1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSAUpdater.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 #define DEBUG_TYPE "loop-utils"
46 
47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
48 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
49 
50 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
51                                    MemorySSAUpdater *MSSAU,
52                                    bool PreserveLCSSA) {
53   bool Changed = false;
54 
55   // We re-use a vector for the in-loop predecesosrs.
56   SmallVector<BasicBlock *, 4> InLoopPredecessors;
57 
58   auto RewriteExit = [&](BasicBlock *BB) {
59     assert(InLoopPredecessors.empty() &&
60            "Must start with an empty predecessors list!");
61     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
62 
63     // See if there are any non-loop predecessors of this exit block and
64     // keep track of the in-loop predecessors.
65     bool IsDedicatedExit = true;
66     for (auto *PredBB : predecessors(BB))
67       if (L->contains(PredBB)) {
68         if (isa<IndirectBrInst>(PredBB->getTerminator()))
69           // We cannot rewrite exiting edges from an indirectbr.
70           return false;
71         if (isa<CallBrInst>(PredBB->getTerminator()))
72           // We cannot rewrite exiting edges from a callbr.
73           return false;
74 
75         InLoopPredecessors.push_back(PredBB);
76       } else {
77         IsDedicatedExit = false;
78       }
79 
80     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
81 
82     // Nothing to do if this is already a dedicated exit.
83     if (IsDedicatedExit)
84       return false;
85 
86     auto *NewExitBB = SplitBlockPredecessors(
87         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
88 
89     if (!NewExitBB)
90       LLVM_DEBUG(
91           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
92                  << *L << "\n");
93     else
94       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
95                         << NewExitBB->getName() << "\n");
96     return true;
97   };
98 
99   // Walk the exit blocks directly rather than building up a data structure for
100   // them, but only visit each one once.
101   SmallPtrSet<BasicBlock *, 4> Visited;
102   for (auto *BB : L->blocks())
103     for (auto *SuccBB : successors(BB)) {
104       // We're looking for exit blocks so skip in-loop successors.
105       if (L->contains(SuccBB))
106         continue;
107 
108       // Visit each exit block exactly once.
109       if (!Visited.insert(SuccBB).second)
110         continue;
111 
112       Changed |= RewriteExit(SuccBB);
113     }
114 
115   return Changed;
116 }
117 
118 /// Returns the instructions that use values defined in the loop.
119 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
120   SmallVector<Instruction *, 8> UsedOutside;
121 
122   for (auto *Block : L->getBlocks())
123     // FIXME: I believe that this could use copy_if if the Inst reference could
124     // be adapted into a pointer.
125     for (auto &Inst : *Block) {
126       auto Users = Inst.users();
127       if (any_of(Users, [&](User *U) {
128             auto *Use = cast<Instruction>(U);
129             return !L->contains(Use->getParent());
130           }))
131         UsedOutside.push_back(&Inst);
132     }
133 
134   return UsedOutside;
135 }
136 
137 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
138   // By definition, all loop passes need the LoopInfo analysis and the
139   // Dominator tree it depends on. Because they all participate in the loop
140   // pass manager, they must also preserve these.
141   AU.addRequired<DominatorTreeWrapperPass>();
142   AU.addPreserved<DominatorTreeWrapperPass>();
143   AU.addRequired<LoopInfoWrapperPass>();
144   AU.addPreserved<LoopInfoWrapperPass>();
145 
146   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
147   // here because users shouldn't directly get them from this header.
148   extern char &LoopSimplifyID;
149   extern char &LCSSAID;
150   AU.addRequiredID(LoopSimplifyID);
151   AU.addPreservedID(LoopSimplifyID);
152   AU.addRequiredID(LCSSAID);
153   AU.addPreservedID(LCSSAID);
154   // This is used in the LPPassManager to perform LCSSA verification on passes
155   // which preserve lcssa form
156   AU.addRequired<LCSSAVerificationPass>();
157   AU.addPreserved<LCSSAVerificationPass>();
158 
159   // Loop passes are designed to run inside of a loop pass manager which means
160   // that any function analyses they require must be required by the first loop
161   // pass in the manager (so that it is computed before the loop pass manager
162   // runs) and preserved by all loop pasess in the manager. To make this
163   // reasonably robust, the set needed for most loop passes is maintained here.
164   // If your loop pass requires an analysis not listed here, you will need to
165   // carefully audit the loop pass manager nesting structure that results.
166   AU.addRequired<AAResultsWrapperPass>();
167   AU.addPreserved<AAResultsWrapperPass>();
168   AU.addPreserved<BasicAAWrapperPass>();
169   AU.addPreserved<GlobalsAAWrapperPass>();
170   AU.addPreserved<SCEVAAWrapperPass>();
171   AU.addRequired<ScalarEvolutionWrapperPass>();
172   AU.addPreserved<ScalarEvolutionWrapperPass>();
173 }
174 
175 /// Manually defined generic "LoopPass" dependency initialization. This is used
176 /// to initialize the exact set of passes from above in \c
177 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
178 /// with:
179 ///
180 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
181 ///
182 /// As-if "LoopPass" were a pass.
183 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
184   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
185   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
186   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
187   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
188   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
190   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
191   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
192   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
193 }
194 
195 /// Create MDNode for input string.
196 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
197   LLVMContext &Context = TheLoop->getHeader()->getContext();
198   Metadata *MDs[] = {
199       MDString::get(Context, Name),
200       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
201   return MDNode::get(Context, MDs);
202 }
203 
204 /// Set input string into loop metadata by keeping other values intact.
205 /// If the string is already in loop metadata update value if it is
206 /// different.
207 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
208                                    unsigned V) {
209   SmallVector<Metadata *, 4> MDs(1);
210   // If the loop already has metadata, retain it.
211   MDNode *LoopID = TheLoop->getLoopID();
212   if (LoopID) {
213     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
214       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
215       // If it is of form key = value, try to parse it.
216       if (Node->getNumOperands() == 2) {
217         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
218         if (S && S->getString().equals(StringMD)) {
219           ConstantInt *IntMD =
220               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
221           if (IntMD && IntMD->getSExtValue() == V)
222             // It is already in place. Do nothing.
223             return;
224           // We need to update the value, so just skip it here and it will
225           // be added after copying other existed nodes.
226           continue;
227         }
228       }
229       MDs.push_back(Node);
230     }
231   }
232   // Add new metadata.
233   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
234   // Replace current metadata node with new one.
235   LLVMContext &Context = TheLoop->getHeader()->getContext();
236   MDNode *NewLoopID = MDNode::get(Context, MDs);
237   // Set operand 0 to refer to the loop id itself.
238   NewLoopID->replaceOperandWith(0, NewLoopID);
239   TheLoop->setLoopID(NewLoopID);
240 }
241 
242 /// Find string metadata for loop
243 ///
244 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
245 /// operand or null otherwise.  If the string metadata is not found return
246 /// Optional's not-a-value.
247 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
248                                                             StringRef Name) {
249   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
250   if (!MD)
251     return None;
252   switch (MD->getNumOperands()) {
253   case 1:
254     return nullptr;
255   case 2:
256     return &MD->getOperand(1);
257   default:
258     llvm_unreachable("loop metadata has 0 or 1 operand");
259   }
260 }
261 
262 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
263                                                    StringRef Name) {
264   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
265   if (!MD)
266     return None;
267   switch (MD->getNumOperands()) {
268   case 1:
269     // When the value is absent it is interpreted as 'attribute set'.
270     return true;
271   case 2:
272     if (ConstantInt *IntMD =
273             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
274       return IntMD->getZExtValue();
275     return true;
276   }
277   llvm_unreachable("unexpected number of options");
278 }
279 
280 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
281   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
282 }
283 
284 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
285                                                       StringRef Name) {
286   const MDOperand *AttrMD =
287       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
288   if (!AttrMD)
289     return None;
290 
291   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
292   if (!IntMD)
293     return None;
294 
295   return IntMD->getSExtValue();
296 }
297 
298 Optional<MDNode *> llvm::makeFollowupLoopID(
299     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
300     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
301   if (!OrigLoopID) {
302     if (AlwaysNew)
303       return nullptr;
304     return None;
305   }
306 
307   assert(OrigLoopID->getOperand(0) == OrigLoopID);
308 
309   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
310   bool InheritSomeAttrs =
311       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
312   SmallVector<Metadata *, 8> MDs;
313   MDs.push_back(nullptr);
314 
315   bool Changed = false;
316   if (InheritAllAttrs || InheritSomeAttrs) {
317     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
318       MDNode *Op = cast<MDNode>(Existing.get());
319 
320       auto InheritThisAttribute = [InheritSomeAttrs,
321                                    InheritOptionsExceptPrefix](MDNode *Op) {
322         if (!InheritSomeAttrs)
323           return false;
324 
325         // Skip malformatted attribute metadata nodes.
326         if (Op->getNumOperands() == 0)
327           return true;
328         Metadata *NameMD = Op->getOperand(0).get();
329         if (!isa<MDString>(NameMD))
330           return true;
331         StringRef AttrName = cast<MDString>(NameMD)->getString();
332 
333         // Do not inherit excluded attributes.
334         return !AttrName.startswith(InheritOptionsExceptPrefix);
335       };
336 
337       if (InheritThisAttribute(Op))
338         MDs.push_back(Op);
339       else
340         Changed = true;
341     }
342   } else {
343     // Modified if we dropped at least one attribute.
344     Changed = OrigLoopID->getNumOperands() > 1;
345   }
346 
347   bool HasAnyFollowup = false;
348   for (StringRef OptionName : FollowupOptions) {
349     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
350     if (!FollowupNode)
351       continue;
352 
353     HasAnyFollowup = true;
354     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
355       MDs.push_back(Option.get());
356       Changed = true;
357     }
358   }
359 
360   // Attributes of the followup loop not specified explicity, so signal to the
361   // transformation pass to add suitable attributes.
362   if (!AlwaysNew && !HasAnyFollowup)
363     return None;
364 
365   // If no attributes were added or remove, the previous loop Id can be reused.
366   if (!AlwaysNew && !Changed)
367     return OrigLoopID;
368 
369   // No attributes is equivalent to having no !llvm.loop metadata at all.
370   if (MDs.size() == 1)
371     return nullptr;
372 
373   // Build the new loop ID.
374   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
375   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
376   return FollowupLoopID;
377 }
378 
379 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
380   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
381 }
382 
383 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
384   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
385 }
386 
387 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
388   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
389     return TM_SuppressedByUser;
390 
391   Optional<int> Count =
392       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
393   if (Count.hasValue())
394     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
395 
396   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
397     return TM_ForcedByUser;
398 
399   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
400     return TM_ForcedByUser;
401 
402   if (hasDisableAllTransformsHint(L))
403     return TM_Disable;
404 
405   return TM_Unspecified;
406 }
407 
408 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
409   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
410     return TM_SuppressedByUser;
411 
412   Optional<int> Count =
413       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
414   if (Count.hasValue())
415     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
416 
417   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
418     return TM_ForcedByUser;
419 
420   if (hasDisableAllTransformsHint(L))
421     return TM_Disable;
422 
423   return TM_Unspecified;
424 }
425 
426 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
427   Optional<bool> Enable =
428       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
429 
430   if (Enable == false)
431     return TM_SuppressedByUser;
432 
433   Optional<int> VectorizeWidth =
434       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
435   Optional<int> InterleaveCount =
436       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
437 
438   // 'Forcing' vector width and interleave count to one effectively disables
439   // this tranformation.
440   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
441     return TM_SuppressedByUser;
442 
443   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
444     return TM_Disable;
445 
446   if (Enable == true)
447     return TM_ForcedByUser;
448 
449   if (VectorizeWidth == 1 && InterleaveCount == 1)
450     return TM_Disable;
451 
452   if (VectorizeWidth > 1 || InterleaveCount > 1)
453     return TM_Enable;
454 
455   if (hasDisableAllTransformsHint(L))
456     return TM_Disable;
457 
458   return TM_Unspecified;
459 }
460 
461 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
462   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
463     return TM_ForcedByUser;
464 
465   if (hasDisableAllTransformsHint(L))
466     return TM_Disable;
467 
468   return TM_Unspecified;
469 }
470 
471 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
472   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
473     return TM_SuppressedByUser;
474 
475   if (hasDisableAllTransformsHint(L))
476     return TM_Disable;
477 
478   return TM_Unspecified;
479 }
480 
481 /// Does a BFS from a given node to all of its children inside a given loop.
482 /// The returned vector of nodes includes the starting point.
483 SmallVector<DomTreeNode *, 16>
484 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
485   SmallVector<DomTreeNode *, 16> Worklist;
486   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
487     // Only include subregions in the top level loop.
488     BasicBlock *BB = DTN->getBlock();
489     if (CurLoop->contains(BB))
490       Worklist.push_back(DTN);
491   };
492 
493   AddRegionToWorklist(N);
494 
495   for (size_t I = 0; I < Worklist.size(); I++)
496     for (DomTreeNode *Child : Worklist[I]->getChildren())
497       AddRegionToWorklist(Child);
498 
499   return Worklist;
500 }
501 
502 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
503                           ScalarEvolution *SE = nullptr,
504                           LoopInfo *LI = nullptr) {
505   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
506   auto *Preheader = L->getLoopPreheader();
507   assert(Preheader && "Preheader should exist!");
508 
509   // Now that we know the removal is safe, remove the loop by changing the
510   // branch from the preheader to go to the single exit block.
511   //
512   // Because we're deleting a large chunk of code at once, the sequence in which
513   // we remove things is very important to avoid invalidation issues.
514 
515   // Tell ScalarEvolution that the loop is deleted. Do this before
516   // deleting the loop so that ScalarEvolution can look at the loop
517   // to determine what it needs to clean up.
518   if (SE)
519     SE->forgetLoop(L);
520 
521   auto *ExitBlock = L->getUniqueExitBlock();
522   assert(ExitBlock && "Should have a unique exit block!");
523   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
524 
525   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
526   assert(OldBr && "Preheader must end with a branch");
527   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
528   // Connect the preheader to the exit block. Keep the old edge to the header
529   // around to perform the dominator tree update in two separate steps
530   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
531   // preheader -> header.
532   //
533   //
534   // 0.  Preheader          1.  Preheader           2.  Preheader
535   //        |                    |   |                   |
536   //        V                    |   V                   |
537   //      Header <--\            | Header <--\           | Header <--\
538   //       |  |     |            |  |  |     |           |  |  |     |
539   //       |  V     |            |  |  V     |           |  |  V     |
540   //       | Body --/            |  | Body --/           |  | Body --/
541   //       V                     V  V                    V  V
542   //      Exit                   Exit                    Exit
543   //
544   // By doing this is two separate steps we can perform the dominator tree
545   // update without using the batch update API.
546   //
547   // Even when the loop is never executed, we cannot remove the edge from the
548   // source block to the exit block. Consider the case where the unexecuted loop
549   // branches back to an outer loop. If we deleted the loop and removed the edge
550   // coming to this inner loop, this will break the outer loop structure (by
551   // deleting the backedge of the outer loop). If the outer loop is indeed a
552   // non-loop, it will be deleted in a future iteration of loop deletion pass.
553   IRBuilder<> Builder(OldBr);
554   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
555   // Remove the old branch. The conditional branch becomes a new terminator.
556   OldBr->eraseFromParent();
557 
558   // Rewrite phis in the exit block to get their inputs from the Preheader
559   // instead of the exiting block.
560   for (PHINode &P : ExitBlock->phis()) {
561     // Set the zero'th element of Phi to be from the preheader and remove all
562     // other incoming values. Given the loop has dedicated exits, all other
563     // incoming values must be from the exiting blocks.
564     int PredIndex = 0;
565     P.setIncomingBlock(PredIndex, Preheader);
566     // Removes all incoming values from all other exiting blocks (including
567     // duplicate values from an exiting block).
568     // Nuke all entries except the zero'th entry which is the preheader entry.
569     // NOTE! We need to remove Incoming Values in the reverse order as done
570     // below, to keep the indices valid for deletion (removeIncomingValues
571     // updates getNumIncomingValues and shifts all values down into the operand
572     // being deleted).
573     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
574       P.removeIncomingValue(e - i, false);
575 
576     assert((P.getNumIncomingValues() == 1 &&
577             P.getIncomingBlock(PredIndex) == Preheader) &&
578            "Should have exactly one value and that's from the preheader!");
579   }
580 
581   // Disconnect the loop body by branching directly to its exit.
582   Builder.SetInsertPoint(Preheader->getTerminator());
583   Builder.CreateBr(ExitBlock);
584   // Remove the old branch.
585   Preheader->getTerminator()->eraseFromParent();
586 
587   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
588   if (DT) {
589     // Update the dominator tree by informing it about the new edge from the
590     // preheader to the exit and the removed edge.
591     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
592                       {DominatorTree::Delete, Preheader, L->getHeader()}});
593   }
594 
595   // Use a map to unique and a vector to guarantee deterministic ordering.
596   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
597   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
598 
599   // Given LCSSA form is satisfied, we should not have users of instructions
600   // within the dead loop outside of the loop. However, LCSSA doesn't take
601   // unreachable uses into account. We handle them here.
602   // We could do it after drop all references (in this case all users in the
603   // loop will be already eliminated and we have less work to do but according
604   // to API doc of User::dropAllReferences only valid operation after dropping
605   // references, is deletion. So let's substitute all usages of
606   // instruction from the loop with undef value of corresponding type first.
607   for (auto *Block : L->blocks())
608     for (Instruction &I : *Block) {
609       auto *Undef = UndefValue::get(I.getType());
610       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
611         Use &U = *UI;
612         ++UI;
613         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
614           if (L->contains(Usr->getParent()))
615             continue;
616         // If we have a DT then we can check that uses outside a loop only in
617         // unreachable block.
618         if (DT)
619           assert(!DT->isReachableFromEntry(U) &&
620                  "Unexpected user in reachable block");
621         U.set(Undef);
622       }
623       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
624       if (!DVI)
625         continue;
626       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
627       if (Key != DeadDebugSet.end())
628         continue;
629       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
630       DeadDebugInst.push_back(DVI);
631     }
632 
633   // After the loop has been deleted all the values defined and modified
634   // inside the loop are going to be unavailable.
635   // Since debug values in the loop have been deleted, inserting an undef
636   // dbg.value truncates the range of any dbg.value before the loop where the
637   // loop used to be. This is particularly important for constant values.
638   DIBuilder DIB(*ExitBlock->getModule());
639   Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
640   assert(InsertDbgValueBefore &&
641          "There should be a non-PHI instruction in exit block, else these "
642          "instructions will have no parent.");
643   for (auto *DVI : DeadDebugInst)
644     DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
645                                 DVI->getVariable(), DVI->getExpression(),
646                                 DVI->getDebugLoc(), InsertDbgValueBefore);
647 
648   // Remove the block from the reference counting scheme, so that we can
649   // delete it freely later.
650   for (auto *Block : L->blocks())
651     Block->dropAllReferences();
652 
653   if (LI) {
654     // Erase the instructions and the blocks without having to worry
655     // about ordering because we already dropped the references.
656     // NOTE: This iteration is safe because erasing the block does not remove
657     // its entry from the loop's block list.  We do that in the next section.
658     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
659          LpI != LpE; ++LpI)
660       (*LpI)->eraseFromParent();
661 
662     // Finally, the blocks from loopinfo.  This has to happen late because
663     // otherwise our loop iterators won't work.
664 
665     SmallPtrSet<BasicBlock *, 8> blocks;
666     blocks.insert(L->block_begin(), L->block_end());
667     for (BasicBlock *BB : blocks)
668       LI->removeBlock(BB);
669 
670     // The last step is to update LoopInfo now that we've eliminated this loop.
671     LI->erase(L);
672   }
673 }
674 
675 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
676   // Support loops with an exiting latch and other existing exists only
677   // deoptimize.
678 
679   // Get the branch weights for the loop's backedge.
680   BasicBlock *Latch = L->getLoopLatch();
681   if (!Latch)
682     return None;
683   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
684   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
685     return None;
686 
687   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
688           LatchBR->getSuccessor(1) == L->getHeader()) &&
689          "At least one edge out of the latch must go to the header");
690 
691   SmallVector<BasicBlock *, 4> ExitBlocks;
692   L->getUniqueNonLatchExitBlocks(ExitBlocks);
693   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
694         return !EB->getTerminatingDeoptimizeCall();
695       }))
696     return None;
697 
698   // To estimate the number of times the loop body was executed, we want to
699   // know the number of times the backedge was taken, vs. the number of times
700   // we exited the loop.
701   uint64_t TrueVal, FalseVal;
702   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
703     return None;
704 
705   if (!TrueVal || !FalseVal)
706     return 0;
707 
708   // Divide the count of the backedge by the count of the edge exiting the loop,
709   // rounding to nearest.
710   if (LatchBR->getSuccessor(0) == L->getHeader())
711     return (TrueVal + (FalseVal / 2)) / FalseVal;
712   else
713     return (FalseVal + (TrueVal / 2)) / TrueVal;
714 }
715 
716 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
717                                               ScalarEvolution &SE) {
718   Loop *OuterL = InnerLoop->getParentLoop();
719   if (!OuterL)
720     return true;
721 
722   // Get the backedge taken count for the inner loop
723   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
724   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
725   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
726       !InnerLoopBECountSC->getType()->isIntegerTy())
727     return false;
728 
729   // Get whether count is invariant to the outer loop
730   ScalarEvolution::LoopDisposition LD =
731       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
732   if (LD != ScalarEvolution::LoopInvariant)
733     return false;
734 
735   return true;
736 }
737 
738 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
739                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
740                             Value *Left, Value *Right) {
741   CmpInst::Predicate P = CmpInst::ICMP_NE;
742   switch (RK) {
743   default:
744     llvm_unreachable("Unknown min/max recurrence kind");
745   case RecurrenceDescriptor::MRK_UIntMin:
746     P = CmpInst::ICMP_ULT;
747     break;
748   case RecurrenceDescriptor::MRK_UIntMax:
749     P = CmpInst::ICMP_UGT;
750     break;
751   case RecurrenceDescriptor::MRK_SIntMin:
752     P = CmpInst::ICMP_SLT;
753     break;
754   case RecurrenceDescriptor::MRK_SIntMax:
755     P = CmpInst::ICMP_SGT;
756     break;
757   case RecurrenceDescriptor::MRK_FloatMin:
758     P = CmpInst::FCMP_OLT;
759     break;
760   case RecurrenceDescriptor::MRK_FloatMax:
761     P = CmpInst::FCMP_OGT;
762     break;
763   }
764 
765   // We only match FP sequences that are 'fast', so we can unconditionally
766   // set it on any generated instructions.
767   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
768   FastMathFlags FMF;
769   FMF.setFast();
770   Builder.setFastMathFlags(FMF);
771 
772   Value *Cmp;
773   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
774       RK == RecurrenceDescriptor::MRK_FloatMax)
775     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
776   else
777     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
778 
779   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
780   return Select;
781 }
782 
783 // Helper to generate an ordered reduction.
784 Value *
785 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
786                           unsigned Op,
787                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
788                           ArrayRef<Value *> RedOps) {
789   unsigned VF = Src->getType()->getVectorNumElements();
790 
791   // Extract and apply reduction ops in ascending order:
792   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
793   Value *Result = Acc;
794   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
795     Value *Ext =
796         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
797 
798     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
799       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
800                                    "bin.rdx");
801     } else {
802       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
803              "Invalid min/max");
804       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
805     }
806 
807     if (!RedOps.empty())
808       propagateIRFlags(Result, RedOps);
809   }
810 
811   return Result;
812 }
813 
814 // Helper to generate a log2 shuffle reduction.
815 Value *
816 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
817                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
818                           ArrayRef<Value *> RedOps) {
819   unsigned VF = Src->getType()->getVectorNumElements();
820   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
821   // and vector ops, reducing the set of values being computed by half each
822   // round.
823   assert(isPowerOf2_32(VF) &&
824          "Reduction emission only supported for pow2 vectors!");
825   Value *TmpVec = Src;
826   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
827   for (unsigned i = VF; i != 1; i >>= 1) {
828     // Move the upper half of the vector to the lower half.
829     for (unsigned j = 0; j != i / 2; ++j)
830       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
831 
832     // Fill the rest of the mask with undef.
833     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
834               UndefValue::get(Builder.getInt32Ty()));
835 
836     Value *Shuf = Builder.CreateShuffleVector(
837         TmpVec, UndefValue::get(TmpVec->getType()),
838         ConstantVector::get(ShuffleMask), "rdx.shuf");
839 
840     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
841       // The builder propagates its fast-math-flags setting.
842       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
843                                    "bin.rdx");
844     } else {
845       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
846              "Invalid min/max");
847       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
848     }
849     if (!RedOps.empty())
850       propagateIRFlags(TmpVec, RedOps);
851   }
852   // The result is in the first element of the vector.
853   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
854 }
855 
856 /// Create a simple vector reduction specified by an opcode and some
857 /// flags (if generating min/max reductions).
858 Value *llvm::createSimpleTargetReduction(
859     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
860     Value *Src, TargetTransformInfo::ReductionFlags Flags,
861     ArrayRef<Value *> RedOps) {
862   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
863 
864   std::function<Value *()> BuildFunc;
865   using RD = RecurrenceDescriptor;
866   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
867 
868   switch (Opcode) {
869   case Instruction::Add:
870     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
871     break;
872   case Instruction::Mul:
873     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
874     break;
875   case Instruction::And:
876     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
877     break;
878   case Instruction::Or:
879     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
880     break;
881   case Instruction::Xor:
882     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
883     break;
884   case Instruction::FAdd:
885     BuildFunc = [&]() {
886       auto Rdx = Builder.CreateFAddReduce(
887           Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
888       return Rdx;
889     };
890     break;
891   case Instruction::FMul:
892     BuildFunc = [&]() {
893       Type *Ty = Src->getType()->getVectorElementType();
894       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
895       return Rdx;
896     };
897     break;
898   case Instruction::ICmp:
899     if (Flags.IsMaxOp) {
900       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
901       BuildFunc = [&]() {
902         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
903       };
904     } else {
905       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
906       BuildFunc = [&]() {
907         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
908       };
909     }
910     break;
911   case Instruction::FCmp:
912     if (Flags.IsMaxOp) {
913       MinMaxKind = RD::MRK_FloatMax;
914       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
915     } else {
916       MinMaxKind = RD::MRK_FloatMin;
917       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
918     }
919     break;
920   default:
921     llvm_unreachable("Unhandled opcode");
922     break;
923   }
924   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
925     return BuildFunc();
926   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
927 }
928 
929 /// Create a vector reduction using a given recurrence descriptor.
930 Value *llvm::createTargetReduction(IRBuilder<> &B,
931                                    const TargetTransformInfo *TTI,
932                                    RecurrenceDescriptor &Desc, Value *Src,
933                                    bool NoNaN) {
934   // TODO: Support in-order reductions based on the recurrence descriptor.
935   using RD = RecurrenceDescriptor;
936   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
937   TargetTransformInfo::ReductionFlags Flags;
938   Flags.NoNaN = NoNaN;
939 
940   // All ops in the reduction inherit fast-math-flags from the recurrence
941   // descriptor.
942   IRBuilder<>::FastMathFlagGuard FMFGuard(B);
943   B.setFastMathFlags(Desc.getFastMathFlags());
944 
945   switch (RecKind) {
946   case RD::RK_FloatAdd:
947     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
948   case RD::RK_FloatMult:
949     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
950   case RD::RK_IntegerAdd:
951     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
952   case RD::RK_IntegerMult:
953     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
954   case RD::RK_IntegerAnd:
955     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
956   case RD::RK_IntegerOr:
957     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
958   case RD::RK_IntegerXor:
959     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
960   case RD::RK_IntegerMinMax: {
961     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
962     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
963     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
964     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
965   }
966   case RD::RK_FloatMinMax: {
967     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
968     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
969   }
970   default:
971     llvm_unreachable("Unhandled RecKind");
972   }
973 }
974 
975 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
976   auto *VecOp = dyn_cast<Instruction>(I);
977   if (!VecOp)
978     return;
979   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
980                                             : dyn_cast<Instruction>(OpValue);
981   if (!Intersection)
982     return;
983   const unsigned Opcode = Intersection->getOpcode();
984   VecOp->copyIRFlags(Intersection);
985   for (auto *V : VL) {
986     auto *Instr = dyn_cast<Instruction>(V);
987     if (!Instr)
988       continue;
989     if (OpValue == nullptr || Opcode == Instr->getOpcode())
990       VecOp->andIRFlags(V);
991   }
992 }
993 
994 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
995                                  ScalarEvolution &SE) {
996   const SCEV *Zero = SE.getZero(S->getType());
997   return SE.isAvailableAtLoopEntry(S, L) &&
998          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
999 }
1000 
1001 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1002                                     ScalarEvolution &SE) {
1003   const SCEV *Zero = SE.getZero(S->getType());
1004   return SE.isAvailableAtLoopEntry(S, L) &&
1005          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1006 }
1007 
1008 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1009                              bool Signed) {
1010   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1011   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1012     APInt::getMinValue(BitWidth);
1013   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1014   return SE.isAvailableAtLoopEntry(S, L) &&
1015          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1016                                      SE.getConstant(Min));
1017 }
1018 
1019 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1020                              bool Signed) {
1021   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1022   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1023     APInt::getMaxValue(BitWidth);
1024   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1025   return SE.isAvailableAtLoopEntry(S, L) &&
1026          SE.isLoopEntryGuardedByCond(L, Predicate, S,
1027                                      SE.getConstant(Max));
1028 }
1029