1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstSimplifyFolder.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 49 using namespace llvm; 50 using namespace llvm::PatternMatch; 51 52 #define DEBUG_TYPE "loop-utils" 53 54 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 55 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 56 57 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 58 MemorySSAUpdater *MSSAU, 59 bool PreserveLCSSA) { 60 bool Changed = false; 61 62 // We re-use a vector for the in-loop predecesosrs. 63 SmallVector<BasicBlock *, 4> InLoopPredecessors; 64 65 auto RewriteExit = [&](BasicBlock *BB) { 66 assert(InLoopPredecessors.empty() && 67 "Must start with an empty predecessors list!"); 68 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 69 70 // See if there are any non-loop predecessors of this exit block and 71 // keep track of the in-loop predecessors. 72 bool IsDedicatedExit = true; 73 for (auto *PredBB : predecessors(BB)) 74 if (L->contains(PredBB)) { 75 if (isa<IndirectBrInst>(PredBB->getTerminator())) 76 // We cannot rewrite exiting edges from an indirectbr. 77 return false; 78 if (isa<CallBrInst>(PredBB->getTerminator())) 79 // We cannot rewrite exiting edges from a callbr. 80 return false; 81 82 InLoopPredecessors.push_back(PredBB); 83 } else { 84 IsDedicatedExit = false; 85 } 86 87 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 88 89 // Nothing to do if this is already a dedicated exit. 90 if (IsDedicatedExit) 91 return false; 92 93 auto *NewExitBB = SplitBlockPredecessors( 94 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 95 96 if (!NewExitBB) 97 LLVM_DEBUG( 98 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 99 << *L << "\n"); 100 else 101 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 102 << NewExitBB->getName() << "\n"); 103 return true; 104 }; 105 106 // Walk the exit blocks directly rather than building up a data structure for 107 // them, but only visit each one once. 108 SmallPtrSet<BasicBlock *, 4> Visited; 109 for (auto *BB : L->blocks()) 110 for (auto *SuccBB : successors(BB)) { 111 // We're looking for exit blocks so skip in-loop successors. 112 if (L->contains(SuccBB)) 113 continue; 114 115 // Visit each exit block exactly once. 116 if (!Visited.insert(SuccBB).second) 117 continue; 118 119 Changed |= RewriteExit(SuccBB); 120 } 121 122 return Changed; 123 } 124 125 /// Returns the instructions that use values defined in the loop. 126 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 127 SmallVector<Instruction *, 8> UsedOutside; 128 129 for (auto *Block : L->getBlocks()) 130 // FIXME: I believe that this could use copy_if if the Inst reference could 131 // be adapted into a pointer. 132 for (auto &Inst : *Block) { 133 auto Users = Inst.users(); 134 if (any_of(Users, [&](User *U) { 135 auto *Use = cast<Instruction>(U); 136 return !L->contains(Use->getParent()); 137 })) 138 UsedOutside.push_back(&Inst); 139 } 140 141 return UsedOutside; 142 } 143 144 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 145 // By definition, all loop passes need the LoopInfo analysis and the 146 // Dominator tree it depends on. Because they all participate in the loop 147 // pass manager, they must also preserve these. 148 AU.addRequired<DominatorTreeWrapperPass>(); 149 AU.addPreserved<DominatorTreeWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 AU.addPreserved<LoopInfoWrapperPass>(); 152 153 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 154 // here because users shouldn't directly get them from this header. 155 extern char &LoopSimplifyID; 156 extern char &LCSSAID; 157 AU.addRequiredID(LoopSimplifyID); 158 AU.addPreservedID(LoopSimplifyID); 159 AU.addRequiredID(LCSSAID); 160 AU.addPreservedID(LCSSAID); 161 // This is used in the LPPassManager to perform LCSSA verification on passes 162 // which preserve lcssa form 163 AU.addRequired<LCSSAVerificationPass>(); 164 AU.addPreserved<LCSSAVerificationPass>(); 165 166 // Loop passes are designed to run inside of a loop pass manager which means 167 // that any function analyses they require must be required by the first loop 168 // pass in the manager (so that it is computed before the loop pass manager 169 // runs) and preserved by all loop pasess in the manager. To make this 170 // reasonably robust, the set needed for most loop passes is maintained here. 171 // If your loop pass requires an analysis not listed here, you will need to 172 // carefully audit the loop pass manager nesting structure that results. 173 AU.addRequired<AAResultsWrapperPass>(); 174 AU.addPreserved<AAResultsWrapperPass>(); 175 AU.addPreserved<BasicAAWrapperPass>(); 176 AU.addPreserved<GlobalsAAWrapperPass>(); 177 AU.addPreserved<SCEVAAWrapperPass>(); 178 AU.addRequired<ScalarEvolutionWrapperPass>(); 179 AU.addPreserved<ScalarEvolutionWrapperPass>(); 180 // FIXME: When all loop passes preserve MemorySSA, it can be required and 181 // preserved here instead of the individual handling in each pass. 182 } 183 184 /// Manually defined generic "LoopPass" dependency initialization. This is used 185 /// to initialize the exact set of passes from above in \c 186 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 187 /// with: 188 /// 189 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 190 /// 191 /// As-if "LoopPass" were a pass. 192 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 193 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 196 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 203 } 204 205 /// Create MDNode for input string. 206 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 207 LLVMContext &Context = TheLoop->getHeader()->getContext(); 208 Metadata *MDs[] = { 209 MDString::get(Context, Name), 210 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 211 return MDNode::get(Context, MDs); 212 } 213 214 /// Set input string into loop metadata by keeping other values intact. 215 /// If the string is already in loop metadata update value if it is 216 /// different. 217 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 218 unsigned V) { 219 SmallVector<Metadata *, 4> MDs(1); 220 // If the loop already has metadata, retain it. 221 MDNode *LoopID = TheLoop->getLoopID(); 222 if (LoopID) { 223 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 224 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 225 // If it is of form key = value, try to parse it. 226 if (Node->getNumOperands() == 2) { 227 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 228 if (S && S->getString().equals(StringMD)) { 229 ConstantInt *IntMD = 230 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 231 if (IntMD && IntMD->getSExtValue() == V) 232 // It is already in place. Do nothing. 233 return; 234 // We need to update the value, so just skip it here and it will 235 // be added after copying other existed nodes. 236 continue; 237 } 238 } 239 MDs.push_back(Node); 240 } 241 } 242 // Add new metadata. 243 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 244 // Replace current metadata node with new one. 245 LLVMContext &Context = TheLoop->getHeader()->getContext(); 246 MDNode *NewLoopID = MDNode::get(Context, MDs); 247 // Set operand 0 to refer to the loop id itself. 248 NewLoopID->replaceOperandWith(0, NewLoopID); 249 TheLoop->setLoopID(NewLoopID); 250 } 251 252 Optional<ElementCount> 253 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 254 Optional<int> Width = 255 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 256 257 if (Width) { 258 Optional<int> IsScalable = getOptionalIntLoopAttribute( 259 TheLoop, "llvm.loop.vectorize.scalable.enable"); 260 return ElementCount::get(*Width, IsScalable.value_or(false)); 261 } 262 263 return None; 264 } 265 266 Optional<MDNode *> llvm::makeFollowupLoopID( 267 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 268 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 269 if (!OrigLoopID) { 270 if (AlwaysNew) 271 return nullptr; 272 return None; 273 } 274 275 assert(OrigLoopID->getOperand(0) == OrigLoopID); 276 277 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 278 bool InheritSomeAttrs = 279 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 280 SmallVector<Metadata *, 8> MDs; 281 MDs.push_back(nullptr); 282 283 bool Changed = false; 284 if (InheritAllAttrs || InheritSomeAttrs) { 285 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 286 MDNode *Op = cast<MDNode>(Existing.get()); 287 288 auto InheritThisAttribute = [InheritSomeAttrs, 289 InheritOptionsExceptPrefix](MDNode *Op) { 290 if (!InheritSomeAttrs) 291 return false; 292 293 // Skip malformatted attribute metadata nodes. 294 if (Op->getNumOperands() == 0) 295 return true; 296 Metadata *NameMD = Op->getOperand(0).get(); 297 if (!isa<MDString>(NameMD)) 298 return true; 299 StringRef AttrName = cast<MDString>(NameMD)->getString(); 300 301 // Do not inherit excluded attributes. 302 return !AttrName.startswith(InheritOptionsExceptPrefix); 303 }; 304 305 if (InheritThisAttribute(Op)) 306 MDs.push_back(Op); 307 else 308 Changed = true; 309 } 310 } else { 311 // Modified if we dropped at least one attribute. 312 Changed = OrigLoopID->getNumOperands() > 1; 313 } 314 315 bool HasAnyFollowup = false; 316 for (StringRef OptionName : FollowupOptions) { 317 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 318 if (!FollowupNode) 319 continue; 320 321 HasAnyFollowup = true; 322 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 323 MDs.push_back(Option.get()); 324 Changed = true; 325 } 326 } 327 328 // Attributes of the followup loop not specified explicity, so signal to the 329 // transformation pass to add suitable attributes. 330 if (!AlwaysNew && !HasAnyFollowup) 331 return None; 332 333 // If no attributes were added or remove, the previous loop Id can be reused. 334 if (!AlwaysNew && !Changed) 335 return OrigLoopID; 336 337 // No attributes is equivalent to having no !llvm.loop metadata at all. 338 if (MDs.size() == 1) 339 return nullptr; 340 341 // Build the new loop ID. 342 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 343 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 344 return FollowupLoopID; 345 } 346 347 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 348 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 349 } 350 351 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 352 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 353 } 354 355 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 356 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 357 return TM_SuppressedByUser; 358 359 Optional<int> Count = 360 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 361 if (Count) 362 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 363 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 365 return TM_ForcedByUser; 366 367 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 368 return TM_ForcedByUser; 369 370 if (hasDisableAllTransformsHint(L)) 371 return TM_Disable; 372 373 return TM_Unspecified; 374 } 375 376 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 377 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 378 return TM_SuppressedByUser; 379 380 Optional<int> Count = 381 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 382 if (Count) 383 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 384 385 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 386 return TM_ForcedByUser; 387 388 if (hasDisableAllTransformsHint(L)) 389 return TM_Disable; 390 391 return TM_Unspecified; 392 } 393 394 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 395 Optional<bool> Enable = 396 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 397 398 if (Enable == false) 399 return TM_SuppressedByUser; 400 401 Optional<ElementCount> VectorizeWidth = 402 getOptionalElementCountLoopAttribute(L); 403 Optional<int> InterleaveCount = 404 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 405 406 // 'Forcing' vector width and interleave count to one effectively disables 407 // this tranformation. 408 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 409 InterleaveCount == 1) 410 return TM_SuppressedByUser; 411 412 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 413 return TM_Disable; 414 415 if (Enable == true) 416 return TM_ForcedByUser; 417 418 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 419 return TM_Disable; 420 421 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 422 return TM_Enable; 423 424 if (hasDisableAllTransformsHint(L)) 425 return TM_Disable; 426 427 return TM_Unspecified; 428 } 429 430 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 431 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 432 return TM_ForcedByUser; 433 434 if (hasDisableAllTransformsHint(L)) 435 return TM_Disable; 436 437 return TM_Unspecified; 438 } 439 440 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 441 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 442 return TM_SuppressedByUser; 443 444 if (hasDisableAllTransformsHint(L)) 445 return TM_Disable; 446 447 return TM_Unspecified; 448 } 449 450 /// Does a BFS from a given node to all of its children inside a given loop. 451 /// The returned vector of nodes includes the starting point. 452 SmallVector<DomTreeNode *, 16> 453 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 454 SmallVector<DomTreeNode *, 16> Worklist; 455 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 456 // Only include subregions in the top level loop. 457 BasicBlock *BB = DTN->getBlock(); 458 if (CurLoop->contains(BB)) 459 Worklist.push_back(DTN); 460 }; 461 462 AddRegionToWorklist(N); 463 464 for (size_t I = 0; I < Worklist.size(); I++) { 465 for (DomTreeNode *Child : Worklist[I]->children()) 466 AddRegionToWorklist(Child); 467 } 468 469 return Worklist; 470 } 471 472 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 473 LoopInfo *LI, MemorySSA *MSSA) { 474 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 475 auto *Preheader = L->getLoopPreheader(); 476 assert(Preheader && "Preheader should exist!"); 477 478 std::unique_ptr<MemorySSAUpdater> MSSAU; 479 if (MSSA) 480 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 481 482 // Now that we know the removal is safe, remove the loop by changing the 483 // branch from the preheader to go to the single exit block. 484 // 485 // Because we're deleting a large chunk of code at once, the sequence in which 486 // we remove things is very important to avoid invalidation issues. 487 488 // Tell ScalarEvolution that the loop is deleted. Do this before 489 // deleting the loop so that ScalarEvolution can look at the loop 490 // to determine what it needs to clean up. 491 if (SE) 492 SE->forgetLoop(L); 493 494 Instruction *OldTerm = Preheader->getTerminator(); 495 assert(!OldTerm->mayHaveSideEffects() && 496 "Preheader must end with a side-effect-free terminator"); 497 assert(OldTerm->getNumSuccessors() == 1 && 498 "Preheader must have a single successor"); 499 // Connect the preheader to the exit block. Keep the old edge to the header 500 // around to perform the dominator tree update in two separate steps 501 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 502 // preheader -> header. 503 // 504 // 505 // 0. Preheader 1. Preheader 2. Preheader 506 // | | | | 507 // V | V | 508 // Header <--\ | Header <--\ | Header <--\ 509 // | | | | | | | | | | | 510 // | V | | | V | | | V | 511 // | Body --/ | | Body --/ | | Body --/ 512 // V V V V V 513 // Exit Exit Exit 514 // 515 // By doing this is two separate steps we can perform the dominator tree 516 // update without using the batch update API. 517 // 518 // Even when the loop is never executed, we cannot remove the edge from the 519 // source block to the exit block. Consider the case where the unexecuted loop 520 // branches back to an outer loop. If we deleted the loop and removed the edge 521 // coming to this inner loop, this will break the outer loop structure (by 522 // deleting the backedge of the outer loop). If the outer loop is indeed a 523 // non-loop, it will be deleted in a future iteration of loop deletion pass. 524 IRBuilder<> Builder(OldTerm); 525 526 auto *ExitBlock = L->getUniqueExitBlock(); 527 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 528 if (ExitBlock) { 529 assert(ExitBlock && "Should have a unique exit block!"); 530 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 531 532 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 533 // Remove the old branch. The conditional branch becomes a new terminator. 534 OldTerm->eraseFromParent(); 535 536 // Rewrite phis in the exit block to get their inputs from the Preheader 537 // instead of the exiting block. 538 for (PHINode &P : ExitBlock->phis()) { 539 // Set the zero'th element of Phi to be from the preheader and remove all 540 // other incoming values. Given the loop has dedicated exits, all other 541 // incoming values must be from the exiting blocks. 542 int PredIndex = 0; 543 P.setIncomingBlock(PredIndex, Preheader); 544 // Removes all incoming values from all other exiting blocks (including 545 // duplicate values from an exiting block). 546 // Nuke all entries except the zero'th entry which is the preheader entry. 547 // NOTE! We need to remove Incoming Values in the reverse order as done 548 // below, to keep the indices valid for deletion (removeIncomingValues 549 // updates getNumIncomingValues and shifts all values down into the 550 // operand being deleted). 551 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 552 P.removeIncomingValue(e - i, false); 553 554 assert((P.getNumIncomingValues() == 1 && 555 P.getIncomingBlock(PredIndex) == Preheader) && 556 "Should have exactly one value and that's from the preheader!"); 557 } 558 559 if (DT) { 560 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 561 if (MSSA) { 562 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 563 *DT); 564 if (VerifyMemorySSA) 565 MSSA->verifyMemorySSA(); 566 } 567 } 568 569 // Disconnect the loop body by branching directly to its exit. 570 Builder.SetInsertPoint(Preheader->getTerminator()); 571 Builder.CreateBr(ExitBlock); 572 // Remove the old branch. 573 Preheader->getTerminator()->eraseFromParent(); 574 } else { 575 assert(L->hasNoExitBlocks() && 576 "Loop should have either zero or one exit blocks."); 577 578 Builder.SetInsertPoint(OldTerm); 579 Builder.CreateUnreachable(); 580 Preheader->getTerminator()->eraseFromParent(); 581 } 582 583 if (DT) { 584 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 585 if (MSSA) { 586 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 587 *DT); 588 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 589 L->block_end()); 590 MSSAU->removeBlocks(DeadBlockSet); 591 if (VerifyMemorySSA) 592 MSSA->verifyMemorySSA(); 593 } 594 } 595 596 // Use a map to unique and a vector to guarantee deterministic ordering. 597 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 598 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 599 600 if (ExitBlock) { 601 // Given LCSSA form is satisfied, we should not have users of instructions 602 // within the dead loop outside of the loop. However, LCSSA doesn't take 603 // unreachable uses into account. We handle them here. 604 // We could do it after drop all references (in this case all users in the 605 // loop will be already eliminated and we have less work to do but according 606 // to API doc of User::dropAllReferences only valid operation after dropping 607 // references, is deletion. So let's substitute all usages of 608 // instruction from the loop with undef value of corresponding type first. 609 for (auto *Block : L->blocks()) 610 for (Instruction &I : *Block) { 611 auto *Undef = UndefValue::get(I.getType()); 612 for (Use &U : llvm::make_early_inc_range(I.uses())) { 613 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 614 if (L->contains(Usr->getParent())) 615 continue; 616 // If we have a DT then we can check that uses outside a loop only in 617 // unreachable block. 618 if (DT) 619 assert(!DT->isReachableFromEntry(U) && 620 "Unexpected user in reachable block"); 621 U.set(Undef); 622 } 623 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 624 if (!DVI) 625 continue; 626 auto Key = 627 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 628 if (Key != DeadDebugSet.end()) 629 continue; 630 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 631 DeadDebugInst.push_back(DVI); 632 } 633 634 // After the loop has been deleted all the values defined and modified 635 // inside the loop are going to be unavailable. 636 // Since debug values in the loop have been deleted, inserting an undef 637 // dbg.value truncates the range of any dbg.value before the loop where the 638 // loop used to be. This is particularly important for constant values. 639 DIBuilder DIB(*ExitBlock->getModule()); 640 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 641 assert(InsertDbgValueBefore && 642 "There should be a non-PHI instruction in exit block, else these " 643 "instructions will have no parent."); 644 for (auto *DVI : DeadDebugInst) 645 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 646 DVI->getVariable(), DVI->getExpression(), 647 DVI->getDebugLoc(), InsertDbgValueBefore); 648 } 649 650 // Remove the block from the reference counting scheme, so that we can 651 // delete it freely later. 652 for (auto *Block : L->blocks()) 653 Block->dropAllReferences(); 654 655 if (MSSA && VerifyMemorySSA) 656 MSSA->verifyMemorySSA(); 657 658 if (LI) { 659 // Erase the instructions and the blocks without having to worry 660 // about ordering because we already dropped the references. 661 // NOTE: This iteration is safe because erasing the block does not remove 662 // its entry from the loop's block list. We do that in the next section. 663 for (BasicBlock *BB : L->blocks()) 664 BB->eraseFromParent(); 665 666 // Finally, the blocks from loopinfo. This has to happen late because 667 // otherwise our loop iterators won't work. 668 669 SmallPtrSet<BasicBlock *, 8> blocks; 670 blocks.insert(L->block_begin(), L->block_end()); 671 for (BasicBlock *BB : blocks) 672 LI->removeBlock(BB); 673 674 // The last step is to update LoopInfo now that we've eliminated this loop. 675 // Note: LoopInfo::erase remove the given loop and relink its subloops with 676 // its parent. While removeLoop/removeChildLoop remove the given loop but 677 // not relink its subloops, which is what we want. 678 if (Loop *ParentLoop = L->getParentLoop()) { 679 Loop::iterator I = find(*ParentLoop, L); 680 assert(I != ParentLoop->end() && "Couldn't find loop"); 681 ParentLoop->removeChildLoop(I); 682 } else { 683 Loop::iterator I = find(*LI, L); 684 assert(I != LI->end() && "Couldn't find loop"); 685 LI->removeLoop(I); 686 } 687 LI->destroy(L); 688 } 689 } 690 691 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 692 LoopInfo &LI, MemorySSA *MSSA) { 693 auto *Latch = L->getLoopLatch(); 694 assert(Latch && "multiple latches not yet supported"); 695 auto *Header = L->getHeader(); 696 Loop *OutermostLoop = L->getOutermostLoop(); 697 698 SE.forgetLoop(L); 699 700 std::unique_ptr<MemorySSAUpdater> MSSAU; 701 if (MSSA) 702 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 703 704 // Update the CFG and domtree. We chose to special case a couple of 705 // of common cases for code quality and test readability reasons. 706 [&]() -> void { 707 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 708 if (!BI->isConditional()) { 709 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 710 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 711 MSSAU.get()); 712 return; 713 } 714 715 // Conditional latch/exit - note that latch can be shared by inner 716 // and outer loop so the other target doesn't need to an exit 717 if (L->isLoopExiting(Latch)) { 718 // TODO: Generalize ConstantFoldTerminator so that it can be used 719 // here without invalidating LCSSA or MemorySSA. (Tricky case for 720 // LCSSA: header is an exit block of a preceeding sibling loop w/o 721 // dedicated exits.) 722 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 723 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 724 725 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 726 Header->removePredecessor(Latch, true); 727 728 IRBuilder<> Builder(BI); 729 auto *NewBI = Builder.CreateBr(ExitBB); 730 // Transfer the metadata to the new branch instruction (minus the 731 // loop info since this is no longer a loop) 732 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 733 LLVMContext::MD_annotation}); 734 735 BI->eraseFromParent(); 736 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 737 if (MSSA) 738 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 739 return; 740 } 741 } 742 743 // General case. By splitting the backedge, and then explicitly making it 744 // unreachable we gracefully handle corner cases such as switch and invoke 745 // termiantors. 746 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 747 748 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 749 (void)changeToUnreachable(BackedgeBB->getTerminator(), 750 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 751 }(); 752 753 // Erase (and destroy) this loop instance. Handles relinking sub-loops 754 // and blocks within the loop as needed. 755 LI.erase(L); 756 757 // If the loop we broke had a parent, then changeToUnreachable might have 758 // caused a block to be removed from the parent loop (see loop_nest_lcssa 759 // test case in zero-btc.ll for an example), thus changing the parent's 760 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 761 // loop which might have a had a block removed. 762 if (OutermostLoop != L) 763 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 764 } 765 766 767 /// Checks if \p L has an exiting latch branch. There may also be other 768 /// exiting blocks. Returns branch instruction terminating the loop 769 /// latch if above check is successful, nullptr otherwise. 770 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 771 BasicBlock *Latch = L->getLoopLatch(); 772 if (!Latch) 773 return nullptr; 774 775 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 776 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 777 return nullptr; 778 779 assert((LatchBR->getSuccessor(0) == L->getHeader() || 780 LatchBR->getSuccessor(1) == L->getHeader()) && 781 "At least one edge out of the latch must go to the header"); 782 783 return LatchBR; 784 } 785 786 /// Return the estimated trip count for any exiting branch which dominates 787 /// the loop latch. 788 static Optional<uint64_t> 789 getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L, 790 uint64_t &OrigExitWeight) { 791 // To estimate the number of times the loop body was executed, we want to 792 // know the number of times the backedge was taken, vs. the number of times 793 // we exited the loop. 794 uint64_t LoopWeight, ExitWeight; 795 if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight)) 796 return None; 797 798 if (L->contains(ExitingBranch->getSuccessor(1))) 799 std::swap(LoopWeight, ExitWeight); 800 801 if (!ExitWeight) 802 // Don't have a way to return predicated infinite 803 return None; 804 805 OrigExitWeight = ExitWeight; 806 807 // Estimated exit count is a ratio of the loop weight by the weight of the 808 // edge exiting the loop, rounded to nearest. 809 uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight); 810 // Estimated trip count is one plus estimated exit count. 811 return ExitCount + 1; 812 } 813 814 Optional<unsigned> 815 llvm::getLoopEstimatedTripCount(Loop *L, 816 unsigned *EstimatedLoopInvocationWeight) { 817 // Currently we take the estimate exit count only from the loop latch, 818 // ignoring other exiting blocks. This can overestimate the trip count 819 // if we exit through another exit, but can never underestimate it. 820 // TODO: incorporate information from other exits 821 if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) { 822 uint64_t ExitWeight; 823 if (Optional<uint64_t> EstTripCount = 824 getEstimatedTripCount(LatchBranch, L, ExitWeight)) { 825 if (EstimatedLoopInvocationWeight) 826 *EstimatedLoopInvocationWeight = ExitWeight; 827 return *EstTripCount; 828 } 829 } 830 return None; 831 } 832 833 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 834 unsigned EstimatedloopInvocationWeight) { 835 // At the moment, we currently support changing the estimate trip count of 836 // the latch branch only. We could extend this API to manipulate estimated 837 // trip counts for any exit. 838 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 839 if (!LatchBranch) 840 return false; 841 842 // Calculate taken and exit weights. 843 unsigned LatchExitWeight = 0; 844 unsigned BackedgeTakenWeight = 0; 845 846 if (EstimatedTripCount > 0) { 847 LatchExitWeight = EstimatedloopInvocationWeight; 848 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 849 } 850 851 // Make a swap if back edge is taken when condition is "false". 852 if (LatchBranch->getSuccessor(0) != L->getHeader()) 853 std::swap(BackedgeTakenWeight, LatchExitWeight); 854 855 MDBuilder MDB(LatchBranch->getContext()); 856 857 // Set/Update profile metadata. 858 LatchBranch->setMetadata( 859 LLVMContext::MD_prof, 860 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 861 862 return true; 863 } 864 865 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 866 ScalarEvolution &SE) { 867 Loop *OuterL = InnerLoop->getParentLoop(); 868 if (!OuterL) 869 return true; 870 871 // Get the backedge taken count for the inner loop 872 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 873 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 874 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 875 !InnerLoopBECountSC->getType()->isIntegerTy()) 876 return false; 877 878 // Get whether count is invariant to the outer loop 879 ScalarEvolution::LoopDisposition LD = 880 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 881 if (LD != ScalarEvolution::LoopInvariant) 882 return false; 883 884 return true; 885 } 886 887 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 888 switch (RK) { 889 default: 890 llvm_unreachable("Unknown min/max recurrence kind"); 891 case RecurKind::UMin: 892 return CmpInst::ICMP_ULT; 893 case RecurKind::UMax: 894 return CmpInst::ICMP_UGT; 895 case RecurKind::SMin: 896 return CmpInst::ICMP_SLT; 897 case RecurKind::SMax: 898 return CmpInst::ICMP_SGT; 899 case RecurKind::FMin: 900 return CmpInst::FCMP_OLT; 901 case RecurKind::FMax: 902 return CmpInst::FCMP_OGT; 903 } 904 } 905 906 Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, 907 RecurKind RK, Value *Left, Value *Right) { 908 if (auto VTy = dyn_cast<VectorType>(Left->getType())) 909 StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal); 910 Value *Cmp = 911 Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp"); 912 return Builder.CreateSelect(Cmp, Left, Right, "rdx.select"); 913 } 914 915 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 916 Value *Right) { 917 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 918 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 919 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 920 return Select; 921 } 922 923 // Helper to generate an ordered reduction. 924 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 925 unsigned Op, RecurKind RdxKind) { 926 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 927 928 // Extract and apply reduction ops in ascending order: 929 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 930 Value *Result = Acc; 931 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 932 Value *Ext = 933 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 934 935 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 936 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 937 "bin.rdx"); 938 } else { 939 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 940 "Invalid min/max"); 941 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 942 } 943 } 944 945 return Result; 946 } 947 948 // Helper to generate a log2 shuffle reduction. 949 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 950 unsigned Op, RecurKind RdxKind) { 951 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 952 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 953 // and vector ops, reducing the set of values being computed by half each 954 // round. 955 assert(isPowerOf2_32(VF) && 956 "Reduction emission only supported for pow2 vectors!"); 957 // Note: fast-math-flags flags are controlled by the builder configuration 958 // and are assumed to apply to all generated arithmetic instructions. Other 959 // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part 960 // of the builder configuration, and since they're not passed explicitly, 961 // will never be relevant here. Note that it would be generally unsound to 962 // propagate these from an intrinsic call to the expansion anyways as we/ 963 // change the order of operations. 964 Value *TmpVec = Src; 965 SmallVector<int, 32> ShuffleMask(VF); 966 for (unsigned i = VF; i != 1; i >>= 1) { 967 // Move the upper half of the vector to the lower half. 968 for (unsigned j = 0; j != i / 2; ++j) 969 ShuffleMask[j] = i / 2 + j; 970 971 // Fill the rest of the mask with undef. 972 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 973 974 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 975 976 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 977 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 978 "bin.rdx"); 979 } else { 980 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 981 "Invalid min/max"); 982 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 983 } 984 } 985 // The result is in the first element of the vector. 986 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 987 } 988 989 Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder, 990 const TargetTransformInfo *TTI, 991 Value *Src, 992 const RecurrenceDescriptor &Desc, 993 PHINode *OrigPhi) { 994 assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind( 995 Desc.getRecurrenceKind()) && 996 "Unexpected reduction kind"); 997 Value *InitVal = Desc.getRecurrenceStartValue(); 998 Value *NewVal = nullptr; 999 1000 // First use the original phi to determine the new value we're trying to 1001 // select from in the loop. 1002 SelectInst *SI = nullptr; 1003 for (auto *U : OrigPhi->users()) { 1004 if ((SI = dyn_cast<SelectInst>(U))) 1005 break; 1006 } 1007 assert(SI && "One user of the original phi should be a select"); 1008 1009 if (SI->getTrueValue() == OrigPhi) 1010 NewVal = SI->getFalseValue(); 1011 else { 1012 assert(SI->getFalseValue() == OrigPhi && 1013 "At least one input to the select should be the original Phi"); 1014 NewVal = SI->getTrueValue(); 1015 } 1016 1017 // Create a splat vector with the new value and compare this to the vector 1018 // we want to reduce. 1019 ElementCount EC = cast<VectorType>(Src->getType())->getElementCount(); 1020 Value *Right = Builder.CreateVectorSplat(EC, InitVal); 1021 Value *Cmp = 1022 Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp"); 1023 1024 // If any predicate is true it means that we want to select the new value. 1025 Cmp = Builder.CreateOrReduce(Cmp); 1026 return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select"); 1027 } 1028 1029 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 1030 const TargetTransformInfo *TTI, 1031 Value *Src, RecurKind RdxKind) { 1032 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 1033 switch (RdxKind) { 1034 case RecurKind::Add: 1035 return Builder.CreateAddReduce(Src); 1036 case RecurKind::Mul: 1037 return Builder.CreateMulReduce(Src); 1038 case RecurKind::And: 1039 return Builder.CreateAndReduce(Src); 1040 case RecurKind::Or: 1041 return Builder.CreateOrReduce(Src); 1042 case RecurKind::Xor: 1043 return Builder.CreateXorReduce(Src); 1044 case RecurKind::FMulAdd: 1045 case RecurKind::FAdd: 1046 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1047 Src); 1048 case RecurKind::FMul: 1049 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1050 case RecurKind::SMax: 1051 return Builder.CreateIntMaxReduce(Src, true); 1052 case RecurKind::SMin: 1053 return Builder.CreateIntMinReduce(Src, true); 1054 case RecurKind::UMax: 1055 return Builder.CreateIntMaxReduce(Src, false); 1056 case RecurKind::UMin: 1057 return Builder.CreateIntMinReduce(Src, false); 1058 case RecurKind::FMax: 1059 return Builder.CreateFPMaxReduce(Src); 1060 case RecurKind::FMin: 1061 return Builder.CreateFPMinReduce(Src); 1062 default: 1063 llvm_unreachable("Unhandled opcode"); 1064 } 1065 } 1066 1067 Value *llvm::createTargetReduction(IRBuilderBase &B, 1068 const TargetTransformInfo *TTI, 1069 const RecurrenceDescriptor &Desc, Value *Src, 1070 PHINode *OrigPhi) { 1071 // TODO: Support in-order reductions based on the recurrence descriptor. 1072 // All ops in the reduction inherit fast-math-flags from the recurrence 1073 // descriptor. 1074 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1075 B.setFastMathFlags(Desc.getFastMathFlags()); 1076 1077 RecurKind RK = Desc.getRecurrenceKind(); 1078 if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 1079 return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi); 1080 1081 return createSimpleTargetReduction(B, TTI, Src, RK); 1082 } 1083 1084 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1085 const RecurrenceDescriptor &Desc, 1086 Value *Src, Value *Start) { 1087 assert((Desc.getRecurrenceKind() == RecurKind::FAdd || 1088 Desc.getRecurrenceKind() == RecurKind::FMulAdd) && 1089 "Unexpected reduction kind"); 1090 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1091 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1092 1093 return B.CreateFAddReduce(Start, Src); 1094 } 1095 1096 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue, 1097 bool IncludeWrapFlags) { 1098 auto *VecOp = dyn_cast<Instruction>(I); 1099 if (!VecOp) 1100 return; 1101 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1102 : dyn_cast<Instruction>(OpValue); 1103 if (!Intersection) 1104 return; 1105 const unsigned Opcode = Intersection->getOpcode(); 1106 VecOp->copyIRFlags(Intersection, IncludeWrapFlags); 1107 for (auto *V : VL) { 1108 auto *Instr = dyn_cast<Instruction>(V); 1109 if (!Instr) 1110 continue; 1111 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1112 VecOp->andIRFlags(V); 1113 } 1114 } 1115 1116 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1117 ScalarEvolution &SE) { 1118 const SCEV *Zero = SE.getZero(S->getType()); 1119 return SE.isAvailableAtLoopEntry(S, L) && 1120 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1121 } 1122 1123 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1124 ScalarEvolution &SE) { 1125 const SCEV *Zero = SE.getZero(S->getType()); 1126 return SE.isAvailableAtLoopEntry(S, L) && 1127 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1128 } 1129 1130 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1131 bool Signed) { 1132 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1133 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1134 APInt::getMinValue(BitWidth); 1135 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1136 return SE.isAvailableAtLoopEntry(S, L) && 1137 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1138 SE.getConstant(Min)); 1139 } 1140 1141 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1142 bool Signed) { 1143 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1144 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1145 APInt::getMaxValue(BitWidth); 1146 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1147 return SE.isAvailableAtLoopEntry(S, L) && 1148 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1149 SE.getConstant(Max)); 1150 } 1151 1152 //===----------------------------------------------------------------------===// 1153 // rewriteLoopExitValues - Optimize IV users outside the loop. 1154 // As a side effect, reduces the amount of IV processing within the loop. 1155 //===----------------------------------------------------------------------===// 1156 1157 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1158 SmallPtrSet<const Instruction *, 8> Visited; 1159 SmallVector<const Instruction *, 8> WorkList; 1160 Visited.insert(I); 1161 WorkList.push_back(I); 1162 while (!WorkList.empty()) { 1163 const Instruction *Curr = WorkList.pop_back_val(); 1164 // This use is outside the loop, nothing to do. 1165 if (!L->contains(Curr)) 1166 continue; 1167 // Do we assume it is a "hard" use which will not be eliminated easily? 1168 if (Curr->mayHaveSideEffects()) 1169 return true; 1170 // Otherwise, add all its users to worklist. 1171 for (auto U : Curr->users()) { 1172 auto *UI = cast<Instruction>(U); 1173 if (Visited.insert(UI).second) 1174 WorkList.push_back(UI); 1175 } 1176 } 1177 return false; 1178 } 1179 1180 // Collect information about PHI nodes which can be transformed in 1181 // rewriteLoopExitValues. 1182 struct RewritePhi { 1183 PHINode *PN; // For which PHI node is this replacement? 1184 unsigned Ith; // For which incoming value? 1185 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1186 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1187 bool HighCost; // Is this expansion a high-cost? 1188 1189 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1190 bool H) 1191 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1192 HighCost(H) {} 1193 }; 1194 1195 // Check whether it is possible to delete the loop after rewriting exit 1196 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1197 // aggressively. 1198 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1199 BasicBlock *Preheader = L->getLoopPreheader(); 1200 // If there is no preheader, the loop will not be deleted. 1201 if (!Preheader) 1202 return false; 1203 1204 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1205 // We obviate multiple ExitingBlocks case for simplicity. 1206 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1207 // after exit value rewriting, we can enhance the logic here. 1208 SmallVector<BasicBlock *, 4> ExitingBlocks; 1209 L->getExitingBlocks(ExitingBlocks); 1210 SmallVector<BasicBlock *, 8> ExitBlocks; 1211 L->getUniqueExitBlocks(ExitBlocks); 1212 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1213 return false; 1214 1215 BasicBlock *ExitBlock = ExitBlocks[0]; 1216 BasicBlock::iterator BI = ExitBlock->begin(); 1217 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1218 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1219 1220 // If the Incoming value of P is found in RewritePhiSet, we know it 1221 // could be rewritten to use a loop invariant value in transformation 1222 // phase later. Skip it in the loop invariant check below. 1223 bool found = false; 1224 for (const RewritePhi &Phi : RewritePhiSet) { 1225 unsigned i = Phi.Ith; 1226 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1227 found = true; 1228 break; 1229 } 1230 } 1231 1232 Instruction *I; 1233 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1234 if (!L->hasLoopInvariantOperands(I)) 1235 return false; 1236 1237 ++BI; 1238 } 1239 1240 for (auto *BB : L->blocks()) 1241 if (llvm::any_of(*BB, [](Instruction &I) { 1242 return I.mayHaveSideEffects(); 1243 })) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1250 ScalarEvolution *SE, 1251 const TargetTransformInfo *TTI, 1252 SCEVExpander &Rewriter, DominatorTree *DT, 1253 ReplaceExitVal ReplaceExitValue, 1254 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1255 // Check a pre-condition. 1256 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1257 "Indvars did not preserve LCSSA!"); 1258 1259 SmallVector<BasicBlock*, 8> ExitBlocks; 1260 L->getUniqueExitBlocks(ExitBlocks); 1261 1262 SmallVector<RewritePhi, 8> RewritePhiSet; 1263 // Find all values that are computed inside the loop, but used outside of it. 1264 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1265 // the exit blocks of the loop to find them. 1266 for (BasicBlock *ExitBB : ExitBlocks) { 1267 // If there are no PHI nodes in this exit block, then no values defined 1268 // inside the loop are used on this path, skip it. 1269 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1270 if (!PN) continue; 1271 1272 unsigned NumPreds = PN->getNumIncomingValues(); 1273 1274 // Iterate over all of the PHI nodes. 1275 BasicBlock::iterator BBI = ExitBB->begin(); 1276 while ((PN = dyn_cast<PHINode>(BBI++))) { 1277 if (PN->use_empty()) 1278 continue; // dead use, don't replace it 1279 1280 if (!SE->isSCEVable(PN->getType())) 1281 continue; 1282 1283 // Iterate over all of the values in all the PHI nodes. 1284 for (unsigned i = 0; i != NumPreds; ++i) { 1285 // If the value being merged in is not integer or is not defined 1286 // in the loop, skip it. 1287 Value *InVal = PN->getIncomingValue(i); 1288 if (!isa<Instruction>(InVal)) 1289 continue; 1290 1291 // If this pred is for a subloop, not L itself, skip it. 1292 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1293 continue; // The Block is in a subloop, skip it. 1294 1295 // Check that InVal is defined in the loop. 1296 Instruction *Inst = cast<Instruction>(InVal); 1297 if (!L->contains(Inst)) 1298 continue; 1299 1300 // Okay, this instruction has a user outside of the current loop 1301 // and varies predictably *inside* the loop. Evaluate the value it 1302 // contains when the loop exits, if possible. We prefer to start with 1303 // expressions which are true for all exits (so as to maximize 1304 // expression reuse by the SCEVExpander), but resort to per-exit 1305 // evaluation if that fails. 1306 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1307 if (isa<SCEVCouldNotCompute>(ExitValue) || 1308 !SE->isLoopInvariant(ExitValue, L) || 1309 !isSafeToExpand(ExitValue, *SE)) { 1310 // TODO: This should probably be sunk into SCEV in some way; maybe a 1311 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1312 // most SCEV expressions and other recurrence types (e.g. shift 1313 // recurrences). Is there existing code we can reuse? 1314 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1315 if (isa<SCEVCouldNotCompute>(ExitCount)) 1316 continue; 1317 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1318 if (AddRec->getLoop() == L) 1319 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1320 if (isa<SCEVCouldNotCompute>(ExitValue) || 1321 !SE->isLoopInvariant(ExitValue, L) || 1322 !isSafeToExpand(ExitValue, *SE)) 1323 continue; 1324 } 1325 1326 // Computing the value outside of the loop brings no benefit if it is 1327 // definitely used inside the loop in a way which can not be optimized 1328 // away. Avoid doing so unless we know we have a value which computes 1329 // the ExitValue already. TODO: This should be merged into SCEV 1330 // expander to leverage its knowledge of existing expressions. 1331 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1332 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1333 continue; 1334 1335 // Check if expansions of this SCEV would count as being high cost. 1336 bool HighCost = Rewriter.isHighCostExpansion( 1337 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1338 1339 // Note that we must not perform expansions until after 1340 // we query *all* the costs, because if we perform temporary expansion 1341 // inbetween, one that we might not intend to keep, said expansion 1342 // *may* affect cost calculation of the the next SCEV's we'll query, 1343 // and next SCEV may errneously get smaller cost. 1344 1345 // Collect all the candidate PHINodes to be rewritten. 1346 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1347 } 1348 } 1349 } 1350 1351 // TODO: evaluate whether it is beneficial to change how we calculate 1352 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1353 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1354 // potentially giving cost bonus to those other SCEV's? 1355 1356 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1357 int NumReplaced = 0; 1358 1359 // Transformation. 1360 for (const RewritePhi &Phi : RewritePhiSet) { 1361 PHINode *PN = Phi.PN; 1362 1363 // Only do the rewrite when the ExitValue can be expanded cheaply. 1364 // If LoopCanBeDel is true, rewrite exit value aggressively. 1365 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) 1366 continue; 1367 1368 Value *ExitVal = Rewriter.expandCodeFor( 1369 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1370 1371 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1372 << '\n' 1373 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1374 1375 #ifndef NDEBUG 1376 // If we reuse an instruction from a loop which is neither L nor one of 1377 // its containing loops, we end up breaking LCSSA form for this loop by 1378 // creating a new use of its instruction. 1379 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1380 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1381 if (EVL != L) 1382 assert(EVL->contains(L) && "LCSSA breach detected!"); 1383 #endif 1384 1385 NumReplaced++; 1386 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1387 PN->setIncomingValue(Phi.Ith, ExitVal); 1388 // It's necessary to tell ScalarEvolution about this explicitly so that 1389 // it can walk the def-use list and forget all SCEVs, as it may not be 1390 // watching the PHI itself. Once the new exit value is in place, there 1391 // may not be a def-use connection between the loop and every instruction 1392 // which got a SCEVAddRecExpr for that loop. 1393 SE->forgetValue(PN); 1394 1395 // If this instruction is dead now, delete it. Don't do it now to avoid 1396 // invalidating iterators. 1397 if (isInstructionTriviallyDead(Inst, TLI)) 1398 DeadInsts.push_back(Inst); 1399 1400 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1401 if (PN->getNumIncomingValues() == 1 && 1402 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1403 PN->replaceAllUsesWith(ExitVal); 1404 PN->eraseFromParent(); 1405 } 1406 } 1407 1408 // The insertion point instruction may have been deleted; clear it out 1409 // so that the rewriter doesn't trip over it later. 1410 Rewriter.clearInsertPoint(); 1411 return NumReplaced; 1412 } 1413 1414 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1415 /// \p OrigLoop. 1416 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1417 Loop *RemainderLoop, uint64_t UF) { 1418 assert(UF > 0 && "Zero unrolled factor is not supported"); 1419 assert(UnrolledLoop != RemainderLoop && 1420 "Unrolled and Remainder loops are expected to distinct"); 1421 1422 // Get number of iterations in the original scalar loop. 1423 unsigned OrigLoopInvocationWeight = 0; 1424 Optional<unsigned> OrigAverageTripCount = 1425 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1426 if (!OrigAverageTripCount) 1427 return; 1428 1429 // Calculate number of iterations in unrolled loop. 1430 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1431 // Calculate number of iterations for remainder loop. 1432 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1433 1434 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1435 OrigLoopInvocationWeight); 1436 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1437 OrigLoopInvocationWeight); 1438 } 1439 1440 /// Utility that implements appending of loops onto a worklist. 1441 /// Loops are added in preorder (analogous for reverse postorder for trees), 1442 /// and the worklist is processed LIFO. 1443 template <typename RangeT> 1444 void llvm::appendReversedLoopsToWorklist( 1445 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1446 // We use an internal worklist to build up the preorder traversal without 1447 // recursion. 1448 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1449 1450 // We walk the initial sequence of loops in reverse because we generally want 1451 // to visit defs before uses and the worklist is LIFO. 1452 for (Loop *RootL : Loops) { 1453 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1454 assert(PreOrderWorklist.empty() && 1455 "Must start with an empty preorder walk worklist."); 1456 PreOrderWorklist.push_back(RootL); 1457 do { 1458 Loop *L = PreOrderWorklist.pop_back_val(); 1459 PreOrderWorklist.append(L->begin(), L->end()); 1460 PreOrderLoops.push_back(L); 1461 } while (!PreOrderWorklist.empty()); 1462 1463 Worklist.insert(std::move(PreOrderLoops)); 1464 PreOrderLoops.clear(); 1465 } 1466 } 1467 1468 template <typename RangeT> 1469 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1470 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1471 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1472 } 1473 1474 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1475 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1476 1477 template void 1478 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1479 SmallPriorityWorklist<Loop *, 4> &Worklist); 1480 1481 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1482 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1483 appendReversedLoopsToWorklist(LI, Worklist); 1484 } 1485 1486 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1487 LoopInfo *LI, LPPassManager *LPM) { 1488 Loop &New = *LI->AllocateLoop(); 1489 if (PL) 1490 PL->addChildLoop(&New); 1491 else 1492 LI->addTopLevelLoop(&New); 1493 1494 if (LPM) 1495 LPM->addLoop(New); 1496 1497 // Add all of the blocks in L to the new loop. 1498 for (BasicBlock *BB : L->blocks()) 1499 if (LI->getLoopFor(BB) == L) 1500 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI); 1501 1502 // Add all of the subloops to the new loop. 1503 for (Loop *I : *L) 1504 cloneLoop(I, &New, VM, LI, LPM); 1505 1506 return &New; 1507 } 1508 1509 /// IR Values for the lower and upper bounds of a pointer evolution. We 1510 /// need to use value-handles because SCEV expansion can invalidate previously 1511 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1512 /// a previous one. 1513 struct PointerBounds { 1514 TrackingVH<Value> Start; 1515 TrackingVH<Value> End; 1516 }; 1517 1518 /// Expand code for the lower and upper bound of the pointer group \p CG 1519 /// in \p TheLoop. \return the values for the bounds. 1520 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1521 Loop *TheLoop, Instruction *Loc, 1522 SCEVExpander &Exp) { 1523 LLVMContext &Ctx = Loc->getContext(); 1524 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); 1525 1526 Value *Start = nullptr, *End = nullptr; 1527 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1528 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1529 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1530 if (CG->NeedsFreeze) { 1531 IRBuilder<> Builder(Loc); 1532 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr"); 1533 End = Builder.CreateFreeze(End, End->getName() + ".fr"); 1534 } 1535 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1536 return {Start, End}; 1537 } 1538 1539 /// Turns a collection of checks into a collection of expanded upper and 1540 /// lower bounds for both pointers in the check. 1541 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1542 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1543 Instruction *Loc, SCEVExpander &Exp) { 1544 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1545 1546 // Here we're relying on the SCEV Expander's cache to only emit code for the 1547 // same bounds once. 1548 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1549 [&](const RuntimePointerCheck &Check) { 1550 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1551 Second = expandBounds(Check.second, L, Loc, Exp); 1552 return std::make_pair(First, Second); 1553 }); 1554 1555 return ChecksWithBounds; 1556 } 1557 1558 Value *llvm::addRuntimeChecks( 1559 Instruction *Loc, Loop *TheLoop, 1560 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1561 SCEVExpander &Exp) { 1562 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1563 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1564 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1565 1566 LLVMContext &Ctx = Loc->getContext(); 1567 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1568 Loc->getModule()->getDataLayout()); 1569 ChkBuilder.SetInsertPoint(Loc); 1570 // Our instructions might fold to a constant. 1571 Value *MemoryRuntimeCheck = nullptr; 1572 1573 for (const auto &Check : ExpandedChecks) { 1574 const PointerBounds &A = Check.first, &B = Check.second; 1575 // Check if two pointers (A and B) conflict where conflict is computed as: 1576 // start(A) <= end(B) && start(B) <= end(A) 1577 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1578 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1579 1580 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1581 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1582 "Trying to bounds check pointers with different address spaces"); 1583 1584 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1585 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1586 1587 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1588 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1589 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1590 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1591 1592 // [A|B].Start points to the first accessed byte under base [A|B]. 1593 // [A|B].End points to the last accessed byte, plus one. 1594 // There is no conflict when the intervals are disjoint: 1595 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1596 // 1597 // bound0 = (B.Start < A.End) 1598 // bound1 = (A.Start < B.End) 1599 // IsConflict = bound0 & bound1 1600 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1601 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1602 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1603 if (MemoryRuntimeCheck) { 1604 IsConflict = 1605 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1606 } 1607 MemoryRuntimeCheck = IsConflict; 1608 } 1609 1610 return MemoryRuntimeCheck; 1611 } 1612 1613 Value *llvm::addDiffRuntimeChecks( 1614 Instruction *Loc, Loop *TheLoop, ArrayRef<PointerDiffInfo> Checks, 1615 SCEVExpander &Expander, 1616 function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) { 1617 1618 LLVMContext &Ctx = Loc->getContext(); 1619 IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx, 1620 Loc->getModule()->getDataLayout()); 1621 ChkBuilder.SetInsertPoint(Loc); 1622 // Our instructions might fold to a constant. 1623 Value *MemoryRuntimeCheck = nullptr; 1624 1625 for (auto &C : Checks) { 1626 Type *Ty = C.SinkStart->getType(); 1627 // Compute VF * IC * AccessSize. 1628 auto *VFTimesUFTimesSize = 1629 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()), 1630 ConstantInt::get(Ty, IC * C.AccessSize)); 1631 Value *Sink = Expander.expandCodeFor(C.SinkStart, Ty, Loc); 1632 Value *Src = Expander.expandCodeFor(C.SrcStart, Ty, Loc); 1633 if (C.NeedsFreeze) { 1634 IRBuilder<> Builder(Loc); 1635 Sink = Builder.CreateFreeze(Sink, Sink->getName() + ".fr"); 1636 Src = Builder.CreateFreeze(Src, Src->getName() + ".fr"); 1637 } 1638 Value *Diff = ChkBuilder.CreateSub(Sink, Src); 1639 Value *IsConflict = 1640 ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check"); 1641 1642 if (MemoryRuntimeCheck) { 1643 IsConflict = 1644 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1645 } 1646 MemoryRuntimeCheck = IsConflict; 1647 } 1648 1649 return MemoryRuntimeCheck; 1650 } 1651 1652 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1653 unsigned MSSAThreshold, 1654 MemorySSA &MSSA, 1655 AAResults &AA) { 1656 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1657 if (!TI || !TI->isConditional()) 1658 return {}; 1659 1660 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1661 // The case with the condition outside the loop should already be handled 1662 // earlier. 1663 if (!CondI || !L.contains(CondI)) 1664 return {}; 1665 1666 SmallVector<Instruction *> InstToDuplicate; 1667 InstToDuplicate.push_back(CondI); 1668 1669 SmallVector<Value *, 4> WorkList; 1670 WorkList.append(CondI->op_begin(), CondI->op_end()); 1671 1672 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1673 SmallVector<MemoryLocation, 4> AccessedLocs; 1674 while (!WorkList.empty()) { 1675 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1676 if (!I || !L.contains(I)) 1677 continue; 1678 1679 // TODO: support additional instructions. 1680 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1681 return {}; 1682 1683 // Do not duplicate volatile and atomic loads. 1684 if (auto *LI = dyn_cast<LoadInst>(I)) 1685 if (LI->isVolatile() || LI->isAtomic()) 1686 return {}; 1687 1688 InstToDuplicate.push_back(I); 1689 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1690 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1691 // Queue the defining access to check for alias checks. 1692 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1693 AccessedLocs.push_back(MemoryLocation::get(I)); 1694 } else { 1695 // MemoryDefs may clobber the location or may be atomic memory 1696 // operations. Bail out. 1697 return {}; 1698 } 1699 } 1700 WorkList.append(I->op_begin(), I->op_end()); 1701 } 1702 1703 if (InstToDuplicate.empty()) 1704 return {}; 1705 1706 SmallVector<BasicBlock *, 4> ExitingBlocks; 1707 L.getExitingBlocks(ExitingBlocks); 1708 auto HasNoClobbersOnPath = 1709 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1710 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1711 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1712 -> Optional<IVConditionInfo> { 1713 IVConditionInfo Info; 1714 // First, collect all blocks in the loop that are on a patch from Succ 1715 // to the header. 1716 SmallVector<BasicBlock *, 4> WorkList; 1717 WorkList.push_back(Succ); 1718 WorkList.push_back(Header); 1719 SmallPtrSet<BasicBlock *, 4> Seen; 1720 Seen.insert(Header); 1721 Info.PathIsNoop &= 1722 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1723 1724 while (!WorkList.empty()) { 1725 BasicBlock *Current = WorkList.pop_back_val(); 1726 if (!L.contains(Current)) 1727 continue; 1728 const auto &SeenIns = Seen.insert(Current); 1729 if (!SeenIns.second) 1730 continue; 1731 1732 Info.PathIsNoop &= all_of( 1733 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1734 WorkList.append(succ_begin(Current), succ_end(Current)); 1735 } 1736 1737 // Require at least 2 blocks on a path through the loop. This skips 1738 // paths that directly exit the loop. 1739 if (Seen.size() < 2) 1740 return {}; 1741 1742 // Next, check if there are any MemoryDefs that are on the path through 1743 // the loop (in the Seen set) and they may-alias any of the locations in 1744 // AccessedLocs. If that is the case, they may modify the condition and 1745 // partial unswitching is not possible. 1746 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1747 while (!AccessesToCheck.empty()) { 1748 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1749 auto SeenI = SeenAccesses.insert(Current); 1750 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1751 continue; 1752 1753 // Bail out if exceeded the threshold. 1754 if (SeenAccesses.size() >= MSSAThreshold) 1755 return {}; 1756 1757 // MemoryUse are read-only accesses. 1758 if (isa<MemoryUse>(Current)) 1759 continue; 1760 1761 // For a MemoryDef, check if is aliases any of the location feeding 1762 // the original condition. 1763 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1764 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1765 return isModSet( 1766 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1767 })) 1768 return {}; 1769 } 1770 1771 for (Use &U : Current->uses()) 1772 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1773 } 1774 1775 // We could also allow loops with known trip counts without mustprogress, 1776 // but ScalarEvolution may not be available. 1777 Info.PathIsNoop &= isMustProgress(&L); 1778 1779 // If the path is considered a no-op so far, check if it reaches a 1780 // single exit block without any phis. This ensures no values from the 1781 // loop are used outside of the loop. 1782 if (Info.PathIsNoop) { 1783 for (auto *Exiting : ExitingBlocks) { 1784 if (!Seen.contains(Exiting)) 1785 continue; 1786 for (auto *Succ : successors(Exiting)) { 1787 if (L.contains(Succ)) 1788 continue; 1789 1790 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1791 (!Info.ExitForPath || Info.ExitForPath == Succ); 1792 if (!Info.PathIsNoop) 1793 break; 1794 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1795 "cannot have multiple exit blocks"); 1796 Info.ExitForPath = Succ; 1797 } 1798 } 1799 } 1800 if (!Info.ExitForPath) 1801 Info.PathIsNoop = false; 1802 1803 Info.InstToDuplicate = InstToDuplicate; 1804 return Info; 1805 }; 1806 1807 // If we branch to the same successor, partial unswitching will not be 1808 // beneficial. 1809 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1810 return {}; 1811 1812 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1813 AccessesToCheck)) { 1814 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1815 return Info; 1816 } 1817 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1818 AccessesToCheck)) { 1819 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1820 return Info; 1821 } 1822 1823 return {}; 1824 } 1825