1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/DomTreeUpdater.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 #define DEBUG_TYPE "loop-utils"
46 
47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
48 
49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
50                                    bool PreserveLCSSA) {
51   bool Changed = false;
52 
53   // We re-use a vector for the in-loop predecesosrs.
54   SmallVector<BasicBlock *, 4> InLoopPredecessors;
55 
56   auto RewriteExit = [&](BasicBlock *BB) {
57     assert(InLoopPredecessors.empty() &&
58            "Must start with an empty predecessors list!");
59     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
60 
61     // See if there are any non-loop predecessors of this exit block and
62     // keep track of the in-loop predecessors.
63     bool IsDedicatedExit = true;
64     for (auto *PredBB : predecessors(BB))
65       if (L->contains(PredBB)) {
66         if (isa<IndirectBrInst>(PredBB->getTerminator()))
67           // We cannot rewrite exiting edges from an indirectbr.
68           return false;
69 
70         InLoopPredecessors.push_back(PredBB);
71       } else {
72         IsDedicatedExit = false;
73       }
74 
75     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
76 
77     // Nothing to do if this is already a dedicated exit.
78     if (IsDedicatedExit)
79       return false;
80 
81     auto *NewExitBB = SplitBlockPredecessors(
82         BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA);
83 
84     if (!NewExitBB)
85       LLVM_DEBUG(
86           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
87                  << *L << "\n");
88     else
89       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
90                         << NewExitBB->getName() << "\n");
91     return true;
92   };
93 
94   // Walk the exit blocks directly rather than building up a data structure for
95   // them, but only visit each one once.
96   SmallPtrSet<BasicBlock *, 4> Visited;
97   for (auto *BB : L->blocks())
98     for (auto *SuccBB : successors(BB)) {
99       // We're looking for exit blocks so skip in-loop successors.
100       if (L->contains(SuccBB))
101         continue;
102 
103       // Visit each exit block exactly once.
104       if (!Visited.insert(SuccBB).second)
105         continue;
106 
107       Changed |= RewriteExit(SuccBB);
108     }
109 
110   return Changed;
111 }
112 
113 /// Returns the instructions that use values defined in the loop.
114 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
115   SmallVector<Instruction *, 8> UsedOutside;
116 
117   for (auto *Block : L->getBlocks())
118     // FIXME: I believe that this could use copy_if if the Inst reference could
119     // be adapted into a pointer.
120     for (auto &Inst : *Block) {
121       auto Users = Inst.users();
122       if (any_of(Users, [&](User *U) {
123             auto *Use = cast<Instruction>(U);
124             return !L->contains(Use->getParent());
125           }))
126         UsedOutside.push_back(&Inst);
127     }
128 
129   return UsedOutside;
130 }
131 
132 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
133   // By definition, all loop passes need the LoopInfo analysis and the
134   // Dominator tree it depends on. Because they all participate in the loop
135   // pass manager, they must also preserve these.
136   AU.addRequired<DominatorTreeWrapperPass>();
137   AU.addPreserved<DominatorTreeWrapperPass>();
138   AU.addRequired<LoopInfoWrapperPass>();
139   AU.addPreserved<LoopInfoWrapperPass>();
140 
141   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
142   // here because users shouldn't directly get them from this header.
143   extern char &LoopSimplifyID;
144   extern char &LCSSAID;
145   AU.addRequiredID(LoopSimplifyID);
146   AU.addPreservedID(LoopSimplifyID);
147   AU.addRequiredID(LCSSAID);
148   AU.addPreservedID(LCSSAID);
149   // This is used in the LPPassManager to perform LCSSA verification on passes
150   // which preserve lcssa form
151   AU.addRequired<LCSSAVerificationPass>();
152   AU.addPreserved<LCSSAVerificationPass>();
153 
154   // Loop passes are designed to run inside of a loop pass manager which means
155   // that any function analyses they require must be required by the first loop
156   // pass in the manager (so that it is computed before the loop pass manager
157   // runs) and preserved by all loop pasess in the manager. To make this
158   // reasonably robust, the set needed for most loop passes is maintained here.
159   // If your loop pass requires an analysis not listed here, you will need to
160   // carefully audit the loop pass manager nesting structure that results.
161   AU.addRequired<AAResultsWrapperPass>();
162   AU.addPreserved<AAResultsWrapperPass>();
163   AU.addPreserved<BasicAAWrapperPass>();
164   AU.addPreserved<GlobalsAAWrapperPass>();
165   AU.addPreserved<SCEVAAWrapperPass>();
166   AU.addRequired<ScalarEvolutionWrapperPass>();
167   AU.addPreserved<ScalarEvolutionWrapperPass>();
168 }
169 
170 /// Manually defined generic "LoopPass" dependency initialization. This is used
171 /// to initialize the exact set of passes from above in \c
172 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
173 /// with:
174 ///
175 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
176 ///
177 /// As-if "LoopPass" were a pass.
178 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
179   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
180   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
181   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
182   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
183   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
184   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
186   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
187   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
188 }
189 
190 static Optional<MDNode *> findOptionMDForLoopID(MDNode *LoopID,
191                                                 StringRef Name) {
192   // Return none if LoopID is false.
193   if (!LoopID)
194     return None;
195 
196   // First operand should refer to the loop id itself.
197   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
198   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
199 
200   // Iterate over LoopID operands and look for MDString Metadata
201   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
202     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
203     if (!MD)
204       continue;
205     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
206     if (!S)
207       continue;
208     // Return true if MDString holds expected MetaData.
209     if (Name.equals(S->getString()))
210       return MD;
211   }
212   return None;
213 }
214 
215 static Optional<MDNode *> findOptionMDForLoop(const Loop *TheLoop,
216                                               StringRef Name) {
217   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
218 }
219 
220 /// Find string metadata for loop
221 ///
222 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
223 /// operand or null otherwise.  If the string metadata is not found return
224 /// Optional's not-a-value.
225 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
226                                                             StringRef Name) {
227   auto MD = findOptionMDForLoop(TheLoop, Name).getValueOr(nullptr);
228   if (!MD)
229     return None;
230   switch (MD->getNumOperands()) {
231   case 1:
232     return nullptr;
233   case 2:
234     return &MD->getOperand(1);
235   default:
236     llvm_unreachable("loop metadata has 0 or 1 operand");
237   }
238 }
239 
240 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
241                                                    StringRef Name) {
242   Optional<MDNode *> MD = findOptionMDForLoop(TheLoop, Name);
243   if (!MD.hasValue())
244     return None;
245   MDNode *OptionNode = MD.getValue();
246   if (OptionNode == nullptr)
247     return None;
248   switch (OptionNode->getNumOperands()) {
249   case 1:
250     // When the value is absent it is interpreted as 'attribute set'.
251     return true;
252   case 2:
253     return mdconst::extract_or_null<ConstantInt>(
254         OptionNode->getOperand(1).get());
255   }
256   llvm_unreachable("unexpected number of options");
257 }
258 
259 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
260   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
261 }
262 
263 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
264                                                       StringRef Name) {
265   const MDOperand *AttrMD =
266       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
267   if (!AttrMD)
268     return None;
269 
270   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
271   if (!IntMD)
272     return None;
273 
274   return IntMD->getSExtValue();
275 }
276 
277 Optional<MDNode *> llvm::makeFollowupLoopID(
278     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
279     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
280   if (!OrigLoopID) {
281     if (AlwaysNew)
282       return nullptr;
283     return None;
284   }
285 
286   assert(OrigLoopID->getOperand(0) == OrigLoopID);
287 
288   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
289   bool InheritSomeAttrs =
290       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
291   SmallVector<Metadata *, 8> MDs;
292   MDs.push_back(nullptr);
293 
294   bool Changed = false;
295   if (InheritAllAttrs || InheritSomeAttrs) {
296     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
297       MDNode *Op = cast<MDNode>(Existing.get());
298 
299       auto InheritThisAttribute = [InheritSomeAttrs,
300                                    InheritOptionsExceptPrefix](MDNode *Op) {
301         if (!InheritSomeAttrs)
302           return false;
303 
304         // Skip malformatted attribute metadata nodes.
305         if (Op->getNumOperands() == 0)
306           return true;
307         Metadata *NameMD = Op->getOperand(0).get();
308         if (!isa<MDString>(NameMD))
309           return true;
310         StringRef AttrName = cast<MDString>(NameMD)->getString();
311 
312         // Do not inherit excluded attributes.
313         return !AttrName.startswith(InheritOptionsExceptPrefix);
314       };
315 
316       if (InheritThisAttribute(Op))
317         MDs.push_back(Op);
318       else
319         Changed = true;
320     }
321   } else {
322     // Modified if we dropped at least one attribute.
323     Changed = OrigLoopID->getNumOperands() > 1;
324   }
325 
326   bool HasAnyFollowup = false;
327   for (StringRef OptionName : FollowupOptions) {
328     MDNode *FollowupNode =
329         findOptionMDForLoopID(OrigLoopID, OptionName).getValueOr(nullptr);
330     if (!FollowupNode)
331       continue;
332 
333     HasAnyFollowup = true;
334     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
335       MDs.push_back(Option.get());
336       Changed = true;
337     }
338   }
339 
340   // Attributes of the followup loop not specified explicity, so signal to the
341   // transformation pass to add suitable attributes.
342   if (!AlwaysNew && !HasAnyFollowup)
343     return None;
344 
345   // If no attributes were added or remove, the previous loop Id can be reused.
346   if (!AlwaysNew && !Changed)
347     return OrigLoopID;
348 
349   // No attributes is equivalent to having no !llvm.loop metadata at all.
350   if (MDs.size() == 1)
351     return nullptr;
352 
353   // Build the new loop ID.
354   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
355   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
356   return FollowupLoopID;
357 }
358 
359 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
360   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
361 }
362 
363 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
364   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
365     return TM_SuppressedByUser;
366 
367   Optional<int> Count =
368       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
369   if (Count.hasValue())
370     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
371 
372   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
373     return TM_ForcedByUser;
374 
375   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
376     return TM_ForcedByUser;
377 
378   if (hasDisableAllTransformsHint(L))
379     return TM_Disable;
380 
381   return TM_Unspecified;
382 }
383 
384 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
385   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
386     return TM_SuppressedByUser;
387 
388   Optional<int> Count =
389       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
390   if (Count.hasValue())
391     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
392 
393   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
394     return TM_ForcedByUser;
395 
396   if (hasDisableAllTransformsHint(L))
397     return TM_Disable;
398 
399   return TM_Unspecified;
400 }
401 
402 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
403   Optional<bool> Enable =
404       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
405 
406   if (Enable == false)
407     return TM_SuppressedByUser;
408 
409   Optional<int> VectorizeWidth =
410       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
411   Optional<int> InterleaveCount =
412       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
413 
414   if (Enable == true) {
415     // 'Forcing' vector width and interleave count to one effectively disables
416     // this tranformation.
417     if (VectorizeWidth == 1 && InterleaveCount == 1)
418       return TM_SuppressedByUser;
419     return TM_ForcedByUser;
420   }
421 
422   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
423     return TM_Disable;
424 
425   if (VectorizeWidth == 1 && InterleaveCount == 1)
426     return TM_Disable;
427 
428   if (VectorizeWidth > 1 || InterleaveCount > 1)
429     return TM_Enable;
430 
431   if (hasDisableAllTransformsHint(L))
432     return TM_Disable;
433 
434   return TM_Unspecified;
435 }
436 
437 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
438   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
439     return TM_ForcedByUser;
440 
441   if (hasDisableAllTransformsHint(L))
442     return TM_Disable;
443 
444   return TM_Unspecified;
445 }
446 
447 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
448   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
449     return TM_SuppressedByUser;
450 
451   if (hasDisableAllTransformsHint(L))
452     return TM_Disable;
453 
454   return TM_Unspecified;
455 }
456 
457 /// Does a BFS from a given node to all of its children inside a given loop.
458 /// The returned vector of nodes includes the starting point.
459 SmallVector<DomTreeNode *, 16>
460 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
461   SmallVector<DomTreeNode *, 16> Worklist;
462   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
463     // Only include subregions in the top level loop.
464     BasicBlock *BB = DTN->getBlock();
465     if (CurLoop->contains(BB))
466       Worklist.push_back(DTN);
467   };
468 
469   AddRegionToWorklist(N);
470 
471   for (size_t I = 0; I < Worklist.size(); I++)
472     for (DomTreeNode *Child : Worklist[I]->getChildren())
473       AddRegionToWorklist(Child);
474 
475   return Worklist;
476 }
477 
478 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
479                           ScalarEvolution *SE = nullptr,
480                           LoopInfo *LI = nullptr) {
481   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
482   auto *Preheader = L->getLoopPreheader();
483   assert(Preheader && "Preheader should exist!");
484 
485   // Now that we know the removal is safe, remove the loop by changing the
486   // branch from the preheader to go to the single exit block.
487   //
488   // Because we're deleting a large chunk of code at once, the sequence in which
489   // we remove things is very important to avoid invalidation issues.
490 
491   // Tell ScalarEvolution that the loop is deleted. Do this before
492   // deleting the loop so that ScalarEvolution can look at the loop
493   // to determine what it needs to clean up.
494   if (SE)
495     SE->forgetLoop(L);
496 
497   auto *ExitBlock = L->getUniqueExitBlock();
498   assert(ExitBlock && "Should have a unique exit block!");
499   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
500 
501   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
502   assert(OldBr && "Preheader must end with a branch");
503   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
504   // Connect the preheader to the exit block. Keep the old edge to the header
505   // around to perform the dominator tree update in two separate steps
506   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
507   // preheader -> header.
508   //
509   //
510   // 0.  Preheader          1.  Preheader           2.  Preheader
511   //        |                    |   |                   |
512   //        V                    |   V                   |
513   //      Header <--\            | Header <--\           | Header <--\
514   //       |  |     |            |  |  |     |           |  |  |     |
515   //       |  V     |            |  |  V     |           |  |  V     |
516   //       | Body --/            |  | Body --/           |  | Body --/
517   //       V                     V  V                    V  V
518   //      Exit                   Exit                    Exit
519   //
520   // By doing this is two separate steps we can perform the dominator tree
521   // update without using the batch update API.
522   //
523   // Even when the loop is never executed, we cannot remove the edge from the
524   // source block to the exit block. Consider the case where the unexecuted loop
525   // branches back to an outer loop. If we deleted the loop and removed the edge
526   // coming to this inner loop, this will break the outer loop structure (by
527   // deleting the backedge of the outer loop). If the outer loop is indeed a
528   // non-loop, it will be deleted in a future iteration of loop deletion pass.
529   IRBuilder<> Builder(OldBr);
530   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
531   // Remove the old branch. The conditional branch becomes a new terminator.
532   OldBr->eraseFromParent();
533 
534   // Rewrite phis in the exit block to get their inputs from the Preheader
535   // instead of the exiting block.
536   for (PHINode &P : ExitBlock->phis()) {
537     // Set the zero'th element of Phi to be from the preheader and remove all
538     // other incoming values. Given the loop has dedicated exits, all other
539     // incoming values must be from the exiting blocks.
540     int PredIndex = 0;
541     P.setIncomingBlock(PredIndex, Preheader);
542     // Removes all incoming values from all other exiting blocks (including
543     // duplicate values from an exiting block).
544     // Nuke all entries except the zero'th entry which is the preheader entry.
545     // NOTE! We need to remove Incoming Values in the reverse order as done
546     // below, to keep the indices valid for deletion (removeIncomingValues
547     // updates getNumIncomingValues and shifts all values down into the operand
548     // being deleted).
549     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
550       P.removeIncomingValue(e - i, false);
551 
552     assert((P.getNumIncomingValues() == 1 &&
553             P.getIncomingBlock(PredIndex) == Preheader) &&
554            "Should have exactly one value and that's from the preheader!");
555   }
556 
557   // Disconnect the loop body by branching directly to its exit.
558   Builder.SetInsertPoint(Preheader->getTerminator());
559   Builder.CreateBr(ExitBlock);
560   // Remove the old branch.
561   Preheader->getTerminator()->eraseFromParent();
562 
563   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
564   if (DT) {
565     // Update the dominator tree by informing it about the new edge from the
566     // preheader to the exit.
567     DTU.insertEdge(Preheader, ExitBlock);
568     // Inform the dominator tree about the removed edge.
569     DTU.deleteEdge(Preheader, L->getHeader());
570   }
571 
572   // Use a map to unique and a vector to guarantee deterministic ordering.
573   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
574   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
575 
576   // Given LCSSA form is satisfied, we should not have users of instructions
577   // within the dead loop outside of the loop. However, LCSSA doesn't take
578   // unreachable uses into account. We handle them here.
579   // We could do it after drop all references (in this case all users in the
580   // loop will be already eliminated and we have less work to do but according
581   // to API doc of User::dropAllReferences only valid operation after dropping
582   // references, is deletion. So let's substitute all usages of
583   // instruction from the loop with undef value of corresponding type first.
584   for (auto *Block : L->blocks())
585     for (Instruction &I : *Block) {
586       auto *Undef = UndefValue::get(I.getType());
587       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
588         Use &U = *UI;
589         ++UI;
590         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
591           if (L->contains(Usr->getParent()))
592             continue;
593         // If we have a DT then we can check that uses outside a loop only in
594         // unreachable block.
595         if (DT)
596           assert(!DT->isReachableFromEntry(U) &&
597                  "Unexpected user in reachable block");
598         U.set(Undef);
599       }
600       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
601       if (!DVI)
602         continue;
603       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
604       if (Key != DeadDebugSet.end())
605         continue;
606       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
607       DeadDebugInst.push_back(DVI);
608     }
609 
610   // After the loop has been deleted all the values defined and modified
611   // inside the loop are going to be unavailable.
612   // Since debug values in the loop have been deleted, inserting an undef
613   // dbg.value truncates the range of any dbg.value before the loop where the
614   // loop used to be. This is particularly important for constant values.
615   DIBuilder DIB(*ExitBlock->getModule());
616   for (auto *DVI : DeadDebugInst)
617     DIB.insertDbgValueIntrinsic(
618         UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
619         DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
620 
621   // Remove the block from the reference counting scheme, so that we can
622   // delete it freely later.
623   for (auto *Block : L->blocks())
624     Block->dropAllReferences();
625 
626   if (LI) {
627     // Erase the instructions and the blocks without having to worry
628     // about ordering because we already dropped the references.
629     // NOTE: This iteration is safe because erasing the block does not remove
630     // its entry from the loop's block list.  We do that in the next section.
631     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
632          LpI != LpE; ++LpI)
633       (*LpI)->eraseFromParent();
634 
635     // Finally, the blocks from loopinfo.  This has to happen late because
636     // otherwise our loop iterators won't work.
637 
638     SmallPtrSet<BasicBlock *, 8> blocks;
639     blocks.insert(L->block_begin(), L->block_end());
640     for (BasicBlock *BB : blocks)
641       LI->removeBlock(BB);
642 
643     // The last step is to update LoopInfo now that we've eliminated this loop.
644     LI->erase(L);
645   }
646 }
647 
648 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
649   // Only support loops with a unique exiting block, and a latch.
650   if (!L->getExitingBlock())
651     return None;
652 
653   // Get the branch weights for the loop's backedge.
654   BranchInst *LatchBR =
655       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
656   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
657     return None;
658 
659   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
660           LatchBR->getSuccessor(1) == L->getHeader()) &&
661          "At least one edge out of the latch must go to the header");
662 
663   // To estimate the number of times the loop body was executed, we want to
664   // know the number of times the backedge was taken, vs. the number of times
665   // we exited the loop.
666   uint64_t TrueVal, FalseVal;
667   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
668     return None;
669 
670   if (!TrueVal || !FalseVal)
671     return 0;
672 
673   // Divide the count of the backedge by the count of the edge exiting the loop,
674   // rounding to nearest.
675   if (LatchBR->getSuccessor(0) == L->getHeader())
676     return (TrueVal + (FalseVal / 2)) / FalseVal;
677   else
678     return (FalseVal + (TrueVal / 2)) / TrueVal;
679 }
680 
681 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
682                                               ScalarEvolution &SE) {
683   Loop *OuterL = InnerLoop->getParentLoop();
684   if (!OuterL)
685     return true;
686 
687   // Get the backedge taken count for the inner loop
688   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
689   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
690   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
691       !InnerLoopBECountSC->getType()->isIntegerTy())
692     return false;
693 
694   // Get whether count is invariant to the outer loop
695   ScalarEvolution::LoopDisposition LD =
696       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
697   if (LD != ScalarEvolution::LoopInvariant)
698     return false;
699 
700   return true;
701 }
702 
703 /// Adds a 'fast' flag to floating point operations.
704 static Value *addFastMathFlag(Value *V) {
705   if (isa<FPMathOperator>(V)) {
706     FastMathFlags Flags;
707     Flags.setFast();
708     cast<Instruction>(V)->setFastMathFlags(Flags);
709   }
710   return V;
711 }
712 
713 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
714                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
715                             Value *Left, Value *Right) {
716   CmpInst::Predicate P = CmpInst::ICMP_NE;
717   switch (RK) {
718   default:
719     llvm_unreachable("Unknown min/max recurrence kind");
720   case RecurrenceDescriptor::MRK_UIntMin:
721     P = CmpInst::ICMP_ULT;
722     break;
723   case RecurrenceDescriptor::MRK_UIntMax:
724     P = CmpInst::ICMP_UGT;
725     break;
726   case RecurrenceDescriptor::MRK_SIntMin:
727     P = CmpInst::ICMP_SLT;
728     break;
729   case RecurrenceDescriptor::MRK_SIntMax:
730     P = CmpInst::ICMP_SGT;
731     break;
732   case RecurrenceDescriptor::MRK_FloatMin:
733     P = CmpInst::FCMP_OLT;
734     break;
735   case RecurrenceDescriptor::MRK_FloatMax:
736     P = CmpInst::FCMP_OGT;
737     break;
738   }
739 
740   // We only match FP sequences that are 'fast', so we can unconditionally
741   // set it on any generated instructions.
742   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
743   FastMathFlags FMF;
744   FMF.setFast();
745   Builder.setFastMathFlags(FMF);
746 
747   Value *Cmp;
748   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
749       RK == RecurrenceDescriptor::MRK_FloatMax)
750     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
751   else
752     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
753 
754   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
755   return Select;
756 }
757 
758 // Helper to generate an ordered reduction.
759 Value *
760 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
761                           unsigned Op,
762                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
763                           ArrayRef<Value *> RedOps) {
764   unsigned VF = Src->getType()->getVectorNumElements();
765 
766   // Extract and apply reduction ops in ascending order:
767   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
768   Value *Result = Acc;
769   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
770     Value *Ext =
771         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
772 
773     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
774       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
775                                    "bin.rdx");
776     } else {
777       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
778              "Invalid min/max");
779       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
780     }
781 
782     if (!RedOps.empty())
783       propagateIRFlags(Result, RedOps);
784   }
785 
786   return Result;
787 }
788 
789 // Helper to generate a log2 shuffle reduction.
790 Value *
791 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
792                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
793                           ArrayRef<Value *> RedOps) {
794   unsigned VF = Src->getType()->getVectorNumElements();
795   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
796   // and vector ops, reducing the set of values being computed by half each
797   // round.
798   assert(isPowerOf2_32(VF) &&
799          "Reduction emission only supported for pow2 vectors!");
800   Value *TmpVec = Src;
801   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
802   for (unsigned i = VF; i != 1; i >>= 1) {
803     // Move the upper half of the vector to the lower half.
804     for (unsigned j = 0; j != i / 2; ++j)
805       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
806 
807     // Fill the rest of the mask with undef.
808     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
809               UndefValue::get(Builder.getInt32Ty()));
810 
811     Value *Shuf = Builder.CreateShuffleVector(
812         TmpVec, UndefValue::get(TmpVec->getType()),
813         ConstantVector::get(ShuffleMask), "rdx.shuf");
814 
815     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
816       // Floating point operations had to be 'fast' to enable the reduction.
817       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
818                                                    TmpVec, Shuf, "bin.rdx"));
819     } else {
820       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
821              "Invalid min/max");
822       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
823     }
824     if (!RedOps.empty())
825       propagateIRFlags(TmpVec, RedOps);
826   }
827   // The result is in the first element of the vector.
828   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
829 }
830 
831 /// Create a simple vector reduction specified by an opcode and some
832 /// flags (if generating min/max reductions).
833 Value *llvm::createSimpleTargetReduction(
834     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
835     Value *Src, TargetTransformInfo::ReductionFlags Flags,
836     ArrayRef<Value *> RedOps) {
837   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
838 
839   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
840   std::function<Value *()> BuildFunc;
841   using RD = RecurrenceDescriptor;
842   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
843   // TODO: Support creating ordered reductions.
844   FastMathFlags FMFFast;
845   FMFFast.setFast();
846 
847   switch (Opcode) {
848   case Instruction::Add:
849     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
850     break;
851   case Instruction::Mul:
852     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
853     break;
854   case Instruction::And:
855     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
856     break;
857   case Instruction::Or:
858     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
859     break;
860   case Instruction::Xor:
861     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
862     break;
863   case Instruction::FAdd:
864     BuildFunc = [&]() {
865       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
866       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
867       return Rdx;
868     };
869     break;
870   case Instruction::FMul:
871     BuildFunc = [&]() {
872       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
873       cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
874       return Rdx;
875     };
876     break;
877   case Instruction::ICmp:
878     if (Flags.IsMaxOp) {
879       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
880       BuildFunc = [&]() {
881         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
882       };
883     } else {
884       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
885       BuildFunc = [&]() {
886         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
887       };
888     }
889     break;
890   case Instruction::FCmp:
891     if (Flags.IsMaxOp) {
892       MinMaxKind = RD::MRK_FloatMax;
893       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
894     } else {
895       MinMaxKind = RD::MRK_FloatMin;
896       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
897     }
898     break;
899   default:
900     llvm_unreachable("Unhandled opcode");
901     break;
902   }
903   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
904     return BuildFunc();
905   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
906 }
907 
908 /// Create a vector reduction using a given recurrence descriptor.
909 Value *llvm::createTargetReduction(IRBuilder<> &B,
910                                    const TargetTransformInfo *TTI,
911                                    RecurrenceDescriptor &Desc, Value *Src,
912                                    bool NoNaN) {
913   // TODO: Support in-order reductions based on the recurrence descriptor.
914   using RD = RecurrenceDescriptor;
915   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
916   TargetTransformInfo::ReductionFlags Flags;
917   Flags.NoNaN = NoNaN;
918   switch (RecKind) {
919   case RD::RK_FloatAdd:
920     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
921   case RD::RK_FloatMult:
922     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
923   case RD::RK_IntegerAdd:
924     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
925   case RD::RK_IntegerMult:
926     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
927   case RD::RK_IntegerAnd:
928     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
929   case RD::RK_IntegerOr:
930     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
931   case RD::RK_IntegerXor:
932     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
933   case RD::RK_IntegerMinMax: {
934     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
935     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
936     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
937     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
938   }
939   case RD::RK_FloatMinMax: {
940     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
941     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
942   }
943   default:
944     llvm_unreachable("Unhandled RecKind");
945   }
946 }
947 
948 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
949   auto *VecOp = dyn_cast<Instruction>(I);
950   if (!VecOp)
951     return;
952   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
953                                             : dyn_cast<Instruction>(OpValue);
954   if (!Intersection)
955     return;
956   const unsigned Opcode = Intersection->getOpcode();
957   VecOp->copyIRFlags(Intersection);
958   for (auto *V : VL) {
959     auto *Instr = dyn_cast<Instruction>(V);
960     if (!Instr)
961       continue;
962     if (OpValue == nullptr || Opcode == Instr->getOpcode())
963       VecOp->andIRFlags(V);
964   }
965 }
966