1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSAUpdater.h" 23 #include "llvm/Analysis/MustExecute.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpander.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "loop-utils" 46 47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 48 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 49 50 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 51 MemorySSAUpdater *MSSAU, 52 bool PreserveLCSSA) { 53 bool Changed = false; 54 55 // We re-use a vector for the in-loop predecesosrs. 56 SmallVector<BasicBlock *, 4> InLoopPredecessors; 57 58 auto RewriteExit = [&](BasicBlock *BB) { 59 assert(InLoopPredecessors.empty() && 60 "Must start with an empty predecessors list!"); 61 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 62 63 // See if there are any non-loop predecessors of this exit block and 64 // keep track of the in-loop predecessors. 65 bool IsDedicatedExit = true; 66 for (auto *PredBB : predecessors(BB)) 67 if (L->contains(PredBB)) { 68 if (isa<IndirectBrInst>(PredBB->getTerminator())) 69 // We cannot rewrite exiting edges from an indirectbr. 70 return false; 71 if (isa<CallBrInst>(PredBB->getTerminator())) 72 // We cannot rewrite exiting edges from a callbr. 73 return false; 74 75 InLoopPredecessors.push_back(PredBB); 76 } else { 77 IsDedicatedExit = false; 78 } 79 80 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 81 82 // Nothing to do if this is already a dedicated exit. 83 if (IsDedicatedExit) 84 return false; 85 86 auto *NewExitBB = SplitBlockPredecessors( 87 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 88 89 if (!NewExitBB) 90 LLVM_DEBUG( 91 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 92 << *L << "\n"); 93 else 94 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 95 << NewExitBB->getName() << "\n"); 96 return true; 97 }; 98 99 // Walk the exit blocks directly rather than building up a data structure for 100 // them, but only visit each one once. 101 SmallPtrSet<BasicBlock *, 4> Visited; 102 for (auto *BB : L->blocks()) 103 for (auto *SuccBB : successors(BB)) { 104 // We're looking for exit blocks so skip in-loop successors. 105 if (L->contains(SuccBB)) 106 continue; 107 108 // Visit each exit block exactly once. 109 if (!Visited.insert(SuccBB).second) 110 continue; 111 112 Changed |= RewriteExit(SuccBB); 113 } 114 115 return Changed; 116 } 117 118 /// Returns the instructions that use values defined in the loop. 119 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 120 SmallVector<Instruction *, 8> UsedOutside; 121 122 for (auto *Block : L->getBlocks()) 123 // FIXME: I believe that this could use copy_if if the Inst reference could 124 // be adapted into a pointer. 125 for (auto &Inst : *Block) { 126 auto Users = Inst.users(); 127 if (any_of(Users, [&](User *U) { 128 auto *Use = cast<Instruction>(U); 129 return !L->contains(Use->getParent()); 130 })) 131 UsedOutside.push_back(&Inst); 132 } 133 134 return UsedOutside; 135 } 136 137 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 138 // By definition, all loop passes need the LoopInfo analysis and the 139 // Dominator tree it depends on. Because they all participate in the loop 140 // pass manager, they must also preserve these. 141 AU.addRequired<DominatorTreeWrapperPass>(); 142 AU.addPreserved<DominatorTreeWrapperPass>(); 143 AU.addRequired<LoopInfoWrapperPass>(); 144 AU.addPreserved<LoopInfoWrapperPass>(); 145 146 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 147 // here because users shouldn't directly get them from this header. 148 extern char &LoopSimplifyID; 149 extern char &LCSSAID; 150 AU.addRequiredID(LoopSimplifyID); 151 AU.addPreservedID(LoopSimplifyID); 152 AU.addRequiredID(LCSSAID); 153 AU.addPreservedID(LCSSAID); 154 // This is used in the LPPassManager to perform LCSSA verification on passes 155 // which preserve lcssa form 156 AU.addRequired<LCSSAVerificationPass>(); 157 AU.addPreserved<LCSSAVerificationPass>(); 158 159 // Loop passes are designed to run inside of a loop pass manager which means 160 // that any function analyses they require must be required by the first loop 161 // pass in the manager (so that it is computed before the loop pass manager 162 // runs) and preserved by all loop pasess in the manager. To make this 163 // reasonably robust, the set needed for most loop passes is maintained here. 164 // If your loop pass requires an analysis not listed here, you will need to 165 // carefully audit the loop pass manager nesting structure that results. 166 AU.addRequired<AAResultsWrapperPass>(); 167 AU.addPreserved<AAResultsWrapperPass>(); 168 AU.addPreserved<BasicAAWrapperPass>(); 169 AU.addPreserved<GlobalsAAWrapperPass>(); 170 AU.addPreserved<SCEVAAWrapperPass>(); 171 AU.addRequired<ScalarEvolutionWrapperPass>(); 172 AU.addPreserved<ScalarEvolutionWrapperPass>(); 173 } 174 175 /// Manually defined generic "LoopPass" dependency initialization. This is used 176 /// to initialize the exact set of passes from above in \c 177 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 178 /// with: 179 /// 180 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 181 /// 182 /// As-if "LoopPass" were a pass. 183 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 184 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 186 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 187 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 190 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 192 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 193 } 194 195 /// Create MDNode for input string. 196 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 197 LLVMContext &Context = TheLoop->getHeader()->getContext(); 198 Metadata *MDs[] = { 199 MDString::get(Context, Name), 200 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 201 return MDNode::get(Context, MDs); 202 } 203 204 /// Set input string into loop metadata by keeping other values intact. 205 /// If the string is already in loop metadata update value if it is 206 /// different. 207 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 208 unsigned V) { 209 SmallVector<Metadata *, 4> MDs(1); 210 // If the loop already has metadata, retain it. 211 MDNode *LoopID = TheLoop->getLoopID(); 212 if (LoopID) { 213 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 214 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 215 // If it is of form key = value, try to parse it. 216 if (Node->getNumOperands() == 2) { 217 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 218 if (S && S->getString().equals(StringMD)) { 219 ConstantInt *IntMD = 220 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 221 if (IntMD && IntMD->getSExtValue() == V) 222 // It is already in place. Do nothing. 223 return; 224 // We need to update the value, so just skip it here and it will 225 // be added after copying other existed nodes. 226 continue; 227 } 228 } 229 MDs.push_back(Node); 230 } 231 } 232 // Add new metadata. 233 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 234 // Replace current metadata node with new one. 235 LLVMContext &Context = TheLoop->getHeader()->getContext(); 236 MDNode *NewLoopID = MDNode::get(Context, MDs); 237 // Set operand 0 to refer to the loop id itself. 238 NewLoopID->replaceOperandWith(0, NewLoopID); 239 TheLoop->setLoopID(NewLoopID); 240 } 241 242 /// Find string metadata for loop 243 /// 244 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 245 /// operand or null otherwise. If the string metadata is not found return 246 /// Optional's not-a-value. 247 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 248 StringRef Name) { 249 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 250 if (!MD) 251 return None; 252 switch (MD->getNumOperands()) { 253 case 1: 254 return nullptr; 255 case 2: 256 return &MD->getOperand(1); 257 default: 258 llvm_unreachable("loop metadata has 0 or 1 operand"); 259 } 260 } 261 262 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 263 StringRef Name) { 264 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 265 if (!MD) 266 return None; 267 switch (MD->getNumOperands()) { 268 case 1: 269 // When the value is absent it is interpreted as 'attribute set'. 270 return true; 271 case 2: 272 if (ConstantInt *IntMD = 273 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 274 return IntMD->getZExtValue(); 275 return true; 276 } 277 llvm_unreachable("unexpected number of options"); 278 } 279 280 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 281 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 282 } 283 284 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 285 StringRef Name) { 286 const MDOperand *AttrMD = 287 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 288 if (!AttrMD) 289 return None; 290 291 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 292 if (!IntMD) 293 return None; 294 295 return IntMD->getSExtValue(); 296 } 297 298 Optional<MDNode *> llvm::makeFollowupLoopID( 299 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 300 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 301 if (!OrigLoopID) { 302 if (AlwaysNew) 303 return nullptr; 304 return None; 305 } 306 307 assert(OrigLoopID->getOperand(0) == OrigLoopID); 308 309 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 310 bool InheritSomeAttrs = 311 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 312 SmallVector<Metadata *, 8> MDs; 313 MDs.push_back(nullptr); 314 315 bool Changed = false; 316 if (InheritAllAttrs || InheritSomeAttrs) { 317 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 318 MDNode *Op = cast<MDNode>(Existing.get()); 319 320 auto InheritThisAttribute = [InheritSomeAttrs, 321 InheritOptionsExceptPrefix](MDNode *Op) { 322 if (!InheritSomeAttrs) 323 return false; 324 325 // Skip malformatted attribute metadata nodes. 326 if (Op->getNumOperands() == 0) 327 return true; 328 Metadata *NameMD = Op->getOperand(0).get(); 329 if (!isa<MDString>(NameMD)) 330 return true; 331 StringRef AttrName = cast<MDString>(NameMD)->getString(); 332 333 // Do not inherit excluded attributes. 334 return !AttrName.startswith(InheritOptionsExceptPrefix); 335 }; 336 337 if (InheritThisAttribute(Op)) 338 MDs.push_back(Op); 339 else 340 Changed = true; 341 } 342 } else { 343 // Modified if we dropped at least one attribute. 344 Changed = OrigLoopID->getNumOperands() > 1; 345 } 346 347 bool HasAnyFollowup = false; 348 for (StringRef OptionName : FollowupOptions) { 349 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 350 if (!FollowupNode) 351 continue; 352 353 HasAnyFollowup = true; 354 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 355 MDs.push_back(Option.get()); 356 Changed = true; 357 } 358 } 359 360 // Attributes of the followup loop not specified explicity, so signal to the 361 // transformation pass to add suitable attributes. 362 if (!AlwaysNew && !HasAnyFollowup) 363 return None; 364 365 // If no attributes were added or remove, the previous loop Id can be reused. 366 if (!AlwaysNew && !Changed) 367 return OrigLoopID; 368 369 // No attributes is equivalent to having no !llvm.loop metadata at all. 370 if (MDs.size() == 1) 371 return nullptr; 372 373 // Build the new loop ID. 374 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 375 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 376 return FollowupLoopID; 377 } 378 379 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 380 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 381 } 382 383 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 384 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 385 } 386 387 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 388 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 389 return TM_SuppressedByUser; 390 391 Optional<int> Count = 392 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 393 if (Count.hasValue()) 394 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 395 396 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 397 return TM_ForcedByUser; 398 399 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 400 return TM_ForcedByUser; 401 402 if (hasDisableAllTransformsHint(L)) 403 return TM_Disable; 404 405 return TM_Unspecified; 406 } 407 408 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 409 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 410 return TM_SuppressedByUser; 411 412 Optional<int> Count = 413 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 414 if (Count.hasValue()) 415 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 416 417 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 418 return TM_ForcedByUser; 419 420 if (hasDisableAllTransformsHint(L)) 421 return TM_Disable; 422 423 return TM_Unspecified; 424 } 425 426 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 427 Optional<bool> Enable = 428 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 429 430 if (Enable == false) 431 return TM_SuppressedByUser; 432 433 Optional<int> VectorizeWidth = 434 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 435 Optional<int> InterleaveCount = 436 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 437 438 // 'Forcing' vector width and interleave count to one effectively disables 439 // this tranformation. 440 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 441 return TM_SuppressedByUser; 442 443 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 444 return TM_Disable; 445 446 if (Enable == true) 447 return TM_ForcedByUser; 448 449 if (VectorizeWidth == 1 && InterleaveCount == 1) 450 return TM_Disable; 451 452 if (VectorizeWidth > 1 || InterleaveCount > 1) 453 return TM_Enable; 454 455 if (hasDisableAllTransformsHint(L)) 456 return TM_Disable; 457 458 return TM_Unspecified; 459 } 460 461 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 462 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 463 return TM_ForcedByUser; 464 465 if (hasDisableAllTransformsHint(L)) 466 return TM_Disable; 467 468 return TM_Unspecified; 469 } 470 471 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 472 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 473 return TM_SuppressedByUser; 474 475 if (hasDisableAllTransformsHint(L)) 476 return TM_Disable; 477 478 return TM_Unspecified; 479 } 480 481 /// Does a BFS from a given node to all of its children inside a given loop. 482 /// The returned vector of nodes includes the starting point. 483 SmallVector<DomTreeNode *, 16> 484 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 485 SmallVector<DomTreeNode *, 16> Worklist; 486 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 487 // Only include subregions in the top level loop. 488 BasicBlock *BB = DTN->getBlock(); 489 if (CurLoop->contains(BB)) 490 Worklist.push_back(DTN); 491 }; 492 493 AddRegionToWorklist(N); 494 495 for (size_t I = 0; I < Worklist.size(); I++) 496 for (DomTreeNode *Child : Worklist[I]->getChildren()) 497 AddRegionToWorklist(Child); 498 499 return Worklist; 500 } 501 502 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 503 ScalarEvolution *SE = nullptr, 504 LoopInfo *LI = nullptr) { 505 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 506 auto *Preheader = L->getLoopPreheader(); 507 assert(Preheader && "Preheader should exist!"); 508 509 // Now that we know the removal is safe, remove the loop by changing the 510 // branch from the preheader to go to the single exit block. 511 // 512 // Because we're deleting a large chunk of code at once, the sequence in which 513 // we remove things is very important to avoid invalidation issues. 514 515 // Tell ScalarEvolution that the loop is deleted. Do this before 516 // deleting the loop so that ScalarEvolution can look at the loop 517 // to determine what it needs to clean up. 518 if (SE) 519 SE->forgetLoop(L); 520 521 auto *ExitBlock = L->getUniqueExitBlock(); 522 assert(ExitBlock && "Should have a unique exit block!"); 523 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 524 525 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 526 assert(OldBr && "Preheader must end with a branch"); 527 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 528 // Connect the preheader to the exit block. Keep the old edge to the header 529 // around to perform the dominator tree update in two separate steps 530 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 531 // preheader -> header. 532 // 533 // 534 // 0. Preheader 1. Preheader 2. Preheader 535 // | | | | 536 // V | V | 537 // Header <--\ | Header <--\ | Header <--\ 538 // | | | | | | | | | | | 539 // | V | | | V | | | V | 540 // | Body --/ | | Body --/ | | Body --/ 541 // V V V V V 542 // Exit Exit Exit 543 // 544 // By doing this is two separate steps we can perform the dominator tree 545 // update without using the batch update API. 546 // 547 // Even when the loop is never executed, we cannot remove the edge from the 548 // source block to the exit block. Consider the case where the unexecuted loop 549 // branches back to an outer loop. If we deleted the loop and removed the edge 550 // coming to this inner loop, this will break the outer loop structure (by 551 // deleting the backedge of the outer loop). If the outer loop is indeed a 552 // non-loop, it will be deleted in a future iteration of loop deletion pass. 553 IRBuilder<> Builder(OldBr); 554 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 555 // Remove the old branch. The conditional branch becomes a new terminator. 556 OldBr->eraseFromParent(); 557 558 // Rewrite phis in the exit block to get their inputs from the Preheader 559 // instead of the exiting block. 560 for (PHINode &P : ExitBlock->phis()) { 561 // Set the zero'th element of Phi to be from the preheader and remove all 562 // other incoming values. Given the loop has dedicated exits, all other 563 // incoming values must be from the exiting blocks. 564 int PredIndex = 0; 565 P.setIncomingBlock(PredIndex, Preheader); 566 // Removes all incoming values from all other exiting blocks (including 567 // duplicate values from an exiting block). 568 // Nuke all entries except the zero'th entry which is the preheader entry. 569 // NOTE! We need to remove Incoming Values in the reverse order as done 570 // below, to keep the indices valid for deletion (removeIncomingValues 571 // updates getNumIncomingValues and shifts all values down into the operand 572 // being deleted). 573 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 574 P.removeIncomingValue(e - i, false); 575 576 assert((P.getNumIncomingValues() == 1 && 577 P.getIncomingBlock(PredIndex) == Preheader) && 578 "Should have exactly one value and that's from the preheader!"); 579 } 580 581 // Disconnect the loop body by branching directly to its exit. 582 Builder.SetInsertPoint(Preheader->getTerminator()); 583 Builder.CreateBr(ExitBlock); 584 // Remove the old branch. 585 Preheader->getTerminator()->eraseFromParent(); 586 587 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 588 if (DT) { 589 // Update the dominator tree by informing it about the new edge from the 590 // preheader to the exit and the removed edge. 591 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, 592 {DominatorTree::Delete, Preheader, L->getHeader()}}); 593 } 594 595 // Use a map to unique and a vector to guarantee deterministic ordering. 596 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 597 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 598 599 // Given LCSSA form is satisfied, we should not have users of instructions 600 // within the dead loop outside of the loop. However, LCSSA doesn't take 601 // unreachable uses into account. We handle them here. 602 // We could do it after drop all references (in this case all users in the 603 // loop will be already eliminated and we have less work to do but according 604 // to API doc of User::dropAllReferences only valid operation after dropping 605 // references, is deletion. So let's substitute all usages of 606 // instruction from the loop with undef value of corresponding type first. 607 for (auto *Block : L->blocks()) 608 for (Instruction &I : *Block) { 609 auto *Undef = UndefValue::get(I.getType()); 610 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 611 Use &U = *UI; 612 ++UI; 613 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 614 if (L->contains(Usr->getParent())) 615 continue; 616 // If we have a DT then we can check that uses outside a loop only in 617 // unreachable block. 618 if (DT) 619 assert(!DT->isReachableFromEntry(U) && 620 "Unexpected user in reachable block"); 621 U.set(Undef); 622 } 623 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 624 if (!DVI) 625 continue; 626 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 627 if (Key != DeadDebugSet.end()) 628 continue; 629 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 630 DeadDebugInst.push_back(DVI); 631 } 632 633 // After the loop has been deleted all the values defined and modified 634 // inside the loop are going to be unavailable. 635 // Since debug values in the loop have been deleted, inserting an undef 636 // dbg.value truncates the range of any dbg.value before the loop where the 637 // loop used to be. This is particularly important for constant values. 638 DIBuilder DIB(*ExitBlock->getModule()); 639 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 640 assert(InsertDbgValueBefore && 641 "There should be a non-PHI instruction in exit block, else these " 642 "instructions will have no parent."); 643 for (auto *DVI : DeadDebugInst) 644 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 645 DVI->getVariable(), DVI->getExpression(), 646 DVI->getDebugLoc(), InsertDbgValueBefore); 647 648 // Remove the block from the reference counting scheme, so that we can 649 // delete it freely later. 650 for (auto *Block : L->blocks()) 651 Block->dropAllReferences(); 652 653 if (LI) { 654 // Erase the instructions and the blocks without having to worry 655 // about ordering because we already dropped the references. 656 // NOTE: This iteration is safe because erasing the block does not remove 657 // its entry from the loop's block list. We do that in the next section. 658 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 659 LpI != LpE; ++LpI) 660 (*LpI)->eraseFromParent(); 661 662 // Finally, the blocks from loopinfo. This has to happen late because 663 // otherwise our loop iterators won't work. 664 665 SmallPtrSet<BasicBlock *, 8> blocks; 666 blocks.insert(L->block_begin(), L->block_end()); 667 for (BasicBlock *BB : blocks) 668 LI->removeBlock(BB); 669 670 // The last step is to update LoopInfo now that we've eliminated this loop. 671 LI->erase(L); 672 } 673 } 674 675 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 676 // Support loops with an exiting latch and other existing exists only 677 // deoptimize. 678 679 // Get the branch weights for the loop's backedge. 680 BasicBlock *Latch = L->getLoopLatch(); 681 if (!Latch) 682 return None; 683 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 684 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 685 return None; 686 687 assert((LatchBR->getSuccessor(0) == L->getHeader() || 688 LatchBR->getSuccessor(1) == L->getHeader()) && 689 "At least one edge out of the latch must go to the header"); 690 691 SmallVector<BasicBlock *, 4> ExitBlocks; 692 L->getUniqueNonLatchExitBlocks(ExitBlocks); 693 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 694 return !EB->getTerminatingDeoptimizeCall(); 695 })) 696 return None; 697 698 // To estimate the number of times the loop body was executed, we want to 699 // know the number of times the backedge was taken, vs. the number of times 700 // we exited the loop. 701 uint64_t TrueVal, FalseVal; 702 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 703 return None; 704 705 if (!TrueVal || !FalseVal) 706 return 0; 707 708 // Divide the count of the backedge by the count of the edge exiting the loop, 709 // rounding to nearest. 710 if (LatchBR->getSuccessor(0) == L->getHeader()) 711 return (TrueVal + (FalseVal / 2)) / FalseVal; 712 else 713 return (FalseVal + (TrueVal / 2)) / TrueVal; 714 } 715 716 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 717 ScalarEvolution &SE) { 718 Loop *OuterL = InnerLoop->getParentLoop(); 719 if (!OuterL) 720 return true; 721 722 // Get the backedge taken count for the inner loop 723 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 724 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 725 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 726 !InnerLoopBECountSC->getType()->isIntegerTy()) 727 return false; 728 729 // Get whether count is invariant to the outer loop 730 ScalarEvolution::LoopDisposition LD = 731 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 732 if (LD != ScalarEvolution::LoopInvariant) 733 return false; 734 735 return true; 736 } 737 738 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 739 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 740 Value *Left, Value *Right) { 741 CmpInst::Predicate P = CmpInst::ICMP_NE; 742 switch (RK) { 743 default: 744 llvm_unreachable("Unknown min/max recurrence kind"); 745 case RecurrenceDescriptor::MRK_UIntMin: 746 P = CmpInst::ICMP_ULT; 747 break; 748 case RecurrenceDescriptor::MRK_UIntMax: 749 P = CmpInst::ICMP_UGT; 750 break; 751 case RecurrenceDescriptor::MRK_SIntMin: 752 P = CmpInst::ICMP_SLT; 753 break; 754 case RecurrenceDescriptor::MRK_SIntMax: 755 P = CmpInst::ICMP_SGT; 756 break; 757 case RecurrenceDescriptor::MRK_FloatMin: 758 P = CmpInst::FCMP_OLT; 759 break; 760 case RecurrenceDescriptor::MRK_FloatMax: 761 P = CmpInst::FCMP_OGT; 762 break; 763 } 764 765 // We only match FP sequences that are 'fast', so we can unconditionally 766 // set it on any generated instructions. 767 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 768 FastMathFlags FMF; 769 FMF.setFast(); 770 Builder.setFastMathFlags(FMF); 771 772 Value *Cmp; 773 if (RK == RecurrenceDescriptor::MRK_FloatMin || 774 RK == RecurrenceDescriptor::MRK_FloatMax) 775 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 776 else 777 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 778 779 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 780 return Select; 781 } 782 783 // Helper to generate an ordered reduction. 784 Value * 785 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 786 unsigned Op, 787 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 788 ArrayRef<Value *> RedOps) { 789 unsigned VF = Src->getType()->getVectorNumElements(); 790 791 // Extract and apply reduction ops in ascending order: 792 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 793 Value *Result = Acc; 794 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 795 Value *Ext = 796 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 797 798 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 799 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 800 "bin.rdx"); 801 } else { 802 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 803 "Invalid min/max"); 804 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 805 } 806 807 if (!RedOps.empty()) 808 propagateIRFlags(Result, RedOps); 809 } 810 811 return Result; 812 } 813 814 // Helper to generate a log2 shuffle reduction. 815 Value * 816 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 817 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 818 ArrayRef<Value *> RedOps) { 819 unsigned VF = Src->getType()->getVectorNumElements(); 820 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 821 // and vector ops, reducing the set of values being computed by half each 822 // round. 823 assert(isPowerOf2_32(VF) && 824 "Reduction emission only supported for pow2 vectors!"); 825 Value *TmpVec = Src; 826 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 827 for (unsigned i = VF; i != 1; i >>= 1) { 828 // Move the upper half of the vector to the lower half. 829 for (unsigned j = 0; j != i / 2; ++j) 830 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 831 832 // Fill the rest of the mask with undef. 833 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 834 UndefValue::get(Builder.getInt32Ty())); 835 836 Value *Shuf = Builder.CreateShuffleVector( 837 TmpVec, UndefValue::get(TmpVec->getType()), 838 ConstantVector::get(ShuffleMask), "rdx.shuf"); 839 840 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 841 // The builder propagates its fast-math-flags setting. 842 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 843 "bin.rdx"); 844 } else { 845 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 846 "Invalid min/max"); 847 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 848 } 849 if (!RedOps.empty()) 850 propagateIRFlags(TmpVec, RedOps); 851 } 852 // The result is in the first element of the vector. 853 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 854 } 855 856 /// Create a simple vector reduction specified by an opcode and some 857 /// flags (if generating min/max reductions). 858 Value *llvm::createSimpleTargetReduction( 859 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 860 Value *Src, TargetTransformInfo::ReductionFlags Flags, 861 ArrayRef<Value *> RedOps) { 862 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 863 864 std::function<Value *()> BuildFunc; 865 using RD = RecurrenceDescriptor; 866 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 867 868 switch (Opcode) { 869 case Instruction::Add: 870 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 871 break; 872 case Instruction::Mul: 873 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 874 break; 875 case Instruction::And: 876 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 877 break; 878 case Instruction::Or: 879 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 880 break; 881 case Instruction::Xor: 882 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 883 break; 884 case Instruction::FAdd: 885 BuildFunc = [&]() { 886 auto Rdx = Builder.CreateFAddReduce( 887 Constant::getNullValue(Src->getType()->getVectorElementType()), Src); 888 return Rdx; 889 }; 890 break; 891 case Instruction::FMul: 892 BuildFunc = [&]() { 893 Type *Ty = Src->getType()->getVectorElementType(); 894 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 895 return Rdx; 896 }; 897 break; 898 case Instruction::ICmp: 899 if (Flags.IsMaxOp) { 900 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 901 BuildFunc = [&]() { 902 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 903 }; 904 } else { 905 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 906 BuildFunc = [&]() { 907 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 908 }; 909 } 910 break; 911 case Instruction::FCmp: 912 if (Flags.IsMaxOp) { 913 MinMaxKind = RD::MRK_FloatMax; 914 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 915 } else { 916 MinMaxKind = RD::MRK_FloatMin; 917 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 918 } 919 break; 920 default: 921 llvm_unreachable("Unhandled opcode"); 922 break; 923 } 924 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 925 return BuildFunc(); 926 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 927 } 928 929 /// Create a vector reduction using a given recurrence descriptor. 930 Value *llvm::createTargetReduction(IRBuilder<> &B, 931 const TargetTransformInfo *TTI, 932 RecurrenceDescriptor &Desc, Value *Src, 933 bool NoNaN) { 934 // TODO: Support in-order reductions based on the recurrence descriptor. 935 using RD = RecurrenceDescriptor; 936 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 937 TargetTransformInfo::ReductionFlags Flags; 938 Flags.NoNaN = NoNaN; 939 940 // All ops in the reduction inherit fast-math-flags from the recurrence 941 // descriptor. 942 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 943 B.setFastMathFlags(Desc.getFastMathFlags()); 944 945 switch (RecKind) { 946 case RD::RK_FloatAdd: 947 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 948 case RD::RK_FloatMult: 949 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 950 case RD::RK_IntegerAdd: 951 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 952 case RD::RK_IntegerMult: 953 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 954 case RD::RK_IntegerAnd: 955 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 956 case RD::RK_IntegerOr: 957 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 958 case RD::RK_IntegerXor: 959 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 960 case RD::RK_IntegerMinMax: { 961 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 962 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 963 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 964 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 965 } 966 case RD::RK_FloatMinMax: { 967 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 968 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 969 } 970 default: 971 llvm_unreachable("Unhandled RecKind"); 972 } 973 } 974 975 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 976 auto *VecOp = dyn_cast<Instruction>(I); 977 if (!VecOp) 978 return; 979 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 980 : dyn_cast<Instruction>(OpValue); 981 if (!Intersection) 982 return; 983 const unsigned Opcode = Intersection->getOpcode(); 984 VecOp->copyIRFlags(Intersection); 985 for (auto *V : VL) { 986 auto *Instr = dyn_cast<Instruction>(V); 987 if (!Instr) 988 continue; 989 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 990 VecOp->andIRFlags(V); 991 } 992 } 993 994 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 995 ScalarEvolution &SE) { 996 const SCEV *Zero = SE.getZero(S->getType()); 997 return SE.isAvailableAtLoopEntry(S, L) && 998 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 999 } 1000 1001 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1002 ScalarEvolution &SE) { 1003 const SCEV *Zero = SE.getZero(S->getType()); 1004 return SE.isAvailableAtLoopEntry(S, L) && 1005 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1006 } 1007 1008 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1009 bool Signed) { 1010 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1011 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1012 APInt::getMinValue(BitWidth); 1013 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1014 return SE.isAvailableAtLoopEntry(S, L) && 1015 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1016 SE.getConstant(Min)); 1017 } 1018 1019 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1020 bool Signed) { 1021 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1022 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1023 APInt::getMaxValue(BitWidth); 1024 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1025 return SE.isAvailableAtLoopEntry(S, L) && 1026 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1027 SE.getConstant(Max)); 1028 } 1029