1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopUtils.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpander.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DomTreeUpdater.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "loop-utils" 46 47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 48 49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 50 bool PreserveLCSSA) { 51 bool Changed = false; 52 53 // We re-use a vector for the in-loop predecesosrs. 54 SmallVector<BasicBlock *, 4> InLoopPredecessors; 55 56 auto RewriteExit = [&](BasicBlock *BB) { 57 assert(InLoopPredecessors.empty() && 58 "Must start with an empty predecessors list!"); 59 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 60 61 // See if there are any non-loop predecessors of this exit block and 62 // keep track of the in-loop predecessors. 63 bool IsDedicatedExit = true; 64 for (auto *PredBB : predecessors(BB)) 65 if (L->contains(PredBB)) { 66 if (isa<IndirectBrInst>(PredBB->getTerminator())) 67 // We cannot rewrite exiting edges from an indirectbr. 68 return false; 69 70 InLoopPredecessors.push_back(PredBB); 71 } else { 72 IsDedicatedExit = false; 73 } 74 75 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 76 77 // Nothing to do if this is already a dedicated exit. 78 if (IsDedicatedExit) 79 return false; 80 81 auto *NewExitBB = SplitBlockPredecessors( 82 BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA); 83 84 if (!NewExitBB) 85 LLVM_DEBUG( 86 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 87 << *L << "\n"); 88 else 89 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 90 << NewExitBB->getName() << "\n"); 91 return true; 92 }; 93 94 // Walk the exit blocks directly rather than building up a data structure for 95 // them, but only visit each one once. 96 SmallPtrSet<BasicBlock *, 4> Visited; 97 for (auto *BB : L->blocks()) 98 for (auto *SuccBB : successors(BB)) { 99 // We're looking for exit blocks so skip in-loop successors. 100 if (L->contains(SuccBB)) 101 continue; 102 103 // Visit each exit block exactly once. 104 if (!Visited.insert(SuccBB).second) 105 continue; 106 107 Changed |= RewriteExit(SuccBB); 108 } 109 110 return Changed; 111 } 112 113 /// Returns the instructions that use values defined in the loop. 114 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 115 SmallVector<Instruction *, 8> UsedOutside; 116 117 for (auto *Block : L->getBlocks()) 118 // FIXME: I believe that this could use copy_if if the Inst reference could 119 // be adapted into a pointer. 120 for (auto &Inst : *Block) { 121 auto Users = Inst.users(); 122 if (any_of(Users, [&](User *U) { 123 auto *Use = cast<Instruction>(U); 124 return !L->contains(Use->getParent()); 125 })) 126 UsedOutside.push_back(&Inst); 127 } 128 129 return UsedOutside; 130 } 131 132 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 133 // By definition, all loop passes need the LoopInfo analysis and the 134 // Dominator tree it depends on. Because they all participate in the loop 135 // pass manager, they must also preserve these. 136 AU.addRequired<DominatorTreeWrapperPass>(); 137 AU.addPreserved<DominatorTreeWrapperPass>(); 138 AU.addRequired<LoopInfoWrapperPass>(); 139 AU.addPreserved<LoopInfoWrapperPass>(); 140 141 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 142 // here because users shouldn't directly get them from this header. 143 extern char &LoopSimplifyID; 144 extern char &LCSSAID; 145 AU.addRequiredID(LoopSimplifyID); 146 AU.addPreservedID(LoopSimplifyID); 147 AU.addRequiredID(LCSSAID); 148 AU.addPreservedID(LCSSAID); 149 // This is used in the LPPassManager to perform LCSSA verification on passes 150 // which preserve lcssa form 151 AU.addRequired<LCSSAVerificationPass>(); 152 AU.addPreserved<LCSSAVerificationPass>(); 153 154 // Loop passes are designed to run inside of a loop pass manager which means 155 // that any function analyses they require must be required by the first loop 156 // pass in the manager (so that it is computed before the loop pass manager 157 // runs) and preserved by all loop pasess in the manager. To make this 158 // reasonably robust, the set needed for most loop passes is maintained here. 159 // If your loop pass requires an analysis not listed here, you will need to 160 // carefully audit the loop pass manager nesting structure that results. 161 AU.addRequired<AAResultsWrapperPass>(); 162 AU.addPreserved<AAResultsWrapperPass>(); 163 AU.addPreserved<BasicAAWrapperPass>(); 164 AU.addPreserved<GlobalsAAWrapperPass>(); 165 AU.addPreserved<SCEVAAWrapperPass>(); 166 AU.addRequired<ScalarEvolutionWrapperPass>(); 167 AU.addPreserved<ScalarEvolutionWrapperPass>(); 168 } 169 170 /// Manually defined generic "LoopPass" dependency initialization. This is used 171 /// to initialize the exact set of passes from above in \c 172 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 173 /// with: 174 /// 175 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 176 /// 177 /// As-if "LoopPass" were a pass. 178 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 179 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 180 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 181 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 182 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 183 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 184 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 186 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 188 } 189 190 static Optional<MDNode *> findOptionMDForLoopID(MDNode *LoopID, 191 StringRef Name) { 192 // Return none if LoopID is false. 193 if (!LoopID) 194 return None; 195 196 // First operand should refer to the loop id itself. 197 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 198 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 199 200 // Iterate over LoopID operands and look for MDString Metadata 201 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 202 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 203 if (!MD) 204 continue; 205 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 206 if (!S) 207 continue; 208 // Return true if MDString holds expected MetaData. 209 if (Name.equals(S->getString())) 210 return MD; 211 } 212 return None; 213 } 214 215 static Optional<MDNode *> findOptionMDForLoop(const Loop *TheLoop, 216 StringRef Name) { 217 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 218 } 219 220 /// Find string metadata for loop 221 /// 222 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 223 /// operand or null otherwise. If the string metadata is not found return 224 /// Optional's not-a-value. 225 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 226 StringRef Name) { 227 auto MD = findOptionMDForLoop(TheLoop, Name).getValueOr(nullptr); 228 if (!MD) 229 return None; 230 switch (MD->getNumOperands()) { 231 case 1: 232 return nullptr; 233 case 2: 234 return &MD->getOperand(1); 235 default: 236 llvm_unreachable("loop metadata has 0 or 1 operand"); 237 } 238 } 239 240 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 241 StringRef Name) { 242 Optional<MDNode *> MD = findOptionMDForLoop(TheLoop, Name); 243 if (!MD.hasValue()) 244 return None; 245 MDNode *OptionNode = MD.getValue(); 246 if (OptionNode == nullptr) 247 return None; 248 switch (OptionNode->getNumOperands()) { 249 case 1: 250 // When the value is absent it is interpreted as 'attribute set'. 251 return true; 252 case 2: 253 return mdconst::extract_or_null<ConstantInt>( 254 OptionNode->getOperand(1).get()); 255 } 256 llvm_unreachable("unexpected number of options"); 257 } 258 259 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 260 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 261 } 262 263 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 264 StringRef Name) { 265 const MDOperand *AttrMD = 266 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 267 if (!AttrMD) 268 return None; 269 270 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 271 if (!IntMD) 272 return None; 273 274 return IntMD->getSExtValue(); 275 } 276 277 Optional<MDNode *> llvm::makeFollowupLoopID( 278 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 279 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 280 if (!OrigLoopID) { 281 if (AlwaysNew) 282 return nullptr; 283 return None; 284 } 285 286 assert(OrigLoopID->getOperand(0) == OrigLoopID); 287 288 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 289 bool InheritSomeAttrs = 290 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 291 SmallVector<Metadata *, 8> MDs; 292 MDs.push_back(nullptr); 293 294 bool Changed = false; 295 if (InheritAllAttrs || InheritSomeAttrs) { 296 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 297 MDNode *Op = cast<MDNode>(Existing.get()); 298 299 auto InheritThisAttribute = [InheritSomeAttrs, 300 InheritOptionsExceptPrefix](MDNode *Op) { 301 if (!InheritSomeAttrs) 302 return false; 303 304 // Skip malformatted attribute metadata nodes. 305 if (Op->getNumOperands() == 0) 306 return true; 307 Metadata *NameMD = Op->getOperand(0).get(); 308 if (!isa<MDString>(NameMD)) 309 return true; 310 StringRef AttrName = cast<MDString>(NameMD)->getString(); 311 312 // Do not inherit excluded attributes. 313 return !AttrName.startswith(InheritOptionsExceptPrefix); 314 }; 315 316 if (InheritThisAttribute(Op)) 317 MDs.push_back(Op); 318 else 319 Changed = true; 320 } 321 } else { 322 // Modified if we dropped at least one attribute. 323 Changed = OrigLoopID->getNumOperands() > 1; 324 } 325 326 bool HasAnyFollowup = false; 327 for (StringRef OptionName : FollowupOptions) { 328 MDNode *FollowupNode = 329 findOptionMDForLoopID(OrigLoopID, OptionName).getValueOr(nullptr); 330 if (!FollowupNode) 331 continue; 332 333 HasAnyFollowup = true; 334 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 335 MDs.push_back(Option.get()); 336 Changed = true; 337 } 338 } 339 340 // Attributes of the followup loop not specified explicity, so signal to the 341 // transformation pass to add suitable attributes. 342 if (!AlwaysNew && !HasAnyFollowup) 343 return None; 344 345 // If no attributes were added or remove, the previous loop Id can be reused. 346 if (!AlwaysNew && !Changed) 347 return OrigLoopID; 348 349 // No attributes is equivalent to having no !llvm.loop metadata at all. 350 if (MDs.size() == 1) 351 return nullptr; 352 353 // Build the new loop ID. 354 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 355 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 356 return FollowupLoopID; 357 } 358 359 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 360 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 361 } 362 363 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 364 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 365 return TM_SuppressedByUser; 366 367 Optional<int> Count = 368 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 369 if (Count.hasValue()) 370 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 371 372 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 373 return TM_ForcedByUser; 374 375 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 376 return TM_ForcedByUser; 377 378 if (hasDisableAllTransformsHint(L)) 379 return TM_Disable; 380 381 return TM_Unspecified; 382 } 383 384 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 385 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 386 return TM_SuppressedByUser; 387 388 Optional<int> Count = 389 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 390 if (Count.hasValue()) 391 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 392 393 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 394 return TM_ForcedByUser; 395 396 if (hasDisableAllTransformsHint(L)) 397 return TM_Disable; 398 399 return TM_Unspecified; 400 } 401 402 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 403 Optional<bool> Enable = 404 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 405 406 if (Enable == false) 407 return TM_SuppressedByUser; 408 409 Optional<int> VectorizeWidth = 410 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 411 Optional<int> InterleaveCount = 412 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 413 414 if (Enable == true) { 415 // 'Forcing' vector width and interleave count to one effectively disables 416 // this tranformation. 417 if (VectorizeWidth == 1 && InterleaveCount == 1) 418 return TM_SuppressedByUser; 419 return TM_ForcedByUser; 420 } 421 422 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 423 return TM_Disable; 424 425 if (VectorizeWidth == 1 && InterleaveCount == 1) 426 return TM_Disable; 427 428 if (VectorizeWidth > 1 || InterleaveCount > 1) 429 return TM_Enable; 430 431 if (hasDisableAllTransformsHint(L)) 432 return TM_Disable; 433 434 return TM_Unspecified; 435 } 436 437 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 438 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 439 return TM_ForcedByUser; 440 441 if (hasDisableAllTransformsHint(L)) 442 return TM_Disable; 443 444 return TM_Unspecified; 445 } 446 447 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 448 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 449 return TM_SuppressedByUser; 450 451 if (hasDisableAllTransformsHint(L)) 452 return TM_Disable; 453 454 return TM_Unspecified; 455 } 456 457 /// Does a BFS from a given node to all of its children inside a given loop. 458 /// The returned vector of nodes includes the starting point. 459 SmallVector<DomTreeNode *, 16> 460 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 461 SmallVector<DomTreeNode *, 16> Worklist; 462 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 463 // Only include subregions in the top level loop. 464 BasicBlock *BB = DTN->getBlock(); 465 if (CurLoop->contains(BB)) 466 Worklist.push_back(DTN); 467 }; 468 469 AddRegionToWorklist(N); 470 471 for (size_t I = 0; I < Worklist.size(); I++) 472 for (DomTreeNode *Child : Worklist[I]->getChildren()) 473 AddRegionToWorklist(Child); 474 475 return Worklist; 476 } 477 478 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 479 ScalarEvolution *SE = nullptr, 480 LoopInfo *LI = nullptr) { 481 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 482 auto *Preheader = L->getLoopPreheader(); 483 assert(Preheader && "Preheader should exist!"); 484 485 // Now that we know the removal is safe, remove the loop by changing the 486 // branch from the preheader to go to the single exit block. 487 // 488 // Because we're deleting a large chunk of code at once, the sequence in which 489 // we remove things is very important to avoid invalidation issues. 490 491 // Tell ScalarEvolution that the loop is deleted. Do this before 492 // deleting the loop so that ScalarEvolution can look at the loop 493 // to determine what it needs to clean up. 494 if (SE) 495 SE->forgetLoop(L); 496 497 auto *ExitBlock = L->getUniqueExitBlock(); 498 assert(ExitBlock && "Should have a unique exit block!"); 499 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 500 501 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 502 assert(OldBr && "Preheader must end with a branch"); 503 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 504 // Connect the preheader to the exit block. Keep the old edge to the header 505 // around to perform the dominator tree update in two separate steps 506 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 507 // preheader -> header. 508 // 509 // 510 // 0. Preheader 1. Preheader 2. Preheader 511 // | | | | 512 // V | V | 513 // Header <--\ | Header <--\ | Header <--\ 514 // | | | | | | | | | | | 515 // | V | | | V | | | V | 516 // | Body --/ | | Body --/ | | Body --/ 517 // V V V V V 518 // Exit Exit Exit 519 // 520 // By doing this is two separate steps we can perform the dominator tree 521 // update without using the batch update API. 522 // 523 // Even when the loop is never executed, we cannot remove the edge from the 524 // source block to the exit block. Consider the case where the unexecuted loop 525 // branches back to an outer loop. If we deleted the loop and removed the edge 526 // coming to this inner loop, this will break the outer loop structure (by 527 // deleting the backedge of the outer loop). If the outer loop is indeed a 528 // non-loop, it will be deleted in a future iteration of loop deletion pass. 529 IRBuilder<> Builder(OldBr); 530 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 531 // Remove the old branch. The conditional branch becomes a new terminator. 532 OldBr->eraseFromParent(); 533 534 // Rewrite phis in the exit block to get their inputs from the Preheader 535 // instead of the exiting block. 536 for (PHINode &P : ExitBlock->phis()) { 537 // Set the zero'th element of Phi to be from the preheader and remove all 538 // other incoming values. Given the loop has dedicated exits, all other 539 // incoming values must be from the exiting blocks. 540 int PredIndex = 0; 541 P.setIncomingBlock(PredIndex, Preheader); 542 // Removes all incoming values from all other exiting blocks (including 543 // duplicate values from an exiting block). 544 // Nuke all entries except the zero'th entry which is the preheader entry. 545 // NOTE! We need to remove Incoming Values in the reverse order as done 546 // below, to keep the indices valid for deletion (removeIncomingValues 547 // updates getNumIncomingValues and shifts all values down into the operand 548 // being deleted). 549 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 550 P.removeIncomingValue(e - i, false); 551 552 assert((P.getNumIncomingValues() == 1 && 553 P.getIncomingBlock(PredIndex) == Preheader) && 554 "Should have exactly one value and that's from the preheader!"); 555 } 556 557 // Disconnect the loop body by branching directly to its exit. 558 Builder.SetInsertPoint(Preheader->getTerminator()); 559 Builder.CreateBr(ExitBlock); 560 // Remove the old branch. 561 Preheader->getTerminator()->eraseFromParent(); 562 563 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 564 if (DT) { 565 // Update the dominator tree by informing it about the new edge from the 566 // preheader to the exit. 567 DTU.insertEdge(Preheader, ExitBlock); 568 // Inform the dominator tree about the removed edge. 569 DTU.deleteEdge(Preheader, L->getHeader()); 570 } 571 572 // Use a map to unique and a vector to guarantee deterministic ordering. 573 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 574 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 575 576 // Given LCSSA form is satisfied, we should not have users of instructions 577 // within the dead loop outside of the loop. However, LCSSA doesn't take 578 // unreachable uses into account. We handle them here. 579 // We could do it after drop all references (in this case all users in the 580 // loop will be already eliminated and we have less work to do but according 581 // to API doc of User::dropAllReferences only valid operation after dropping 582 // references, is deletion. So let's substitute all usages of 583 // instruction from the loop with undef value of corresponding type first. 584 for (auto *Block : L->blocks()) 585 for (Instruction &I : *Block) { 586 auto *Undef = UndefValue::get(I.getType()); 587 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 588 Use &U = *UI; 589 ++UI; 590 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 591 if (L->contains(Usr->getParent())) 592 continue; 593 // If we have a DT then we can check that uses outside a loop only in 594 // unreachable block. 595 if (DT) 596 assert(!DT->isReachableFromEntry(U) && 597 "Unexpected user in reachable block"); 598 U.set(Undef); 599 } 600 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 601 if (!DVI) 602 continue; 603 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 604 if (Key != DeadDebugSet.end()) 605 continue; 606 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 607 DeadDebugInst.push_back(DVI); 608 } 609 610 // After the loop has been deleted all the values defined and modified 611 // inside the loop are going to be unavailable. 612 // Since debug values in the loop have been deleted, inserting an undef 613 // dbg.value truncates the range of any dbg.value before the loop where the 614 // loop used to be. This is particularly important for constant values. 615 DIBuilder DIB(*ExitBlock->getModule()); 616 for (auto *DVI : DeadDebugInst) 617 DIB.insertDbgValueIntrinsic( 618 UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), 619 DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI()); 620 621 // Remove the block from the reference counting scheme, so that we can 622 // delete it freely later. 623 for (auto *Block : L->blocks()) 624 Block->dropAllReferences(); 625 626 if (LI) { 627 // Erase the instructions and the blocks without having to worry 628 // about ordering because we already dropped the references. 629 // NOTE: This iteration is safe because erasing the block does not remove 630 // its entry from the loop's block list. We do that in the next section. 631 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 632 LpI != LpE; ++LpI) 633 (*LpI)->eraseFromParent(); 634 635 // Finally, the blocks from loopinfo. This has to happen late because 636 // otherwise our loop iterators won't work. 637 638 SmallPtrSet<BasicBlock *, 8> blocks; 639 blocks.insert(L->block_begin(), L->block_end()); 640 for (BasicBlock *BB : blocks) 641 LI->removeBlock(BB); 642 643 // The last step is to update LoopInfo now that we've eliminated this loop. 644 LI->erase(L); 645 } 646 } 647 648 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 649 // Only support loops with a unique exiting block, and a latch. 650 if (!L->getExitingBlock()) 651 return None; 652 653 // Get the branch weights for the loop's backedge. 654 BranchInst *LatchBR = 655 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 656 if (!LatchBR || LatchBR->getNumSuccessors() != 2) 657 return None; 658 659 assert((LatchBR->getSuccessor(0) == L->getHeader() || 660 LatchBR->getSuccessor(1) == L->getHeader()) && 661 "At least one edge out of the latch must go to the header"); 662 663 // To estimate the number of times the loop body was executed, we want to 664 // know the number of times the backedge was taken, vs. the number of times 665 // we exited the loop. 666 uint64_t TrueVal, FalseVal; 667 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 668 return None; 669 670 if (!TrueVal || !FalseVal) 671 return 0; 672 673 // Divide the count of the backedge by the count of the edge exiting the loop, 674 // rounding to nearest. 675 if (LatchBR->getSuccessor(0) == L->getHeader()) 676 return (TrueVal + (FalseVal / 2)) / FalseVal; 677 else 678 return (FalseVal + (TrueVal / 2)) / TrueVal; 679 } 680 681 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 682 ScalarEvolution &SE) { 683 Loop *OuterL = InnerLoop->getParentLoop(); 684 if (!OuterL) 685 return true; 686 687 // Get the backedge taken count for the inner loop 688 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 689 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 690 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 691 !InnerLoopBECountSC->getType()->isIntegerTy()) 692 return false; 693 694 // Get whether count is invariant to the outer loop 695 ScalarEvolution::LoopDisposition LD = 696 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 697 if (LD != ScalarEvolution::LoopInvariant) 698 return false; 699 700 return true; 701 } 702 703 /// Adds a 'fast' flag to floating point operations. 704 static Value *addFastMathFlag(Value *V) { 705 if (isa<FPMathOperator>(V)) { 706 FastMathFlags Flags; 707 Flags.setFast(); 708 cast<Instruction>(V)->setFastMathFlags(Flags); 709 } 710 return V; 711 } 712 713 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 714 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 715 Value *Left, Value *Right) { 716 CmpInst::Predicate P = CmpInst::ICMP_NE; 717 switch (RK) { 718 default: 719 llvm_unreachable("Unknown min/max recurrence kind"); 720 case RecurrenceDescriptor::MRK_UIntMin: 721 P = CmpInst::ICMP_ULT; 722 break; 723 case RecurrenceDescriptor::MRK_UIntMax: 724 P = CmpInst::ICMP_UGT; 725 break; 726 case RecurrenceDescriptor::MRK_SIntMin: 727 P = CmpInst::ICMP_SLT; 728 break; 729 case RecurrenceDescriptor::MRK_SIntMax: 730 P = CmpInst::ICMP_SGT; 731 break; 732 case RecurrenceDescriptor::MRK_FloatMin: 733 P = CmpInst::FCMP_OLT; 734 break; 735 case RecurrenceDescriptor::MRK_FloatMax: 736 P = CmpInst::FCMP_OGT; 737 break; 738 } 739 740 // We only match FP sequences that are 'fast', so we can unconditionally 741 // set it on any generated instructions. 742 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 743 FastMathFlags FMF; 744 FMF.setFast(); 745 Builder.setFastMathFlags(FMF); 746 747 Value *Cmp; 748 if (RK == RecurrenceDescriptor::MRK_FloatMin || 749 RK == RecurrenceDescriptor::MRK_FloatMax) 750 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 751 else 752 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 753 754 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 755 return Select; 756 } 757 758 // Helper to generate an ordered reduction. 759 Value * 760 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 761 unsigned Op, 762 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 763 ArrayRef<Value *> RedOps) { 764 unsigned VF = Src->getType()->getVectorNumElements(); 765 766 // Extract and apply reduction ops in ascending order: 767 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 768 Value *Result = Acc; 769 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 770 Value *Ext = 771 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 772 773 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 774 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 775 "bin.rdx"); 776 } else { 777 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 778 "Invalid min/max"); 779 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 780 } 781 782 if (!RedOps.empty()) 783 propagateIRFlags(Result, RedOps); 784 } 785 786 return Result; 787 } 788 789 // Helper to generate a log2 shuffle reduction. 790 Value * 791 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 792 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 793 ArrayRef<Value *> RedOps) { 794 unsigned VF = Src->getType()->getVectorNumElements(); 795 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 796 // and vector ops, reducing the set of values being computed by half each 797 // round. 798 assert(isPowerOf2_32(VF) && 799 "Reduction emission only supported for pow2 vectors!"); 800 Value *TmpVec = Src; 801 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 802 for (unsigned i = VF; i != 1; i >>= 1) { 803 // Move the upper half of the vector to the lower half. 804 for (unsigned j = 0; j != i / 2; ++j) 805 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 806 807 // Fill the rest of the mask with undef. 808 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 809 UndefValue::get(Builder.getInt32Ty())); 810 811 Value *Shuf = Builder.CreateShuffleVector( 812 TmpVec, UndefValue::get(TmpVec->getType()), 813 ConstantVector::get(ShuffleMask), "rdx.shuf"); 814 815 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 816 // Floating point operations had to be 'fast' to enable the reduction. 817 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 818 TmpVec, Shuf, "bin.rdx")); 819 } else { 820 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 821 "Invalid min/max"); 822 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 823 } 824 if (!RedOps.empty()) 825 propagateIRFlags(TmpVec, RedOps); 826 } 827 // The result is in the first element of the vector. 828 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 829 } 830 831 /// Create a simple vector reduction specified by an opcode and some 832 /// flags (if generating min/max reductions). 833 Value *llvm::createSimpleTargetReduction( 834 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 835 Value *Src, TargetTransformInfo::ReductionFlags Flags, 836 ArrayRef<Value *> RedOps) { 837 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 838 839 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 840 std::function<Value *()> BuildFunc; 841 using RD = RecurrenceDescriptor; 842 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 843 // TODO: Support creating ordered reductions. 844 FastMathFlags FMFFast; 845 FMFFast.setFast(); 846 847 switch (Opcode) { 848 case Instruction::Add: 849 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 850 break; 851 case Instruction::Mul: 852 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 853 break; 854 case Instruction::And: 855 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 856 break; 857 case Instruction::Or: 858 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 859 break; 860 case Instruction::Xor: 861 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 862 break; 863 case Instruction::FAdd: 864 BuildFunc = [&]() { 865 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 866 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 867 return Rdx; 868 }; 869 break; 870 case Instruction::FMul: 871 BuildFunc = [&]() { 872 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 873 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 874 return Rdx; 875 }; 876 break; 877 case Instruction::ICmp: 878 if (Flags.IsMaxOp) { 879 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 880 BuildFunc = [&]() { 881 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 882 }; 883 } else { 884 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 885 BuildFunc = [&]() { 886 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 887 }; 888 } 889 break; 890 case Instruction::FCmp: 891 if (Flags.IsMaxOp) { 892 MinMaxKind = RD::MRK_FloatMax; 893 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 894 } else { 895 MinMaxKind = RD::MRK_FloatMin; 896 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 897 } 898 break; 899 default: 900 llvm_unreachable("Unhandled opcode"); 901 break; 902 } 903 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 904 return BuildFunc(); 905 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 906 } 907 908 /// Create a vector reduction using a given recurrence descriptor. 909 Value *llvm::createTargetReduction(IRBuilder<> &B, 910 const TargetTransformInfo *TTI, 911 RecurrenceDescriptor &Desc, Value *Src, 912 bool NoNaN) { 913 // TODO: Support in-order reductions based on the recurrence descriptor. 914 using RD = RecurrenceDescriptor; 915 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 916 TargetTransformInfo::ReductionFlags Flags; 917 Flags.NoNaN = NoNaN; 918 switch (RecKind) { 919 case RD::RK_FloatAdd: 920 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 921 case RD::RK_FloatMult: 922 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 923 case RD::RK_IntegerAdd: 924 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 925 case RD::RK_IntegerMult: 926 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 927 case RD::RK_IntegerAnd: 928 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 929 case RD::RK_IntegerOr: 930 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 931 case RD::RK_IntegerXor: 932 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 933 case RD::RK_IntegerMinMax: { 934 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 935 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 936 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 937 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 938 } 939 case RD::RK_FloatMinMax: { 940 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 941 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 942 } 943 default: 944 llvm_unreachable("Unhandled RecKind"); 945 } 946 } 947 948 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 949 auto *VecOp = dyn_cast<Instruction>(I); 950 if (!VecOp) 951 return; 952 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 953 : dyn_cast<Instruction>(OpValue); 954 if (!Intersection) 955 return; 956 const unsigned Opcode = Intersection->getOpcode(); 957 VecOp->copyIRFlags(Intersection); 958 for (auto *V : VL) { 959 auto *Instr = dyn_cast<Instruction>(V); 960 if (!Instr) 961 continue; 962 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 963 VecOp->andIRFlags(V); 964 } 965 } 966