader || !Latch) 536 return false; 537 538 // Ensure the phi node's incoming blocks are the loop preheader and latch. 539 if (Phi->getBasicBlockIndex(Preheader) < 0 || 540 Phi->getBasicBlockIndex(Latch) < 0) 541 return false; 542 543 // Get the previous value. The previous value comes from the latch edge while 544 // the initial value comes form the preheader edge. 545 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 546 if (!Previous || !TheLoop->contains(Previous)) 547 return false; 548 549 // Ensure every user of the phi node is dominated by the previous value. The 550 // dominance requirement ensures the loop vectorizer will not need to 551 // vectorize the initial value prior to the first iteration of the loop. 552 for (User *U : Phi->users()) 553 if (auto *I = dyn_cast<Instruction>(U)) 554 if (!DT->dominates(Previous, I)) 555 return false; 556 557 return true; 558 } 559 560 /// This function returns the identity element (or neutral element) for 561 /// the operation K. 562 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 563 Type *Tp) { 564 switch (K) { 565 case RK_IntegerXor: 566 case RK_IntegerAdd: 567 case RK_IntegerOr: 568 // Adding, Xoring, Oring zero to a number does not change it. 569 return ConstantInt::get(Tp, 0); 570 case RK_IntegerMult: 571 // Multiplying a number by 1 does not change it. 572 return ConstantInt::get(Tp, 1); 573 case RK_IntegerAnd: 574 // AND-ing a number with an all-1 value does not change it. 575 return ConstantInt::get(Tp, -1, true); 576 case RK_FloatMult: 577 // Multiplying a number by 1 does not change it. 578 return ConstantFP::get(Tp, 1.0L); 579 case RK_FloatAdd: 580 // Adding zero to a number does not change it. 581 return ConstantFP::get(Tp, 0.0L); 582 default: 583 llvm_unreachable("Unknown recurrence kind"); 584 } 585 } 586 587 /// This function translates the recurrence kind to an LLVM binary operator. 588 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 589 switch (Kind) { 590 case RK_IntegerAdd: 591 return Instruction::Add; 592 case RK_IntegerMult: 593 return Instruction::Mul; 594 case RK_IntegerOr: 595 return Instruction::Or; 596 case RK_IntegerAnd: 597 return Instruction::And; 598 case RK_IntegerXor: 599 return Instruction::Xor; 600 case RK_FloatMult: 601 return Instruction::FMul; 602 case RK_FloatAdd: 603 return Instruction::FAdd; 604 case RK_IntegerMinMax: 605 return Instruction::ICmp; 606 case RK_FloatMinMax: 607 return Instruction::FCmp; 608 default: 609 llvm_unreachable("Unknown recurrence operation"); 610 } 611 } 612 613 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 614 MinMaxRecurrenceKind RK, 615 Value *Left, Value *Right) { 616 CmpInst::Predicate P = CmpInst::ICMP_NE; 617 switch (RK) { 618 default: 619 llvm_unreachable("Unknown min/max recurrence kind"); 620 case MRK_UIntMin: 621 P = CmpInst::ICMP_ULT; 622 break; 623 case MRK_UIntMax: 624 P = CmpInst::ICMP_UGT; 625 break; 626 case MRK_SIntMin: 627 P = CmpInst::ICMP_SLT; 628 break; 629 case MRK_SIntMax: 630 P = CmpInst::ICMP_SGT; 631 break; 632 case MRK_FloatMin: 633 P = CmpInst::FCMP_OLT; 634 break; 635 case MRK_FloatMax: 636 P = CmpInst::FCMP_OGT; 637 break; 638 } 639 640 // We only match FP sequences with unsafe algebra, so we can unconditionally 641 // set it on any generated instructions. 642 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 643 FastMathFlags FMF; 644 FMF.setUnsafeAlgebra(); 645 Builder.setFastMathFlags(FMF); 646 647 Value *Cmp; 648 if (RK == MRK_FloatMin || RK == MRK_FloatMax) 649 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 650 else 651 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 652 653 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 654 return Select; 655 } 656 657 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 658 ConstantInt *Step) 659 : StartValue(Start), IK(K), StepValue(Step) { 660 assert(IK != IK_NoInduction && "Not an induction"); 661 assert(StartValue && "StartValue is null"); 662 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 663 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 664 "StartValue is not a pointer for pointer induction"); 665 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 666 "StartValue is not an integer for integer induction"); 667 assert(StepValue->getType()->isIntegerTy() && 668 "StepValue is not an integer"); 669 } 670 671 int InductionDescriptor::getConsecutiveDirection() const { 672 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 673 return StepValue->getSExtValue(); 674 return 0; 675 } 676 677 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const { 678 switch (IK) { 679 case IK_IntInduction: 680 assert(Index->getType() == StartValue->getType() && 681 "Index type does not match StartValue type"); 682 if (StepValue->isMinusOne()) 683 return B.CreateSub(StartValue, Index); 684 if (!StepValue->isOne()) 685 Index = B.CreateMul(Index, StepValue); 686 return B.CreateAdd(StartValue, Index); 687 688 case IK_PtrInduction: 689 assert(Index->getType() == StepValue->getType() && 690 "Index type does not match StepValue type"); 691 if (StepValue->isMinusOne()) 692 Index = B.CreateNeg(Index); 693 else if (!StepValue->isOne()) 694 Index = B.CreateMul(Index, StepValue); 695 return B.CreateGEP(nullptr, StartValue, Index); 696 697 case IK_NoInduction: 698 return nullptr; 699 } 700 llvm_unreachable("invalid enum"); 701 } 702 703 bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, 704 InductionDescriptor &D) { 705 Type *PhiTy = Phi->getType(); 706 // We only handle integer and pointer inductions variables. 707 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 708 return false; 709 710 // Check that the PHI is consecutive. 711 const SCEV *PhiScev = SE->getSCEV(Phi); 712 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 713 if (!AR) { 714 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 715 return false; 716 } 717 718 assert(AR->getLoop()->getHeader() == Phi->getParent() && 719 "PHI is an AddRec for a different loop?!"); 720 Value *StartValue = 721 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 722 const SCEV *Step = AR->getStepRecurrence(*SE); 723 // Calculate the pointer stride and check if it is consecutive. 724 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 725 if (!C) 726 return false; 727 728 ConstantInt *CV = C->getValue(); 729 if (PhiTy->isIntegerTy()) { 730 D = InductionDescriptor(StartValue, IK_IntInduction, CV); 731 return true; 732 } 733 734 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 735 Type *PointerElementType = PhiTy->getPointerElementType(); 736 // The pointer stride cannot be determined if the pointer element type is not 737 // sized. 738 if (!PointerElementType->isSized()) 739 return false; 740 741 const DataLayout &DL = Phi->getModule()->getDataLayout(); 742 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 743 if (!Size) 744 return false; 745 746 int64_t CVSize = CV->getSExtValue(); 747 if (CVSize % Size) 748 return false; 749 auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 750 751 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 752 return true; 753 } 754 755 /// \brief Returns the instructions that use values defined in the loop. 756 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 757 SmallVector<Instruction *, 8> UsedOutside; 758 759 for (auto *Block : L->getBlocks()) 760 // FIXME: I believe that this could use copy_if if the Inst reference could 761 // be adapted into a pointer. 762 for (auto &Inst : *Block) { 763 auto Users = Inst.users(); 764 if (std::any_of(Users.begin(), Users.end(), [&](User *U) { 765 auto *Use = cast<Instruction>(U); 766 return !L->contains(Use->getParent()); 767 })) 768 UsedOutside.push_back(&Inst); 769 } 770 771 return UsedOutside; 772 } 773 774 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 775 // By definition, all loop passes need the LoopInfo analysis and the 776 // Dominator tree it depends on. Because they all participate in the loop 777 // pass manager, they must also preserve these. 778 AU.addRequired<DominatorTreeWrapperPass>(); 779 AU.addPreserved<DominatorTreeWrapperPass>(); 780 AU.addRequired<LoopInfoWrapperPass>(); 781 AU.addPreserved<LoopInfoWrapperPass>(); 782 783 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 784 // here because users shouldn't directly get them from this header. 785 extern char &LoopSimplifyID; 786 extern char &LCSSAID; 787 AU.addRequiredID(LoopSimplifyID); 788 AU.addPreservedID(LoopSimplifyID); 789 AU.addRequiredID(LCSSAID); 790 AU.addPreservedID(LCSSAID); 791 792 // Loop passes are designed to run inside of a loop pass manager which means 793 // that any function analyses they require must be required by the first loop 794 // pass in the manager (so that it is computed before the loop pass manager 795 // runs) and preserved by all loop pasess in the manager. To make this 796 // reasonably robust, the set needed for most loop passes is maintained here. 797 // If your loop pass requires an analysis not listed here, you will need to 798 // carefully audit the loop pass manager nesting structure that results. 799 AU.addRequired<AAResultsWrapperPass>(); 800 AU.addPreserved<AAResultsWrapperPass>(); 801 AU.addPreserved<BasicAAWrapperPass>(); 802 AU.addPreserved<GlobalsAAWrapperPass>(); 803 AU.addPreserved<SCEVAAWrapperPass>(); 804 AU.addRequired<ScalarEvolutionWrapperPass>(); 805 AU.addPreserved<ScalarEvolutionWrapperPass>(); 806 } 807 808 /// Manually defined generic "LoopPass" dependency initialization. This is used 809 /// to initialize the exact set of passes from above in \c 810 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 811 /// with: 812 /// 813 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 814 /// 815 /// As-if "LoopPass" were a pass. 816 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 817 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 818 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 819 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 820 INITIALIZE_PASS_DEPENDENCY(LCSSA) 821 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 822 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 823 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 824 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 825 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 826 } 827