1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<bool> ForceReductionIntrinsic(
58     "force-reduction-intrinsics", cl::Hidden,
59     cl::desc("Force creating reduction intrinsics for testing."),
60     cl::init(false));
61 
62 #define DEBUG_TYPE "loop-utils"
63 
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66 
67 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68                                    MemorySSAUpdater *MSSAU,
69                                    bool PreserveLCSSA) {
70   bool Changed = false;
71 
72   // We re-use a vector for the in-loop predecesosrs.
73   SmallVector<BasicBlock *, 4> InLoopPredecessors;
74 
75   auto RewriteExit = [&](BasicBlock *BB) {
76     assert(InLoopPredecessors.empty() &&
77            "Must start with an empty predecessors list!");
78     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79 
80     // See if there are any non-loop predecessors of this exit block and
81     // keep track of the in-loop predecessors.
82     bool IsDedicatedExit = true;
83     for (auto *PredBB : predecessors(BB))
84       if (L->contains(PredBB)) {
85         if (isa<IndirectBrInst>(PredBB->getTerminator()))
86           // We cannot rewrite exiting edges from an indirectbr.
87           return false;
88         if (isa<CallBrInst>(PredBB->getTerminator()))
89           // We cannot rewrite exiting edges from a callbr.
90           return false;
91 
92         InLoopPredecessors.push_back(PredBB);
93       } else {
94         IsDedicatedExit = false;
95       }
96 
97     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98 
99     // Nothing to do if this is already a dedicated exit.
100     if (IsDedicatedExit)
101       return false;
102 
103     auto *NewExitBB = SplitBlockPredecessors(
104         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105 
106     if (!NewExitBB)
107       LLVM_DEBUG(
108           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109                  << *L << "\n");
110     else
111       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112                         << NewExitBB->getName() << "\n");
113     return true;
114   };
115 
116   // Walk the exit blocks directly rather than building up a data structure for
117   // them, but only visit each one once.
118   SmallPtrSet<BasicBlock *, 4> Visited;
119   for (auto *BB : L->blocks())
120     for (auto *SuccBB : successors(BB)) {
121       // We're looking for exit blocks so skip in-loop successors.
122       if (L->contains(SuccBB))
123         continue;
124 
125       // Visit each exit block exactly once.
126       if (!Visited.insert(SuccBB).second)
127         continue;
128 
129       Changed |= RewriteExit(SuccBB);
130     }
131 
132   return Changed;
133 }
134 
135 /// Returns the instructions that use values defined in the loop.
136 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137   SmallVector<Instruction *, 8> UsedOutside;
138 
139   for (auto *Block : L->getBlocks())
140     // FIXME: I believe that this could use copy_if if the Inst reference could
141     // be adapted into a pointer.
142     for (auto &Inst : *Block) {
143       auto Users = Inst.users();
144       if (any_of(Users, [&](User *U) {
145             auto *Use = cast<Instruction>(U);
146             return !L->contains(Use->getParent());
147           }))
148         UsedOutside.push_back(&Inst);
149     }
150 
151   return UsedOutside;
152 }
153 
154 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155   // By definition, all loop passes need the LoopInfo analysis and the
156   // Dominator tree it depends on. Because they all participate in the loop
157   // pass manager, they must also preserve these.
158   AU.addRequired<DominatorTreeWrapperPass>();
159   AU.addPreserved<DominatorTreeWrapperPass>();
160   AU.addRequired<LoopInfoWrapperPass>();
161   AU.addPreserved<LoopInfoWrapperPass>();
162 
163   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164   // here because users shouldn't directly get them from this header.
165   extern char &LoopSimplifyID;
166   extern char &LCSSAID;
167   AU.addRequiredID(LoopSimplifyID);
168   AU.addPreservedID(LoopSimplifyID);
169   AU.addRequiredID(LCSSAID);
170   AU.addPreservedID(LCSSAID);
171   // This is used in the LPPassManager to perform LCSSA verification on passes
172   // which preserve lcssa form
173   AU.addRequired<LCSSAVerificationPass>();
174   AU.addPreserved<LCSSAVerificationPass>();
175 
176   // Loop passes are designed to run inside of a loop pass manager which means
177   // that any function analyses they require must be required by the first loop
178   // pass in the manager (so that it is computed before the loop pass manager
179   // runs) and preserved by all loop pasess in the manager. To make this
180   // reasonably robust, the set needed for most loop passes is maintained here.
181   // If your loop pass requires an analysis not listed here, you will need to
182   // carefully audit the loop pass manager nesting structure that results.
183   AU.addRequired<AAResultsWrapperPass>();
184   AU.addPreserved<AAResultsWrapperPass>();
185   AU.addPreserved<BasicAAWrapperPass>();
186   AU.addPreserved<GlobalsAAWrapperPass>();
187   AU.addPreserved<SCEVAAWrapperPass>();
188   AU.addRequired<ScalarEvolutionWrapperPass>();
189   AU.addPreserved<ScalarEvolutionWrapperPass>();
190   // FIXME: When all loop passes preserve MemorySSA, it can be required and
191   // preserved here instead of the individual handling in each pass.
192 }
193 
194 /// Manually defined generic "LoopPass" dependency initialization. This is used
195 /// to initialize the exact set of passes from above in \c
196 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197 /// with:
198 ///
199 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
200 ///
201 /// As-if "LoopPass" were a pass.
202 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213 }
214 
215 /// Create MDNode for input string.
216 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217   LLVMContext &Context = TheLoop->getHeader()->getContext();
218   Metadata *MDs[] = {
219       MDString::get(Context, Name),
220       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221   return MDNode::get(Context, MDs);
222 }
223 
224 /// Set input string into loop metadata by keeping other values intact.
225 /// If the string is already in loop metadata update value if it is
226 /// different.
227 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228                                    unsigned V) {
229   SmallVector<Metadata *, 4> MDs(1);
230   // If the loop already has metadata, retain it.
231   MDNode *LoopID = TheLoop->getLoopID();
232   if (LoopID) {
233     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235       // If it is of form key = value, try to parse it.
236       if (Node->getNumOperands() == 2) {
237         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238         if (S && S->getString().equals(StringMD)) {
239           ConstantInt *IntMD =
240               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241           if (IntMD && IntMD->getSExtValue() == V)
242             // It is already in place. Do nothing.
243             return;
244           // We need to update the value, so just skip it here and it will
245           // be added after copying other existed nodes.
246           continue;
247         }
248       }
249       MDs.push_back(Node);
250     }
251   }
252   // Add new metadata.
253   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254   // Replace current metadata node with new one.
255   LLVMContext &Context = TheLoop->getHeader()->getContext();
256   MDNode *NewLoopID = MDNode::get(Context, MDs);
257   // Set operand 0 to refer to the loop id itself.
258   NewLoopID->replaceOperandWith(0, NewLoopID);
259   TheLoop->setLoopID(NewLoopID);
260 }
261 
262 /// Find string metadata for loop
263 ///
264 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265 /// operand or null otherwise.  If the string metadata is not found return
266 /// Optional's not-a-value.
267 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268                                                             StringRef Name) {
269   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270   if (!MD)
271     return None;
272   switch (MD->getNumOperands()) {
273   case 1:
274     return nullptr;
275   case 2:
276     return &MD->getOperand(1);
277   default:
278     llvm_unreachable("loop metadata has 0 or 1 operand");
279   }
280 }
281 
282 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283                                                    StringRef Name) {
284   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285   if (!MD)
286     return None;
287   switch (MD->getNumOperands()) {
288   case 1:
289     // When the value is absent it is interpreted as 'attribute set'.
290     return true;
291   case 2:
292     if (ConstantInt *IntMD =
293             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294       return IntMD->getZExtValue();
295     return true;
296   }
297   llvm_unreachable("unexpected number of options");
298 }
299 
300 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302 }
303 
304 Optional<ElementCount>
305 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
306   Optional<int> Width =
307       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
308 
309   if (Width.hasValue()) {
310     Optional<int> IsScalable = getOptionalIntLoopAttribute(
311         TheLoop, "llvm.loop.vectorize.scalable.enable");
312     return ElementCount::get(*Width,
313                              IsScalable.hasValue() ? *IsScalable : false);
314   }
315 
316   return None;
317 }
318 
319 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
320                                                       StringRef Name) {
321   const MDOperand *AttrMD =
322       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
323   if (!AttrMD)
324     return None;
325 
326   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
327   if (!IntMD)
328     return None;
329 
330   return IntMD->getSExtValue();
331 }
332 
333 Optional<MDNode *> llvm::makeFollowupLoopID(
334     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
335     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
336   if (!OrigLoopID) {
337     if (AlwaysNew)
338       return nullptr;
339     return None;
340   }
341 
342   assert(OrigLoopID->getOperand(0) == OrigLoopID);
343 
344   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
345   bool InheritSomeAttrs =
346       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
347   SmallVector<Metadata *, 8> MDs;
348   MDs.push_back(nullptr);
349 
350   bool Changed = false;
351   if (InheritAllAttrs || InheritSomeAttrs) {
352     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
353       MDNode *Op = cast<MDNode>(Existing.get());
354 
355       auto InheritThisAttribute = [InheritSomeAttrs,
356                                    InheritOptionsExceptPrefix](MDNode *Op) {
357         if (!InheritSomeAttrs)
358           return false;
359 
360         // Skip malformatted attribute metadata nodes.
361         if (Op->getNumOperands() == 0)
362           return true;
363         Metadata *NameMD = Op->getOperand(0).get();
364         if (!isa<MDString>(NameMD))
365           return true;
366         StringRef AttrName = cast<MDString>(NameMD)->getString();
367 
368         // Do not inherit excluded attributes.
369         return !AttrName.startswith(InheritOptionsExceptPrefix);
370       };
371 
372       if (InheritThisAttribute(Op))
373         MDs.push_back(Op);
374       else
375         Changed = true;
376     }
377   } else {
378     // Modified if we dropped at least one attribute.
379     Changed = OrigLoopID->getNumOperands() > 1;
380   }
381 
382   bool HasAnyFollowup = false;
383   for (StringRef OptionName : FollowupOptions) {
384     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
385     if (!FollowupNode)
386       continue;
387 
388     HasAnyFollowup = true;
389     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
390       MDs.push_back(Option.get());
391       Changed = true;
392     }
393   }
394 
395   // Attributes of the followup loop not specified explicity, so signal to the
396   // transformation pass to add suitable attributes.
397   if (!AlwaysNew && !HasAnyFollowup)
398     return None;
399 
400   // If no attributes were added or remove, the previous loop Id can be reused.
401   if (!AlwaysNew && !Changed)
402     return OrigLoopID;
403 
404   // No attributes is equivalent to having no !llvm.loop metadata at all.
405   if (MDs.size() == 1)
406     return nullptr;
407 
408   // Build the new loop ID.
409   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
410   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
411   return FollowupLoopID;
412 }
413 
414 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
415   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
416 }
417 
418 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
419   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
420 }
421 
422 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
423   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
424     return TM_SuppressedByUser;
425 
426   Optional<int> Count =
427       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
428   if (Count.hasValue())
429     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
430 
431   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
432     return TM_ForcedByUser;
433 
434   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
435     return TM_ForcedByUser;
436 
437   if (hasDisableAllTransformsHint(L))
438     return TM_Disable;
439 
440   return TM_Unspecified;
441 }
442 
443 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
444   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
445     return TM_SuppressedByUser;
446 
447   Optional<int> Count =
448       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
449   if (Count.hasValue())
450     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
451 
452   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
453     return TM_ForcedByUser;
454 
455   if (hasDisableAllTransformsHint(L))
456     return TM_Disable;
457 
458   return TM_Unspecified;
459 }
460 
461 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
462   Optional<bool> Enable =
463       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
464 
465   if (Enable == false)
466     return TM_SuppressedByUser;
467 
468   Optional<ElementCount> VectorizeWidth =
469       getOptionalElementCountLoopAttribute(L);
470   Optional<int> InterleaveCount =
471       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
472 
473   // 'Forcing' vector width and interleave count to one effectively disables
474   // this tranformation.
475   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
476       InterleaveCount == 1)
477     return TM_SuppressedByUser;
478 
479   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
480     return TM_Disable;
481 
482   if (Enable == true)
483     return TM_ForcedByUser;
484 
485   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
486     return TM_Disable;
487 
488   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
489     return TM_Enable;
490 
491   if (hasDisableAllTransformsHint(L))
492     return TM_Disable;
493 
494   return TM_Unspecified;
495 }
496 
497 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
498   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
499     return TM_ForcedByUser;
500 
501   if (hasDisableAllTransformsHint(L))
502     return TM_Disable;
503 
504   return TM_Unspecified;
505 }
506 
507 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
508   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
509     return TM_SuppressedByUser;
510 
511   if (hasDisableAllTransformsHint(L))
512     return TM_Disable;
513 
514   return TM_Unspecified;
515 }
516 
517 /// Does a BFS from a given node to all of its children inside a given loop.
518 /// The returned vector of nodes includes the starting point.
519 SmallVector<DomTreeNode *, 16>
520 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
521   SmallVector<DomTreeNode *, 16> Worklist;
522   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
523     // Only include subregions in the top level loop.
524     BasicBlock *BB = DTN->getBlock();
525     if (CurLoop->contains(BB))
526       Worklist.push_back(DTN);
527   };
528 
529   AddRegionToWorklist(N);
530 
531   for (size_t I = 0; I < Worklist.size(); I++) {
532     for (DomTreeNode *Child : Worklist[I]->children())
533       AddRegionToWorklist(Child);
534   }
535 
536   return Worklist;
537 }
538 
539 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
540                           LoopInfo *LI, MemorySSA *MSSA) {
541   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
542   auto *Preheader = L->getLoopPreheader();
543   assert(Preheader && "Preheader should exist!");
544 
545   std::unique_ptr<MemorySSAUpdater> MSSAU;
546   if (MSSA)
547     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
548 
549   // Now that we know the removal is safe, remove the loop by changing the
550   // branch from the preheader to go to the single exit block.
551   //
552   // Because we're deleting a large chunk of code at once, the sequence in which
553   // we remove things is very important to avoid invalidation issues.
554 
555   // Tell ScalarEvolution that the loop is deleted. Do this before
556   // deleting the loop so that ScalarEvolution can look at the loop
557   // to determine what it needs to clean up.
558   if (SE)
559     SE->forgetLoop(L);
560 
561   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
562   assert(OldBr && "Preheader must end with a branch");
563   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
564   // Connect the preheader to the exit block. Keep the old edge to the header
565   // around to perform the dominator tree update in two separate steps
566   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
567   // preheader -> header.
568   //
569   //
570   // 0.  Preheader          1.  Preheader           2.  Preheader
571   //        |                    |   |                   |
572   //        V                    |   V                   |
573   //      Header <--\            | Header <--\           | Header <--\
574   //       |  |     |            |  |  |     |           |  |  |     |
575   //       |  V     |            |  |  V     |           |  |  V     |
576   //       | Body --/            |  | Body --/           |  | Body --/
577   //       V                     V  V                    V  V
578   //      Exit                   Exit                    Exit
579   //
580   // By doing this is two separate steps we can perform the dominator tree
581   // update without using the batch update API.
582   //
583   // Even when the loop is never executed, we cannot remove the edge from the
584   // source block to the exit block. Consider the case where the unexecuted loop
585   // branches back to an outer loop. If we deleted the loop and removed the edge
586   // coming to this inner loop, this will break the outer loop structure (by
587   // deleting the backedge of the outer loop). If the outer loop is indeed a
588   // non-loop, it will be deleted in a future iteration of loop deletion pass.
589   IRBuilder<> Builder(OldBr);
590 
591   auto *ExitBlock = L->getUniqueExitBlock();
592   if (ExitBlock) {
593     assert(ExitBlock && "Should have a unique exit block!");
594     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
595 
596     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
597     // Remove the old branch. The conditional branch becomes a new terminator.
598     OldBr->eraseFromParent();
599 
600     // Rewrite phis in the exit block to get their inputs from the Preheader
601     // instead of the exiting block.
602     for (PHINode &P : ExitBlock->phis()) {
603       // Set the zero'th element of Phi to be from the preheader and remove all
604       // other incoming values. Given the loop has dedicated exits, all other
605       // incoming values must be from the exiting blocks.
606       int PredIndex = 0;
607       P.setIncomingBlock(PredIndex, Preheader);
608       // Removes all incoming values from all other exiting blocks (including
609       // duplicate values from an exiting block).
610       // Nuke all entries except the zero'th entry which is the preheader entry.
611       // NOTE! We need to remove Incoming Values in the reverse order as done
612       // below, to keep the indices valid for deletion (removeIncomingValues
613       // updates getNumIncomingValues and shifts all values down into the
614       // operand being deleted).
615       for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
616         P.removeIncomingValue(e - i, false);
617 
618       assert((P.getNumIncomingValues() == 1 &&
619               P.getIncomingBlock(PredIndex) == Preheader) &&
620              "Should have exactly one value and that's from the preheader!");
621     }
622 
623     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
624     if (DT) {
625       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
626       if (MSSA) {
627         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
628                             *DT);
629         if (VerifyMemorySSA)
630           MSSA->verifyMemorySSA();
631       }
632     }
633 
634     // Disconnect the loop body by branching directly to its exit.
635     Builder.SetInsertPoint(Preheader->getTerminator());
636     Builder.CreateBr(ExitBlock);
637     // Remove the old branch.
638     Preheader->getTerminator()->eraseFromParent();
639 
640     if (DT) {
641       DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
642       if (MSSA) {
643         MSSAU->applyUpdates(
644             {{DominatorTree::Delete, Preheader, L->getHeader()}}, *DT);
645         SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
646                                                      L->block_end());
647         MSSAU->removeBlocks(DeadBlockSet);
648         if (VerifyMemorySSA)
649           MSSA->verifyMemorySSA();
650       }
651     }
652   } else {
653     assert(L->hasNoExitBlocks() &&
654            "Loop should have either zero or one exit blocks.");
655     Builder.SetInsertPoint(OldBr);
656     Builder.CreateUnreachable();
657     Preheader->getTerminator()->eraseFromParent();
658   }
659 
660   // Use a map to unique and a vector to guarantee deterministic ordering.
661   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
662   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
663 
664   if (ExitBlock) {
665     // Given LCSSA form is satisfied, we should not have users of instructions
666     // within the dead loop outside of the loop. However, LCSSA doesn't take
667     // unreachable uses into account. We handle them here.
668     // We could do it after drop all references (in this case all users in the
669     // loop will be already eliminated and we have less work to do but according
670     // to API doc of User::dropAllReferences only valid operation after dropping
671     // references, is deletion. So let's substitute all usages of
672     // instruction from the loop with undef value of corresponding type first.
673     for (auto *Block : L->blocks())
674       for (Instruction &I : *Block) {
675         auto *Undef = UndefValue::get(I.getType());
676         for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
677              UI != E;) {
678           Use &U = *UI;
679           ++UI;
680           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
681             if (L->contains(Usr->getParent()))
682               continue;
683           // If we have a DT then we can check that uses outside a loop only in
684           // unreachable block.
685           if (DT)
686             assert(!DT->isReachableFromEntry(U) &&
687                    "Unexpected user in reachable block");
688           U.set(Undef);
689         }
690         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
691         if (!DVI)
692           continue;
693         auto Key =
694             DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
695         if (Key != DeadDebugSet.end())
696           continue;
697         DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
698         DeadDebugInst.push_back(DVI);
699       }
700 
701     // After the loop has been deleted all the values defined and modified
702     // inside the loop are going to be unavailable.
703     // Since debug values in the loop have been deleted, inserting an undef
704     // dbg.value truncates the range of any dbg.value before the loop where the
705     // loop used to be. This is particularly important for constant values.
706     DIBuilder DIB(*ExitBlock->getModule());
707     Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
708     assert(InsertDbgValueBefore &&
709            "There should be a non-PHI instruction in exit block, else these "
710            "instructions will have no parent.");
711     for (auto *DVI : DeadDebugInst)
712       DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
713                                   DVI->getVariable(), DVI->getExpression(),
714                                   DVI->getDebugLoc(), InsertDbgValueBefore);
715   }
716 
717   // Remove the block from the reference counting scheme, so that we can
718   // delete it freely later.
719   for (auto *Block : L->blocks())
720     Block->dropAllReferences();
721 
722   if (MSSA && VerifyMemorySSA)
723     MSSA->verifyMemorySSA();
724 
725   if (LI) {
726     // Erase the instructions and the blocks without having to worry
727     // about ordering because we already dropped the references.
728     // NOTE: This iteration is safe because erasing the block does not remove
729     // its entry from the loop's block list.  We do that in the next section.
730     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
731          LpI != LpE; ++LpI)
732       (*LpI)->eraseFromParent();
733 
734     // Finally, the blocks from loopinfo.  This has to happen late because
735     // otherwise our loop iterators won't work.
736 
737     SmallPtrSet<BasicBlock *, 8> blocks;
738     blocks.insert(L->block_begin(), L->block_end());
739     for (BasicBlock *BB : blocks)
740       LI->removeBlock(BB);
741 
742     // The last step is to update LoopInfo now that we've eliminated this loop.
743     // Note: LoopInfo::erase remove the given loop and relink its subloops with
744     // its parent. While removeLoop/removeChildLoop remove the given loop but
745     // not relink its subloops, which is what we want.
746     if (Loop *ParentLoop = L->getParentLoop()) {
747       Loop::iterator I = find(*ParentLoop, L);
748       assert(I != ParentLoop->end() && "Couldn't find loop");
749       ParentLoop->removeChildLoop(I);
750     } else {
751       Loop::iterator I = find(*LI, L);
752       assert(I != LI->end() && "Couldn't find loop");
753       LI->removeLoop(I);
754     }
755     LI->destroy(L);
756   }
757 }
758 
759 /// Checks if \p L has single exit through latch block except possibly
760 /// "deoptimizing" exits. Returns branch instruction terminating the loop
761 /// latch if above check is successful, nullptr otherwise.
762 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
763   BasicBlock *Latch = L->getLoopLatch();
764   if (!Latch)
765     return nullptr;
766 
767   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
768   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
769     return nullptr;
770 
771   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
772           LatchBR->getSuccessor(1) == L->getHeader()) &&
773          "At least one edge out of the latch must go to the header");
774 
775   SmallVector<BasicBlock *, 4> ExitBlocks;
776   L->getUniqueNonLatchExitBlocks(ExitBlocks);
777   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
778         return !EB->getTerminatingDeoptimizeCall();
779       }))
780     return nullptr;
781 
782   return LatchBR;
783 }
784 
785 Optional<unsigned>
786 llvm::getLoopEstimatedTripCount(Loop *L,
787                                 unsigned *EstimatedLoopInvocationWeight) {
788   // Support loops with an exiting latch and other existing exists only
789   // deoptimize.
790   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
791   if (!LatchBranch)
792     return None;
793 
794   // To estimate the number of times the loop body was executed, we want to
795   // know the number of times the backedge was taken, vs. the number of times
796   // we exited the loop.
797   uint64_t BackedgeTakenWeight, LatchExitWeight;
798   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
799     return None;
800 
801   if (LatchBranch->getSuccessor(0) != L->getHeader())
802     std::swap(BackedgeTakenWeight, LatchExitWeight);
803 
804   if (!LatchExitWeight)
805     return None;
806 
807   if (EstimatedLoopInvocationWeight)
808     *EstimatedLoopInvocationWeight = LatchExitWeight;
809 
810   // Estimated backedge taken count is a ratio of the backedge taken weight by
811   // the weight of the edge exiting the loop, rounded to nearest.
812   uint64_t BackedgeTakenCount =
813       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
814   // Estimated trip count is one plus estimated backedge taken count.
815   return BackedgeTakenCount + 1;
816 }
817 
818 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
819                                      unsigned EstimatedloopInvocationWeight) {
820   // Support loops with an exiting latch and other existing exists only
821   // deoptimize.
822   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
823   if (!LatchBranch)
824     return false;
825 
826   // Calculate taken and exit weights.
827   unsigned LatchExitWeight = 0;
828   unsigned BackedgeTakenWeight = 0;
829 
830   if (EstimatedTripCount > 0) {
831     LatchExitWeight = EstimatedloopInvocationWeight;
832     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
833   }
834 
835   // Make a swap if back edge is taken when condition is "false".
836   if (LatchBranch->getSuccessor(0) != L->getHeader())
837     std::swap(BackedgeTakenWeight, LatchExitWeight);
838 
839   MDBuilder MDB(LatchBranch->getContext());
840 
841   // Set/Update profile metadata.
842   LatchBranch->setMetadata(
843       LLVMContext::MD_prof,
844       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
845 
846   return true;
847 }
848 
849 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
850                                               ScalarEvolution &SE) {
851   Loop *OuterL = InnerLoop->getParentLoop();
852   if (!OuterL)
853     return true;
854 
855   // Get the backedge taken count for the inner loop
856   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
857   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
858   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
859       !InnerLoopBECountSC->getType()->isIntegerTy())
860     return false;
861 
862   // Get whether count is invariant to the outer loop
863   ScalarEvolution::LoopDisposition LD =
864       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
865   if (LD != ScalarEvolution::LoopInvariant)
866     return false;
867 
868   return true;
869 }
870 
871 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
872                             Value *Right) {
873   CmpInst::Predicate P = CmpInst::ICMP_NE;
874   switch (RK) {
875   default:
876     llvm_unreachable("Unknown min/max recurrence kind");
877   case RecurKind::UMin:
878     P = CmpInst::ICMP_ULT;
879     break;
880   case RecurKind::UMax:
881     P = CmpInst::ICMP_UGT;
882     break;
883   case RecurKind::SMin:
884     P = CmpInst::ICMP_SLT;
885     break;
886   case RecurKind::SMax:
887     P = CmpInst::ICMP_SGT;
888     break;
889   case RecurKind::FMin:
890     P = CmpInst::FCMP_OLT;
891     break;
892   case RecurKind::FMax:
893     P = CmpInst::FCMP_OGT;
894     break;
895   }
896 
897   // We only match FP sequences that are 'fast', so we can unconditionally
898   // set it on any generated instructions.
899   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
900   FastMathFlags FMF;
901   FMF.setFast();
902   Builder.setFastMathFlags(FMF);
903   Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
904   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
905   return Select;
906 }
907 
908 // Helper to generate an ordered reduction.
909 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
910                                  unsigned Op, RecurKind RdxKind,
911                                  ArrayRef<Value *> RedOps) {
912   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
913 
914   // Extract and apply reduction ops in ascending order:
915   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
916   Value *Result = Acc;
917   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
918     Value *Ext =
919         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
920 
921     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
922       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
923                                    "bin.rdx");
924     } else {
925       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
926              "Invalid min/max");
927       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
928     }
929 
930     if (!RedOps.empty())
931       propagateIRFlags(Result, RedOps);
932   }
933 
934   return Result;
935 }
936 
937 // Helper to generate a log2 shuffle reduction.
938 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
939                                  unsigned Op, RecurKind RdxKind,
940                                  ArrayRef<Value *> RedOps) {
941   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
942   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
943   // and vector ops, reducing the set of values being computed by half each
944   // round.
945   assert(isPowerOf2_32(VF) &&
946          "Reduction emission only supported for pow2 vectors!");
947   Value *TmpVec = Src;
948   SmallVector<int, 32> ShuffleMask(VF);
949   for (unsigned i = VF; i != 1; i >>= 1) {
950     // Move the upper half of the vector to the lower half.
951     for (unsigned j = 0; j != i / 2; ++j)
952       ShuffleMask[j] = i / 2 + j;
953 
954     // Fill the rest of the mask with undef.
955     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
956 
957     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
958 
959     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
960       // The builder propagates its fast-math-flags setting.
961       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
962                                    "bin.rdx");
963     } else {
964       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
965              "Invalid min/max");
966       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
967     }
968     if (!RedOps.empty())
969       propagateIRFlags(TmpVec, RedOps);
970 
971     // We may compute the reassociated scalar ops in a way that does not
972     // preserve nsw/nuw etc. Conservatively, drop those flags.
973     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
974       ReductionInst->dropPoisonGeneratingFlags();
975   }
976   // The result is in the first element of the vector.
977   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
978 }
979 
980 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
981                                          const TargetTransformInfo *TTI,
982                                          unsigned Opcode, Value *Src,
983                                          RecurKind RdxKind,
984                                          ArrayRef<Value *> RedOps) {
985   auto *SrcVTy = cast<VectorType>(Src->getType());
986 
987   std::function<Value *()> BuildFunc;
988   switch (Opcode) {
989   case Instruction::Add:
990     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
991     break;
992   case Instruction::Mul:
993     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
994     break;
995   case Instruction::And:
996     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
997     break;
998   case Instruction::Or:
999     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1000     break;
1001   case Instruction::Xor:
1002     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1003     break;
1004   case Instruction::FAdd:
1005     BuildFunc = [&]() {
1006       auto Rdx = Builder.CreateFAddReduce(
1007           ConstantFP::getNegativeZero(SrcVTy->getElementType()), Src);
1008       return Rdx;
1009     };
1010     break;
1011   case Instruction::FMul:
1012     BuildFunc = [&]() {
1013       Type *Ty = SrcVTy->getElementType();
1014       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
1015       return Rdx;
1016     };
1017     break;
1018   case Instruction::ICmp:
1019     switch (RdxKind) {
1020     case RecurKind::SMax:
1021       BuildFunc = [&]() { return Builder.CreateIntMaxReduce(Src, true); };
1022       break;
1023     case RecurKind::SMin:
1024       BuildFunc = [&]() { return Builder.CreateIntMinReduce(Src, true); };
1025       break;
1026     case RecurKind::UMax:
1027       BuildFunc = [&]() { return Builder.CreateIntMaxReduce(Src, false); };
1028       break;
1029     case RecurKind::UMin:
1030       BuildFunc = [&]() { return Builder.CreateIntMinReduce(Src, false); };
1031       break;
1032     default:
1033       llvm_unreachable("Unexpected min/max reduction type");
1034     }
1035     break;
1036   case Instruction::FCmp:
1037     assert((RdxKind == RecurKind::FMax || RdxKind == RecurKind::FMin) &&
1038            "Unexpected min/max reduction type");
1039     if (RdxKind == RecurKind::FMax)
1040       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src); };
1041     else
1042       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src); };
1043     break;
1044   default:
1045     llvm_unreachable("Unhandled opcode");
1046   }
1047   TargetTransformInfo::ReductionFlags RdxFlags;
1048   RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax ||
1049                      RdxKind == RecurKind::UMax ||
1050                      RdxKind == RecurKind::FMax;
1051   RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
1052   if (ForceReductionIntrinsic ||
1053       TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags))
1054     return BuildFunc();
1055   return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps);
1056 }
1057 
1058 Value *llvm::createTargetReduction(IRBuilderBase &B,
1059                                    const TargetTransformInfo *TTI,
1060                                    RecurrenceDescriptor &Desc, Value *Src) {
1061   // TODO: Support in-order reductions based on the recurrence descriptor.
1062   // All ops in the reduction inherit fast-math-flags from the recurrence
1063   // descriptor.
1064   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1065   B.setFastMathFlags(Desc.getFastMathFlags());
1066   return createSimpleTargetReduction(B, TTI, Desc.getRecurrenceBinOp(), Src,
1067                                      Desc.getRecurrenceKind());
1068 }
1069 
1070 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1071   auto *VecOp = dyn_cast<Instruction>(I);
1072   if (!VecOp)
1073     return;
1074   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1075                                             : dyn_cast<Instruction>(OpValue);
1076   if (!Intersection)
1077     return;
1078   const unsigned Opcode = Intersection->getOpcode();
1079   VecOp->copyIRFlags(Intersection);
1080   for (auto *V : VL) {
1081     auto *Instr = dyn_cast<Instruction>(V);
1082     if (!Instr)
1083       continue;
1084     if (OpValue == nullptr || Opcode == Instr->getOpcode())
1085       VecOp->andIRFlags(V);
1086   }
1087 }
1088 
1089 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1090                                  ScalarEvolution &SE) {
1091   const SCEV *Zero = SE.getZero(S->getType());
1092   return SE.isAvailableAtLoopEntry(S, L) &&
1093          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1094 }
1095 
1096 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1097                                     ScalarEvolution &SE) {
1098   const SCEV *Zero = SE.getZero(S->getType());
1099   return SE.isAvailableAtLoopEntry(S, L) &&
1100          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1101 }
1102 
1103 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1104                              bool Signed) {
1105   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1106   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1107     APInt::getMinValue(BitWidth);
1108   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1109   return SE.isAvailableAtLoopEntry(S, L) &&
1110          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1111                                      SE.getConstant(Min));
1112 }
1113 
1114 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1115                              bool Signed) {
1116   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1117   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1118     APInt::getMaxValue(BitWidth);
1119   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1120   return SE.isAvailableAtLoopEntry(S, L) &&
1121          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1122                                      SE.getConstant(Max));
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 // rewriteLoopExitValues - Optimize IV users outside the loop.
1127 // As a side effect, reduces the amount of IV processing within the loop.
1128 //===----------------------------------------------------------------------===//
1129 
1130 // Return true if the SCEV expansion generated by the rewriter can replace the
1131 // original value. SCEV guarantees that it produces the same value, but the way
1132 // it is produced may be illegal IR.  Ideally, this function will only be
1133 // called for verification.
1134 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1135   // If an SCEV expression subsumed multiple pointers, its expansion could
1136   // reassociate the GEP changing the base pointer. This is illegal because the
1137   // final address produced by a GEP chain must be inbounds relative to its
1138   // underlying object. Otherwise basic alias analysis, among other things,
1139   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1140   // producing an expression involving multiple pointers. Until then, we must
1141   // bail out here.
1142   //
1143   // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1144   // because it understands lcssa phis while SCEV does not.
1145   Value *FromPtr = FromVal;
1146   Value *ToPtr = ToVal;
1147   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1148     FromPtr = GEP->getPointerOperand();
1149 
1150   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1151     ToPtr = GEP->getPointerOperand();
1152 
1153   if (FromPtr != FromVal || ToPtr != ToVal) {
1154     // Quickly check the common case
1155     if (FromPtr == ToPtr)
1156       return true;
1157 
1158     // SCEV may have rewritten an expression that produces the GEP's pointer
1159     // operand. That's ok as long as the pointer operand has the same base
1160     // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1161     // base of a recurrence. This handles the case in which SCEV expansion
1162     // converts a pointer type recurrence into a nonrecurrent pointer base
1163     // indexed by an integer recurrence.
1164 
1165     // If the GEP base pointer is a vector of pointers, abort.
1166     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1167       return false;
1168 
1169     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1170     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1171     if (FromBase == ToBase)
1172       return true;
1173 
1174     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1175                       << *FromBase << " != " << *ToBase << "\n");
1176 
1177     return false;
1178   }
1179   return true;
1180 }
1181 
1182 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1183   SmallPtrSet<const Instruction *, 8> Visited;
1184   SmallVector<const Instruction *, 8> WorkList;
1185   Visited.insert(I);
1186   WorkList.push_back(I);
1187   while (!WorkList.empty()) {
1188     const Instruction *Curr = WorkList.pop_back_val();
1189     // This use is outside the loop, nothing to do.
1190     if (!L->contains(Curr))
1191       continue;
1192     // Do we assume it is a "hard" use which will not be eliminated easily?
1193     if (Curr->mayHaveSideEffects())
1194       return true;
1195     // Otherwise, add all its users to worklist.
1196     for (auto U : Curr->users()) {
1197       auto *UI = cast<Instruction>(U);
1198       if (Visited.insert(UI).second)
1199         WorkList.push_back(UI);
1200     }
1201   }
1202   return false;
1203 }
1204 
1205 // Collect information about PHI nodes which can be transformed in
1206 // rewriteLoopExitValues.
1207 struct RewritePhi {
1208   PHINode *PN;               // For which PHI node is this replacement?
1209   unsigned Ith;              // For which incoming value?
1210   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1211   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1212   bool HighCost;               // Is this expansion a high-cost?
1213 
1214   Value *Expansion = nullptr;
1215   bool ValidRewrite = false;
1216 
1217   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1218              bool H)
1219       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1220         HighCost(H) {}
1221 };
1222 
1223 // Check whether it is possible to delete the loop after rewriting exit
1224 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1225 // aggressively.
1226 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1227   BasicBlock *Preheader = L->getLoopPreheader();
1228   // If there is no preheader, the loop will not be deleted.
1229   if (!Preheader)
1230     return false;
1231 
1232   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1233   // We obviate multiple ExitingBlocks case for simplicity.
1234   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1235   // after exit value rewriting, we can enhance the logic here.
1236   SmallVector<BasicBlock *, 4> ExitingBlocks;
1237   L->getExitingBlocks(ExitingBlocks);
1238   SmallVector<BasicBlock *, 8> ExitBlocks;
1239   L->getUniqueExitBlocks(ExitBlocks);
1240   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1241     return false;
1242 
1243   BasicBlock *ExitBlock = ExitBlocks[0];
1244   BasicBlock::iterator BI = ExitBlock->begin();
1245   while (PHINode *P = dyn_cast<PHINode>(BI)) {
1246     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1247 
1248     // If the Incoming value of P is found in RewritePhiSet, we know it
1249     // could be rewritten to use a loop invariant value in transformation
1250     // phase later. Skip it in the loop invariant check below.
1251     bool found = false;
1252     for (const RewritePhi &Phi : RewritePhiSet) {
1253       if (!Phi.ValidRewrite)
1254         continue;
1255       unsigned i = Phi.Ith;
1256       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1257         found = true;
1258         break;
1259       }
1260     }
1261 
1262     Instruction *I;
1263     if (!found && (I = dyn_cast<Instruction>(Incoming)))
1264       if (!L->hasLoopInvariantOperands(I))
1265         return false;
1266 
1267     ++BI;
1268   }
1269 
1270   for (auto *BB : L->blocks())
1271     if (llvm::any_of(*BB, [](Instruction &I) {
1272           return I.mayHaveSideEffects();
1273         }))
1274       return false;
1275 
1276   return true;
1277 }
1278 
1279 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1280                                 ScalarEvolution *SE,
1281                                 const TargetTransformInfo *TTI,
1282                                 SCEVExpander &Rewriter, DominatorTree *DT,
1283                                 ReplaceExitVal ReplaceExitValue,
1284                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1285   // Check a pre-condition.
1286   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1287          "Indvars did not preserve LCSSA!");
1288 
1289   SmallVector<BasicBlock*, 8> ExitBlocks;
1290   L->getUniqueExitBlocks(ExitBlocks);
1291 
1292   SmallVector<RewritePhi, 8> RewritePhiSet;
1293   // Find all values that are computed inside the loop, but used outside of it.
1294   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
1295   // the exit blocks of the loop to find them.
1296   for (BasicBlock *ExitBB : ExitBlocks) {
1297     // If there are no PHI nodes in this exit block, then no values defined
1298     // inside the loop are used on this path, skip it.
1299     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1300     if (!PN) continue;
1301 
1302     unsigned NumPreds = PN->getNumIncomingValues();
1303 
1304     // Iterate over all of the PHI nodes.
1305     BasicBlock::iterator BBI = ExitBB->begin();
1306     while ((PN = dyn_cast<PHINode>(BBI++))) {
1307       if (PN->use_empty())
1308         continue; // dead use, don't replace it
1309 
1310       if (!SE->isSCEVable(PN->getType()))
1311         continue;
1312 
1313       // It's necessary to tell ScalarEvolution about this explicitly so that
1314       // it can walk the def-use list and forget all SCEVs, as it may not be
1315       // watching the PHI itself. Once the new exit value is in place, there
1316       // may not be a def-use connection between the loop and every instruction
1317       // which got a SCEVAddRecExpr for that loop.
1318       SE->forgetValue(PN);
1319 
1320       // Iterate over all of the values in all the PHI nodes.
1321       for (unsigned i = 0; i != NumPreds; ++i) {
1322         // If the value being merged in is not integer or is not defined
1323         // in the loop, skip it.
1324         Value *InVal = PN->getIncomingValue(i);
1325         if (!isa<Instruction>(InVal))
1326           continue;
1327 
1328         // If this pred is for a subloop, not L itself, skip it.
1329         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1330           continue; // The Block is in a subloop, skip it.
1331 
1332         // Check that InVal is defined in the loop.
1333         Instruction *Inst = cast<Instruction>(InVal);
1334         if (!L->contains(Inst))
1335           continue;
1336 
1337         // Okay, this instruction has a user outside of the current loop
1338         // and varies predictably *inside* the loop.  Evaluate the value it
1339         // contains when the loop exits, if possible.  We prefer to start with
1340         // expressions which are true for all exits (so as to maximize
1341         // expression reuse by the SCEVExpander), but resort to per-exit
1342         // evaluation if that fails.
1343         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1344         if (isa<SCEVCouldNotCompute>(ExitValue) ||
1345             !SE->isLoopInvariant(ExitValue, L) ||
1346             !isSafeToExpand(ExitValue, *SE)) {
1347           // TODO: This should probably be sunk into SCEV in some way; maybe a
1348           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
1349           // most SCEV expressions and other recurrence types (e.g. shift
1350           // recurrences).  Is there existing code we can reuse?
1351           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1352           if (isa<SCEVCouldNotCompute>(ExitCount))
1353             continue;
1354           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1355             if (AddRec->getLoop() == L)
1356               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1357           if (isa<SCEVCouldNotCompute>(ExitValue) ||
1358               !SE->isLoopInvariant(ExitValue, L) ||
1359               !isSafeToExpand(ExitValue, *SE))
1360             continue;
1361         }
1362 
1363         // Computing the value outside of the loop brings no benefit if it is
1364         // definitely used inside the loop in a way which can not be optimized
1365         // away. Avoid doing so unless we know we have a value which computes
1366         // the ExitValue already. TODO: This should be merged into SCEV
1367         // expander to leverage its knowledge of existing expressions.
1368         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1369             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1370           continue;
1371 
1372         // Check if expansions of this SCEV would count as being high cost.
1373         bool HighCost = Rewriter.isHighCostExpansion(
1374             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1375 
1376         // Note that we must not perform expansions until after
1377         // we query *all* the costs, because if we perform temporary expansion
1378         // inbetween, one that we might not intend to keep, said expansion
1379         // *may* affect cost calculation of the the next SCEV's we'll query,
1380         // and next SCEV may errneously get smaller cost.
1381 
1382         // Collect all the candidate PHINodes to be rewritten.
1383         RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1384       }
1385     }
1386   }
1387 
1388   // Now that we've done preliminary filtering and billed all the SCEV's,
1389   // we can perform the last sanity check - the expansion must be valid.
1390   for (RewritePhi &Phi : RewritePhiSet) {
1391     Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1392                                            Phi.ExpansionPoint);
1393 
1394     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1395                       << *(Phi.Expansion) << '\n'
1396                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1397 
1398     // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1399     Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1400     if (!Phi.ValidRewrite) {
1401       DeadInsts.push_back(Phi.Expansion);
1402       continue;
1403     }
1404 
1405 #ifndef NDEBUG
1406     // If we reuse an instruction from a loop which is neither L nor one of
1407     // its containing loops, we end up breaking LCSSA form for this loop by
1408     // creating a new use of its instruction.
1409     if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1410       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1411         if (EVL != L)
1412           assert(EVL->contains(L) && "LCSSA breach detected!");
1413 #endif
1414   }
1415 
1416   // TODO: after isValidRewrite() is an assertion, evaluate whether
1417   // it is beneficial to change how we calculate high-cost:
1418   // if we have SCEV 'A' which we know we will expand, should we calculate
1419   // the cost of other SCEV's after expanding SCEV 'A',
1420   // thus potentially giving cost bonus to those other SCEV's?
1421 
1422   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1423   int NumReplaced = 0;
1424 
1425   // Transformation.
1426   for (const RewritePhi &Phi : RewritePhiSet) {
1427     if (!Phi.ValidRewrite)
1428       continue;
1429 
1430     PHINode *PN = Phi.PN;
1431     Value *ExitVal = Phi.Expansion;
1432 
1433     // Only do the rewrite when the ExitValue can be expanded cheaply.
1434     // If LoopCanBeDel is true, rewrite exit value aggressively.
1435     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1436       DeadInsts.push_back(ExitVal);
1437       continue;
1438     }
1439 
1440     NumReplaced++;
1441     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1442     PN->setIncomingValue(Phi.Ith, ExitVal);
1443 
1444     // If this instruction is dead now, delete it. Don't do it now to avoid
1445     // invalidating iterators.
1446     if (isInstructionTriviallyDead(Inst, TLI))
1447       DeadInsts.push_back(Inst);
1448 
1449     // Replace PN with ExitVal if that is legal and does not break LCSSA.
1450     if (PN->getNumIncomingValues() == 1 &&
1451         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1452       PN->replaceAllUsesWith(ExitVal);
1453       PN->eraseFromParent();
1454     }
1455   }
1456 
1457   // The insertion point instruction may have been deleted; clear it out
1458   // so that the rewriter doesn't trip over it later.
1459   Rewriter.clearInsertPoint();
1460   return NumReplaced;
1461 }
1462 
1463 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1464 /// \p OrigLoop.
1465 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1466                                         Loop *RemainderLoop, uint64_t UF) {
1467   assert(UF > 0 && "Zero unrolled factor is not supported");
1468   assert(UnrolledLoop != RemainderLoop &&
1469          "Unrolled and Remainder loops are expected to distinct");
1470 
1471   // Get number of iterations in the original scalar loop.
1472   unsigned OrigLoopInvocationWeight = 0;
1473   Optional<unsigned> OrigAverageTripCount =
1474       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1475   if (!OrigAverageTripCount)
1476     return;
1477 
1478   // Calculate number of iterations in unrolled loop.
1479   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1480   // Calculate number of iterations for remainder loop.
1481   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1482 
1483   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1484                             OrigLoopInvocationWeight);
1485   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1486                             OrigLoopInvocationWeight);
1487 }
1488 
1489 /// Utility that implements appending of loops onto a worklist.
1490 /// Loops are added in preorder (analogous for reverse postorder for trees),
1491 /// and the worklist is processed LIFO.
1492 template <typename RangeT>
1493 void llvm::appendReversedLoopsToWorklist(
1494     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1495   // We use an internal worklist to build up the preorder traversal without
1496   // recursion.
1497   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1498 
1499   // We walk the initial sequence of loops in reverse because we generally want
1500   // to visit defs before uses and the worklist is LIFO.
1501   for (Loop *RootL : Loops) {
1502     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1503     assert(PreOrderWorklist.empty() &&
1504            "Must start with an empty preorder walk worklist.");
1505     PreOrderWorklist.push_back(RootL);
1506     do {
1507       Loop *L = PreOrderWorklist.pop_back_val();
1508       PreOrderWorklist.append(L->begin(), L->end());
1509       PreOrderLoops.push_back(L);
1510     } while (!PreOrderWorklist.empty());
1511 
1512     Worklist.insert(std::move(PreOrderLoops));
1513     PreOrderLoops.clear();
1514   }
1515 }
1516 
1517 template <typename RangeT>
1518 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1519                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1520   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1521 }
1522 
1523 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1524     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1525 
1526 template void
1527 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1528                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
1529 
1530 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1531                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
1532   appendReversedLoopsToWorklist(LI, Worklist);
1533 }
1534 
1535 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1536                       LoopInfo *LI, LPPassManager *LPM) {
1537   Loop &New = *LI->AllocateLoop();
1538   if (PL)
1539     PL->addChildLoop(&New);
1540   else
1541     LI->addTopLevelLoop(&New);
1542 
1543   if (LPM)
1544     LPM->addLoop(New);
1545 
1546   // Add all of the blocks in L to the new loop.
1547   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1548        I != E; ++I)
1549     if (LI->getLoopFor(*I) == L)
1550       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1551 
1552   // Add all of the subloops to the new loop.
1553   for (Loop *I : *L)
1554     cloneLoop(I, &New, VM, LI, LPM);
1555 
1556   return &New;
1557 }
1558 
1559 /// IR Values for the lower and upper bounds of a pointer evolution.  We
1560 /// need to use value-handles because SCEV expansion can invalidate previously
1561 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1562 /// a previous one.
1563 struct PointerBounds {
1564   TrackingVH<Value> Start;
1565   TrackingVH<Value> End;
1566 };
1567 
1568 /// Expand code for the lower and upper bound of the pointer group \p CG
1569 /// in \p TheLoop.  \return the values for the bounds.
1570 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1571                                   Loop *TheLoop, Instruction *Loc,
1572                                   SCEVExpander &Exp, ScalarEvolution *SE) {
1573   // TODO: Add helper to retrieve pointers to CG.
1574   Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1575   const SCEV *Sc = SE->getSCEV(Ptr);
1576 
1577   unsigned AS = Ptr->getType()->getPointerAddressSpace();
1578   LLVMContext &Ctx = Loc->getContext();
1579 
1580   // Use this type for pointer arithmetic.
1581   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1582 
1583   if (SE->isLoopInvariant(Sc, TheLoop)) {
1584     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1585                       << *Ptr << "\n");
1586     // Ptr could be in the loop body. If so, expand a new one at the correct
1587     // location.
1588     Instruction *Inst = dyn_cast<Instruction>(Ptr);
1589     Value *NewPtr = (Inst && TheLoop->contains(Inst))
1590                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1591                         : Ptr;
1592     // We must return a half-open range, which means incrementing Sc.
1593     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1594     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1595     return {NewPtr, NewPtrPlusOne};
1596   } else {
1597     Value *Start = nullptr, *End = nullptr;
1598     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1599     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1600     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1601     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1602                       << "\n");
1603     return {Start, End};
1604   }
1605 }
1606 
1607 /// Turns a collection of checks into a collection of expanded upper and
1608 /// lower bounds for both pointers in the check.
1609 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
1610 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1611              Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1612   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1613 
1614   // Here we're relying on the SCEV Expander's cache to only emit code for the
1615   // same bounds once.
1616   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1617             [&](const RuntimePointerCheck &Check) {
1618               PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1619                             Second =
1620                                 expandBounds(Check.second, L, Loc, Exp, SE);
1621               return std::make_pair(First, Second);
1622             });
1623 
1624   return ChecksWithBounds;
1625 }
1626 
1627 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1628     Instruction *Loc, Loop *TheLoop,
1629     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1630     ScalarEvolution *SE) {
1631   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1632   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1633   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1634   SCEVExpander Exp(*SE, DL, "induction");
1635   auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1636 
1637   LLVMContext &Ctx = Loc->getContext();
1638   Instruction *FirstInst = nullptr;
1639   IRBuilder<> ChkBuilder(Loc);
1640   // Our instructions might fold to a constant.
1641   Value *MemoryRuntimeCheck = nullptr;
1642 
1643   // FIXME: this helper is currently a duplicate of the one in
1644   // LoopVectorize.cpp.
1645   auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1646                          Instruction *Loc) -> Instruction * {
1647     if (FirstInst)
1648       return FirstInst;
1649     if (Instruction *I = dyn_cast<Instruction>(V))
1650       return I->getParent() == Loc->getParent() ? I : nullptr;
1651     return nullptr;
1652   };
1653 
1654   for (const auto &Check : ExpandedChecks) {
1655     const PointerBounds &A = Check.first, &B = Check.second;
1656     // Check if two pointers (A and B) conflict where conflict is computed as:
1657     // start(A) <= end(B) && start(B) <= end(A)
1658     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1659     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1660 
1661     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1662            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1663            "Trying to bounds check pointers with different address spaces");
1664 
1665     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1666     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1667 
1668     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1669     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1670     Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1671     Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1672 
1673     // [A|B].Start points to the first accessed byte under base [A|B].
1674     // [A|B].End points to the last accessed byte, plus one.
1675     // There is no conflict when the intervals are disjoint:
1676     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1677     //
1678     // bound0 = (B.Start < A.End)
1679     // bound1 = (A.Start < B.End)
1680     //  IsConflict = bound0 & bound1
1681     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1682     FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1683     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1684     FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1685     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1686     FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1687     if (MemoryRuntimeCheck) {
1688       IsConflict =
1689           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1690       FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1691     }
1692     MemoryRuntimeCheck = IsConflict;
1693   }
1694 
1695   if (!MemoryRuntimeCheck)
1696     return std::make_pair(nullptr, nullptr);
1697 
1698   // We have to do this trickery because the IRBuilder might fold the check to a
1699   // constant expression in which case there is no Instruction anchored in a
1700   // the block.
1701   Instruction *Check =
1702       BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1703   ChkBuilder.Insert(Check, "memcheck.conflict");
1704   FirstInst = GetFirstInst(FirstInst, Check, Loc);
1705   return std::make_pair(FirstInst, Check);
1706 }
1707