1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/MustExecute.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 27 #include "llvm/Analysis/ScalarEvolutionExpander.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/KnownBits.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 static cl::opt<bool> ForceReductionIntrinsic( 50 "force-reduction-intrinsics", cl::Hidden, 51 cl::desc("Force creating reduction intrinsics for testing."), 52 cl::init(false)); 53 54 #define DEBUG_TYPE "loop-utils" 55 56 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 57 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 58 59 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 60 MemorySSAUpdater *MSSAU, 61 bool PreserveLCSSA) { 62 bool Changed = false; 63 64 // We re-use a vector for the in-loop predecesosrs. 65 SmallVector<BasicBlock *, 4> InLoopPredecessors; 66 67 auto RewriteExit = [&](BasicBlock *BB) { 68 assert(InLoopPredecessors.empty() && 69 "Must start with an empty predecessors list!"); 70 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 71 72 // See if there are any non-loop predecessors of this exit block and 73 // keep track of the in-loop predecessors. 74 bool IsDedicatedExit = true; 75 for (auto *PredBB : predecessors(BB)) 76 if (L->contains(PredBB)) { 77 if (isa<IndirectBrInst>(PredBB->getTerminator())) 78 // We cannot rewrite exiting edges from an indirectbr. 79 return false; 80 if (isa<CallBrInst>(PredBB->getTerminator())) 81 // We cannot rewrite exiting edges from a callbr. 82 return false; 83 84 InLoopPredecessors.push_back(PredBB); 85 } else { 86 IsDedicatedExit = false; 87 } 88 89 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 90 91 // Nothing to do if this is already a dedicated exit. 92 if (IsDedicatedExit) 93 return false; 94 95 auto *NewExitBB = SplitBlockPredecessors( 96 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 97 98 if (!NewExitBB) 99 LLVM_DEBUG( 100 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 101 << *L << "\n"); 102 else 103 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 104 << NewExitBB->getName() << "\n"); 105 return true; 106 }; 107 108 // Walk the exit blocks directly rather than building up a data structure for 109 // them, but only visit each one once. 110 SmallPtrSet<BasicBlock *, 4> Visited; 111 for (auto *BB : L->blocks()) 112 for (auto *SuccBB : successors(BB)) { 113 // We're looking for exit blocks so skip in-loop successors. 114 if (L->contains(SuccBB)) 115 continue; 116 117 // Visit each exit block exactly once. 118 if (!Visited.insert(SuccBB).second) 119 continue; 120 121 Changed |= RewriteExit(SuccBB); 122 } 123 124 return Changed; 125 } 126 127 /// Returns the instructions that use values defined in the loop. 128 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 129 SmallVector<Instruction *, 8> UsedOutside; 130 131 for (auto *Block : L->getBlocks()) 132 // FIXME: I believe that this could use copy_if if the Inst reference could 133 // be adapted into a pointer. 134 for (auto &Inst : *Block) { 135 auto Users = Inst.users(); 136 if (any_of(Users, [&](User *U) { 137 auto *Use = cast<Instruction>(U); 138 return !L->contains(Use->getParent()); 139 })) 140 UsedOutside.push_back(&Inst); 141 } 142 143 return UsedOutside; 144 } 145 146 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 147 // By definition, all loop passes need the LoopInfo analysis and the 148 // Dominator tree it depends on. Because they all participate in the loop 149 // pass manager, they must also preserve these. 150 AU.addRequired<DominatorTreeWrapperPass>(); 151 AU.addPreserved<DominatorTreeWrapperPass>(); 152 AU.addRequired<LoopInfoWrapperPass>(); 153 AU.addPreserved<LoopInfoWrapperPass>(); 154 155 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 156 // here because users shouldn't directly get them from this header. 157 extern char &LoopSimplifyID; 158 extern char &LCSSAID; 159 AU.addRequiredID(LoopSimplifyID); 160 AU.addPreservedID(LoopSimplifyID); 161 AU.addRequiredID(LCSSAID); 162 AU.addPreservedID(LCSSAID); 163 // This is used in the LPPassManager to perform LCSSA verification on passes 164 // which preserve lcssa form 165 AU.addRequired<LCSSAVerificationPass>(); 166 AU.addPreserved<LCSSAVerificationPass>(); 167 168 // Loop passes are designed to run inside of a loop pass manager which means 169 // that any function analyses they require must be required by the first loop 170 // pass in the manager (so that it is computed before the loop pass manager 171 // runs) and preserved by all loop pasess in the manager. To make this 172 // reasonably robust, the set needed for most loop passes is maintained here. 173 // If your loop pass requires an analysis not listed here, you will need to 174 // carefully audit the loop pass manager nesting structure that results. 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addPreserved<AAResultsWrapperPass>(); 177 AU.addPreserved<BasicAAWrapperPass>(); 178 AU.addPreserved<GlobalsAAWrapperPass>(); 179 AU.addPreserved<SCEVAAWrapperPass>(); 180 AU.addRequired<ScalarEvolutionWrapperPass>(); 181 AU.addPreserved<ScalarEvolutionWrapperPass>(); 182 // FIXME: When all loop passes preserve MemorySSA, it can be required and 183 // preserved here instead of the individual handling in each pass. 184 } 185 186 /// Manually defined generic "LoopPass" dependency initialization. This is used 187 /// to initialize the exact set of passes from above in \c 188 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 189 /// with: 190 /// 191 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 192 /// 193 /// As-if "LoopPass" were a pass. 194 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 195 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 198 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 205 } 206 207 /// Create MDNode for input string. 208 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 209 LLVMContext &Context = TheLoop->getHeader()->getContext(); 210 Metadata *MDs[] = { 211 MDString::get(Context, Name), 212 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 213 return MDNode::get(Context, MDs); 214 } 215 216 /// Set input string into loop metadata by keeping other values intact. 217 /// If the string is already in loop metadata update value if it is 218 /// different. 219 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 220 unsigned V) { 221 SmallVector<Metadata *, 4> MDs(1); 222 // If the loop already has metadata, retain it. 223 MDNode *LoopID = TheLoop->getLoopID(); 224 if (LoopID) { 225 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 226 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 227 // If it is of form key = value, try to parse it. 228 if (Node->getNumOperands() == 2) { 229 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 230 if (S && S->getString().equals(StringMD)) { 231 ConstantInt *IntMD = 232 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 233 if (IntMD && IntMD->getSExtValue() == V) 234 // It is already in place. Do nothing. 235 return; 236 // We need to update the value, so just skip it here and it will 237 // be added after copying other existed nodes. 238 continue; 239 } 240 } 241 MDs.push_back(Node); 242 } 243 } 244 // Add new metadata. 245 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 246 // Replace current metadata node with new one. 247 LLVMContext &Context = TheLoop->getHeader()->getContext(); 248 MDNode *NewLoopID = MDNode::get(Context, MDs); 249 // Set operand 0 to refer to the loop id itself. 250 NewLoopID->replaceOperandWith(0, NewLoopID); 251 TheLoop->setLoopID(NewLoopID); 252 } 253 254 /// Find string metadata for loop 255 /// 256 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 257 /// operand or null otherwise. If the string metadata is not found return 258 /// Optional's not-a-value. 259 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 260 StringRef Name) { 261 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 262 if (!MD) 263 return None; 264 switch (MD->getNumOperands()) { 265 case 1: 266 return nullptr; 267 case 2: 268 return &MD->getOperand(1); 269 default: 270 llvm_unreachable("loop metadata has 0 or 1 operand"); 271 } 272 } 273 274 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 275 StringRef Name) { 276 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 277 if (!MD) 278 return None; 279 switch (MD->getNumOperands()) { 280 case 1: 281 // When the value is absent it is interpreted as 'attribute set'. 282 return true; 283 case 2: 284 if (ConstantInt *IntMD = 285 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 286 return IntMD->getZExtValue(); 287 return true; 288 } 289 llvm_unreachable("unexpected number of options"); 290 } 291 292 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 293 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 294 } 295 296 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 297 StringRef Name) { 298 const MDOperand *AttrMD = 299 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 300 if (!AttrMD) 301 return None; 302 303 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 304 if (!IntMD) 305 return None; 306 307 return IntMD->getSExtValue(); 308 } 309 310 Optional<MDNode *> llvm::makeFollowupLoopID( 311 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 312 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 313 if (!OrigLoopID) { 314 if (AlwaysNew) 315 return nullptr; 316 return None; 317 } 318 319 assert(OrigLoopID->getOperand(0) == OrigLoopID); 320 321 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 322 bool InheritSomeAttrs = 323 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 324 SmallVector<Metadata *, 8> MDs; 325 MDs.push_back(nullptr); 326 327 bool Changed = false; 328 if (InheritAllAttrs || InheritSomeAttrs) { 329 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 330 MDNode *Op = cast<MDNode>(Existing.get()); 331 332 auto InheritThisAttribute = [InheritSomeAttrs, 333 InheritOptionsExceptPrefix](MDNode *Op) { 334 if (!InheritSomeAttrs) 335 return false; 336 337 // Skip malformatted attribute metadata nodes. 338 if (Op->getNumOperands() == 0) 339 return true; 340 Metadata *NameMD = Op->getOperand(0).get(); 341 if (!isa<MDString>(NameMD)) 342 return true; 343 StringRef AttrName = cast<MDString>(NameMD)->getString(); 344 345 // Do not inherit excluded attributes. 346 return !AttrName.startswith(InheritOptionsExceptPrefix); 347 }; 348 349 if (InheritThisAttribute(Op)) 350 MDs.push_back(Op); 351 else 352 Changed = true; 353 } 354 } else { 355 // Modified if we dropped at least one attribute. 356 Changed = OrigLoopID->getNumOperands() > 1; 357 } 358 359 bool HasAnyFollowup = false; 360 for (StringRef OptionName : FollowupOptions) { 361 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 362 if (!FollowupNode) 363 continue; 364 365 HasAnyFollowup = true; 366 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 367 MDs.push_back(Option.get()); 368 Changed = true; 369 } 370 } 371 372 // Attributes of the followup loop not specified explicity, so signal to the 373 // transformation pass to add suitable attributes. 374 if (!AlwaysNew && !HasAnyFollowup) 375 return None; 376 377 // If no attributes were added or remove, the previous loop Id can be reused. 378 if (!AlwaysNew && !Changed) 379 return OrigLoopID; 380 381 // No attributes is equivalent to having no !llvm.loop metadata at all. 382 if (MDs.size() == 1) 383 return nullptr; 384 385 // Build the new loop ID. 386 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 387 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 388 return FollowupLoopID; 389 } 390 391 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 392 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 393 } 394 395 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 396 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 397 } 398 399 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 400 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 401 return TM_SuppressedByUser; 402 403 Optional<int> Count = 404 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 405 if (Count.hasValue()) 406 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 407 408 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 409 return TM_ForcedByUser; 410 411 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 412 return TM_ForcedByUser; 413 414 if (hasDisableAllTransformsHint(L)) 415 return TM_Disable; 416 417 return TM_Unspecified; 418 } 419 420 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 421 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 422 return TM_SuppressedByUser; 423 424 Optional<int> Count = 425 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 426 if (Count.hasValue()) 427 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 428 429 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 430 return TM_ForcedByUser; 431 432 if (hasDisableAllTransformsHint(L)) 433 return TM_Disable; 434 435 return TM_Unspecified; 436 } 437 438 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 439 Optional<bool> Enable = 440 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 441 442 if (Enable == false) 443 return TM_SuppressedByUser; 444 445 Optional<int> VectorizeWidth = 446 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 447 Optional<int> InterleaveCount = 448 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 449 450 // 'Forcing' vector width and interleave count to one effectively disables 451 // this tranformation. 452 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 453 return TM_SuppressedByUser; 454 455 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 456 return TM_Disable; 457 458 if (Enable == true) 459 return TM_ForcedByUser; 460 461 if (VectorizeWidth == 1 && InterleaveCount == 1) 462 return TM_Disable; 463 464 if (VectorizeWidth > 1 || InterleaveCount > 1) 465 return TM_Enable; 466 467 if (hasDisableAllTransformsHint(L)) 468 return TM_Disable; 469 470 return TM_Unspecified; 471 } 472 473 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 474 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 475 return TM_ForcedByUser; 476 477 if (hasDisableAllTransformsHint(L)) 478 return TM_Disable; 479 480 return TM_Unspecified; 481 } 482 483 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 484 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 485 return TM_SuppressedByUser; 486 487 if (hasDisableAllTransformsHint(L)) 488 return TM_Disable; 489 490 return TM_Unspecified; 491 } 492 493 /// Does a BFS from a given node to all of its children inside a given loop. 494 /// The returned vector of nodes includes the starting point. 495 SmallVector<DomTreeNode *, 16> 496 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 497 SmallVector<DomTreeNode *, 16> Worklist; 498 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 499 // Only include subregions in the top level loop. 500 BasicBlock *BB = DTN->getBlock(); 501 if (CurLoop->contains(BB)) 502 Worklist.push_back(DTN); 503 }; 504 505 AddRegionToWorklist(N); 506 507 for (size_t I = 0; I < Worklist.size(); I++) 508 for (DomTreeNode *Child : Worklist[I]->getChildren()) 509 AddRegionToWorklist(Child); 510 511 return Worklist; 512 } 513 514 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 515 LoopInfo *LI, MemorySSA *MSSA) { 516 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 517 auto *Preheader = L->getLoopPreheader(); 518 assert(Preheader && "Preheader should exist!"); 519 520 std::unique_ptr<MemorySSAUpdater> MSSAU; 521 if (MSSA) 522 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 523 524 // Now that we know the removal is safe, remove the loop by changing the 525 // branch from the preheader to go to the single exit block. 526 // 527 // Because we're deleting a large chunk of code at once, the sequence in which 528 // we remove things is very important to avoid invalidation issues. 529 530 // Tell ScalarEvolution that the loop is deleted. Do this before 531 // deleting the loop so that ScalarEvolution can look at the loop 532 // to determine what it needs to clean up. 533 if (SE) 534 SE->forgetLoop(L); 535 536 auto *ExitBlock = L->getUniqueExitBlock(); 537 assert(ExitBlock && "Should have a unique exit block!"); 538 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 539 540 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 541 assert(OldBr && "Preheader must end with a branch"); 542 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 543 // Connect the preheader to the exit block. Keep the old edge to the header 544 // around to perform the dominator tree update in two separate steps 545 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 546 // preheader -> header. 547 // 548 // 549 // 0. Preheader 1. Preheader 2. Preheader 550 // | | | | 551 // V | V | 552 // Header <--\ | Header <--\ | Header <--\ 553 // | | | | | | | | | | | 554 // | V | | | V | | | V | 555 // | Body --/ | | Body --/ | | Body --/ 556 // V V V V V 557 // Exit Exit Exit 558 // 559 // By doing this is two separate steps we can perform the dominator tree 560 // update without using the batch update API. 561 // 562 // Even when the loop is never executed, we cannot remove the edge from the 563 // source block to the exit block. Consider the case where the unexecuted loop 564 // branches back to an outer loop. If we deleted the loop and removed the edge 565 // coming to this inner loop, this will break the outer loop structure (by 566 // deleting the backedge of the outer loop). If the outer loop is indeed a 567 // non-loop, it will be deleted in a future iteration of loop deletion pass. 568 IRBuilder<> Builder(OldBr); 569 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 570 // Remove the old branch. The conditional branch becomes a new terminator. 571 OldBr->eraseFromParent(); 572 573 // Rewrite phis in the exit block to get their inputs from the Preheader 574 // instead of the exiting block. 575 for (PHINode &P : ExitBlock->phis()) { 576 // Set the zero'th element of Phi to be from the preheader and remove all 577 // other incoming values. Given the loop has dedicated exits, all other 578 // incoming values must be from the exiting blocks. 579 int PredIndex = 0; 580 P.setIncomingBlock(PredIndex, Preheader); 581 // Removes all incoming values from all other exiting blocks (including 582 // duplicate values from an exiting block). 583 // Nuke all entries except the zero'th entry which is the preheader entry. 584 // NOTE! We need to remove Incoming Values in the reverse order as done 585 // below, to keep the indices valid for deletion (removeIncomingValues 586 // updates getNumIncomingValues and shifts all values down into the operand 587 // being deleted). 588 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 589 P.removeIncomingValue(e - i, false); 590 591 assert((P.getNumIncomingValues() == 1 && 592 P.getIncomingBlock(PredIndex) == Preheader) && 593 "Should have exactly one value and that's from the preheader!"); 594 } 595 596 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 597 if (DT) { 598 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 599 if (MSSA) { 600 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT); 601 if (VerifyMemorySSA) 602 MSSA->verifyMemorySSA(); 603 } 604 } 605 606 // Disconnect the loop body by branching directly to its exit. 607 Builder.SetInsertPoint(Preheader->getTerminator()); 608 Builder.CreateBr(ExitBlock); 609 // Remove the old branch. 610 Preheader->getTerminator()->eraseFromParent(); 611 612 if (DT) { 613 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 614 if (MSSA) { 615 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 616 *DT); 617 if (VerifyMemorySSA) 618 MSSA->verifyMemorySSA(); 619 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 620 L->block_end()); 621 MSSAU->removeBlocks(DeadBlockSet); 622 } 623 } 624 625 // Use a map to unique and a vector to guarantee deterministic ordering. 626 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 627 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 628 629 // Given LCSSA form is satisfied, we should not have users of instructions 630 // within the dead loop outside of the loop. However, LCSSA doesn't take 631 // unreachable uses into account. We handle them here. 632 // We could do it after drop all references (in this case all users in the 633 // loop will be already eliminated and we have less work to do but according 634 // to API doc of User::dropAllReferences only valid operation after dropping 635 // references, is deletion. So let's substitute all usages of 636 // instruction from the loop with undef value of corresponding type first. 637 for (auto *Block : L->blocks()) 638 for (Instruction &I : *Block) { 639 auto *Undef = UndefValue::get(I.getType()); 640 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 641 Use &U = *UI; 642 ++UI; 643 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 644 if (L->contains(Usr->getParent())) 645 continue; 646 // If we have a DT then we can check that uses outside a loop only in 647 // unreachable block. 648 if (DT) 649 assert(!DT->isReachableFromEntry(U) && 650 "Unexpected user in reachable block"); 651 U.set(Undef); 652 } 653 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 654 if (!DVI) 655 continue; 656 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 657 if (Key != DeadDebugSet.end()) 658 continue; 659 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 660 DeadDebugInst.push_back(DVI); 661 } 662 663 // After the loop has been deleted all the values defined and modified 664 // inside the loop are going to be unavailable. 665 // Since debug values in the loop have been deleted, inserting an undef 666 // dbg.value truncates the range of any dbg.value before the loop where the 667 // loop used to be. This is particularly important for constant values. 668 DIBuilder DIB(*ExitBlock->getModule()); 669 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 670 assert(InsertDbgValueBefore && 671 "There should be a non-PHI instruction in exit block, else these " 672 "instructions will have no parent."); 673 for (auto *DVI : DeadDebugInst) 674 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 675 DVI->getVariable(), DVI->getExpression(), 676 DVI->getDebugLoc(), InsertDbgValueBefore); 677 678 // Remove the block from the reference counting scheme, so that we can 679 // delete it freely later. 680 for (auto *Block : L->blocks()) 681 Block->dropAllReferences(); 682 683 if (MSSA && VerifyMemorySSA) 684 MSSA->verifyMemorySSA(); 685 686 if (LI) { 687 // Erase the instructions and the blocks without having to worry 688 // about ordering because we already dropped the references. 689 // NOTE: This iteration is safe because erasing the block does not remove 690 // its entry from the loop's block list. We do that in the next section. 691 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 692 LpI != LpE; ++LpI) 693 (*LpI)->eraseFromParent(); 694 695 // Finally, the blocks from loopinfo. This has to happen late because 696 // otherwise our loop iterators won't work. 697 698 SmallPtrSet<BasicBlock *, 8> blocks; 699 blocks.insert(L->block_begin(), L->block_end()); 700 for (BasicBlock *BB : blocks) 701 LI->removeBlock(BB); 702 703 // The last step is to update LoopInfo now that we've eliminated this loop. 704 // Note: LoopInfo::erase remove the given loop and relink its subloops with 705 // its parent. While removeLoop/removeChildLoop remove the given loop but 706 // not relink its subloops, which is what we want. 707 if (Loop *ParentLoop = L->getParentLoop()) { 708 Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L); 709 assert(I != ParentLoop->end() && "Couldn't find loop"); 710 ParentLoop->removeChildLoop(I); 711 } else { 712 Loop::iterator I = find(LI->begin(), LI->end(), L); 713 assert(I != LI->end() && "Couldn't find loop"); 714 LI->removeLoop(I); 715 } 716 LI->destroy(L); 717 } 718 } 719 720 /// Checks if \p L has single exit through latch block except possibly 721 /// "deoptimizing" exits. Returns branch instruction terminating the loop 722 /// latch if above check is successful, nullptr otherwise. 723 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 724 BasicBlock *Latch = L->getLoopLatch(); 725 if (!Latch) 726 return nullptr; 727 728 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 729 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 730 return nullptr; 731 732 assert((LatchBR->getSuccessor(0) == L->getHeader() || 733 LatchBR->getSuccessor(1) == L->getHeader()) && 734 "At least one edge out of the latch must go to the header"); 735 736 SmallVector<BasicBlock *, 4> ExitBlocks; 737 L->getUniqueNonLatchExitBlocks(ExitBlocks); 738 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 739 return !EB->getTerminatingDeoptimizeCall(); 740 })) 741 return nullptr; 742 743 return LatchBR; 744 } 745 746 Optional<unsigned> 747 llvm::getLoopEstimatedTripCount(Loop *L, 748 unsigned *EstimatedLoopInvocationWeight) { 749 // Support loops with an exiting latch and other existing exists only 750 // deoptimize. 751 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 752 if (!LatchBranch) 753 return None; 754 755 // To estimate the number of times the loop body was executed, we want to 756 // know the number of times the backedge was taken, vs. the number of times 757 // we exited the loop. 758 uint64_t BackedgeTakenWeight, LatchExitWeight; 759 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 760 return None; 761 762 if (LatchBranch->getSuccessor(0) != L->getHeader()) 763 std::swap(BackedgeTakenWeight, LatchExitWeight); 764 765 if (!LatchExitWeight) 766 return None; 767 768 if (EstimatedLoopInvocationWeight) 769 *EstimatedLoopInvocationWeight = LatchExitWeight; 770 771 // Estimated backedge taken count is a ratio of the backedge taken weight by 772 // the weight of the edge exiting the loop, rounded to nearest. 773 uint64_t BackedgeTakenCount = 774 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 775 // Estimated trip count is one plus estimated backedge taken count. 776 return BackedgeTakenCount + 1; 777 } 778 779 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 780 unsigned EstimatedloopInvocationWeight) { 781 // Support loops with an exiting latch and other existing exists only 782 // deoptimize. 783 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 784 if (!LatchBranch) 785 return false; 786 787 // Calculate taken and exit weights. 788 unsigned LatchExitWeight = 0; 789 unsigned BackedgeTakenWeight = 0; 790 791 if (EstimatedTripCount > 0) { 792 LatchExitWeight = EstimatedloopInvocationWeight; 793 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 794 } 795 796 // Make a swap if back edge is taken when condition is "false". 797 if (LatchBranch->getSuccessor(0) != L->getHeader()) 798 std::swap(BackedgeTakenWeight, LatchExitWeight); 799 800 MDBuilder MDB(LatchBranch->getContext()); 801 802 // Set/Update profile metadata. 803 LatchBranch->setMetadata( 804 LLVMContext::MD_prof, 805 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 806 807 return true; 808 } 809 810 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 811 ScalarEvolution &SE) { 812 Loop *OuterL = InnerLoop->getParentLoop(); 813 if (!OuterL) 814 return true; 815 816 // Get the backedge taken count for the inner loop 817 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 818 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 819 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 820 !InnerLoopBECountSC->getType()->isIntegerTy()) 821 return false; 822 823 // Get whether count is invariant to the outer loop 824 ScalarEvolution::LoopDisposition LD = 825 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 826 if (LD != ScalarEvolution::LoopInvariant) 827 return false; 828 829 return true; 830 } 831 832 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, 833 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 834 Value *Left, Value *Right) { 835 CmpInst::Predicate P = CmpInst::ICMP_NE; 836 switch (RK) { 837 default: 838 llvm_unreachable("Unknown min/max recurrence kind"); 839 case RecurrenceDescriptor::MRK_UIntMin: 840 P = CmpInst::ICMP_ULT; 841 break; 842 case RecurrenceDescriptor::MRK_UIntMax: 843 P = CmpInst::ICMP_UGT; 844 break; 845 case RecurrenceDescriptor::MRK_SIntMin: 846 P = CmpInst::ICMP_SLT; 847 break; 848 case RecurrenceDescriptor::MRK_SIntMax: 849 P = CmpInst::ICMP_SGT; 850 break; 851 case RecurrenceDescriptor::MRK_FloatMin: 852 P = CmpInst::FCMP_OLT; 853 break; 854 case RecurrenceDescriptor::MRK_FloatMax: 855 P = CmpInst::FCMP_OGT; 856 break; 857 } 858 859 // We only match FP sequences that are 'fast', so we can unconditionally 860 // set it on any generated instructions. 861 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 862 FastMathFlags FMF; 863 FMF.setFast(); 864 Builder.setFastMathFlags(FMF); 865 866 Value *Cmp; 867 if (RK == RecurrenceDescriptor::MRK_FloatMin || 868 RK == RecurrenceDescriptor::MRK_FloatMax) 869 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 870 else 871 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 872 873 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 874 return Select; 875 } 876 877 // Helper to generate an ordered reduction. 878 Value * 879 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 880 unsigned Op, 881 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 882 ArrayRef<Value *> RedOps) { 883 unsigned VF = Src->getType()->getVectorNumElements(); 884 885 // Extract and apply reduction ops in ascending order: 886 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 887 Value *Result = Acc; 888 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 889 Value *Ext = 890 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 891 892 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 893 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 894 "bin.rdx"); 895 } else { 896 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 897 "Invalid min/max"); 898 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 899 } 900 901 if (!RedOps.empty()) 902 propagateIRFlags(Result, RedOps); 903 } 904 905 return Result; 906 } 907 908 // Helper to generate a log2 shuffle reduction. 909 Value * 910 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, 911 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 912 ArrayRef<Value *> RedOps) { 913 unsigned VF = Src->getType()->getVectorNumElements(); 914 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 915 // and vector ops, reducing the set of values being computed by half each 916 // round. 917 assert(isPowerOf2_32(VF) && 918 "Reduction emission only supported for pow2 vectors!"); 919 Value *TmpVec = Src; 920 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 921 for (unsigned i = VF; i != 1; i >>= 1) { 922 // Move the upper half of the vector to the lower half. 923 for (unsigned j = 0; j != i / 2; ++j) 924 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 925 926 // Fill the rest of the mask with undef. 927 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 928 UndefValue::get(Builder.getInt32Ty())); 929 930 Value *Shuf = Builder.CreateShuffleVector( 931 TmpVec, UndefValue::get(TmpVec->getType()), 932 ConstantVector::get(ShuffleMask), "rdx.shuf"); 933 934 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 935 // The builder propagates its fast-math-flags setting. 936 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 937 "bin.rdx"); 938 } else { 939 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 940 "Invalid min/max"); 941 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 942 } 943 if (!RedOps.empty()) 944 propagateIRFlags(TmpVec, RedOps); 945 946 // We may compute the reassociated scalar ops in a way that does not 947 // preserve nsw/nuw etc. Conservatively, drop those flags. 948 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 949 ReductionInst->dropPoisonGeneratingFlags(); 950 } 951 // The result is in the first element of the vector. 952 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 953 } 954 955 /// Create a simple vector reduction specified by an opcode and some 956 /// flags (if generating min/max reductions). 957 Value *llvm::createSimpleTargetReduction( 958 IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 959 Value *Src, TargetTransformInfo::ReductionFlags Flags, 960 ArrayRef<Value *> RedOps) { 961 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 962 963 std::function<Value *()> BuildFunc; 964 using RD = RecurrenceDescriptor; 965 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 966 967 switch (Opcode) { 968 case Instruction::Add: 969 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 970 break; 971 case Instruction::Mul: 972 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 973 break; 974 case Instruction::And: 975 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 976 break; 977 case Instruction::Or: 978 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 979 break; 980 case Instruction::Xor: 981 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 982 break; 983 case Instruction::FAdd: 984 BuildFunc = [&]() { 985 auto Rdx = Builder.CreateFAddReduce( 986 Constant::getNullValue(Src->getType()->getVectorElementType()), Src); 987 return Rdx; 988 }; 989 break; 990 case Instruction::FMul: 991 BuildFunc = [&]() { 992 Type *Ty = Src->getType()->getVectorElementType(); 993 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 994 return Rdx; 995 }; 996 break; 997 case Instruction::ICmp: 998 if (Flags.IsMaxOp) { 999 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1000 BuildFunc = [&]() { 1001 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1002 }; 1003 } else { 1004 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1005 BuildFunc = [&]() { 1006 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1007 }; 1008 } 1009 break; 1010 case Instruction::FCmp: 1011 if (Flags.IsMaxOp) { 1012 MinMaxKind = RD::MRK_FloatMax; 1013 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1014 } else { 1015 MinMaxKind = RD::MRK_FloatMin; 1016 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1017 } 1018 break; 1019 default: 1020 llvm_unreachable("Unhandled opcode"); 1021 break; 1022 } 1023 if (ForceReductionIntrinsic || 1024 TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1025 return BuildFunc(); 1026 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1027 } 1028 1029 /// Create a vector reduction using a given recurrence descriptor. 1030 Value *llvm::createTargetReduction(IRBuilderBase &B, 1031 const TargetTransformInfo *TTI, 1032 RecurrenceDescriptor &Desc, Value *Src, 1033 bool NoNaN) { 1034 // TODO: Support in-order reductions based on the recurrence descriptor. 1035 using RD = RecurrenceDescriptor; 1036 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1037 TargetTransformInfo::ReductionFlags Flags; 1038 Flags.NoNaN = NoNaN; 1039 1040 // All ops in the reduction inherit fast-math-flags from the recurrence 1041 // descriptor. 1042 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1043 B.setFastMathFlags(Desc.getFastMathFlags()); 1044 1045 switch (RecKind) { 1046 case RD::RK_FloatAdd: 1047 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 1048 case RD::RK_FloatMult: 1049 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 1050 case RD::RK_IntegerAdd: 1051 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 1052 case RD::RK_IntegerMult: 1053 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 1054 case RD::RK_IntegerAnd: 1055 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 1056 case RD::RK_IntegerOr: 1057 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 1058 case RD::RK_IntegerXor: 1059 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 1060 case RD::RK_IntegerMinMax: { 1061 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 1062 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 1063 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 1064 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 1065 } 1066 case RD::RK_FloatMinMax: { 1067 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 1068 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 1069 } 1070 default: 1071 llvm_unreachable("Unhandled RecKind"); 1072 } 1073 } 1074 1075 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1076 auto *VecOp = dyn_cast<Instruction>(I); 1077 if (!VecOp) 1078 return; 1079 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1080 : dyn_cast<Instruction>(OpValue); 1081 if (!Intersection) 1082 return; 1083 const unsigned Opcode = Intersection->getOpcode(); 1084 VecOp->copyIRFlags(Intersection); 1085 for (auto *V : VL) { 1086 auto *Instr = dyn_cast<Instruction>(V); 1087 if (!Instr) 1088 continue; 1089 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1090 VecOp->andIRFlags(V); 1091 } 1092 } 1093 1094 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1095 ScalarEvolution &SE) { 1096 const SCEV *Zero = SE.getZero(S->getType()); 1097 return SE.isAvailableAtLoopEntry(S, L) && 1098 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1099 } 1100 1101 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1102 ScalarEvolution &SE) { 1103 const SCEV *Zero = SE.getZero(S->getType()); 1104 return SE.isAvailableAtLoopEntry(S, L) && 1105 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1106 } 1107 1108 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1109 bool Signed) { 1110 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1111 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1112 APInt::getMinValue(BitWidth); 1113 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1114 return SE.isAvailableAtLoopEntry(S, L) && 1115 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1116 SE.getConstant(Min)); 1117 } 1118 1119 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1120 bool Signed) { 1121 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1122 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1123 APInt::getMaxValue(BitWidth); 1124 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1125 return SE.isAvailableAtLoopEntry(S, L) && 1126 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1127 SE.getConstant(Max)); 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // rewriteLoopExitValues - Optimize IV users outside the loop. 1132 // As a side effect, reduces the amount of IV processing within the loop. 1133 //===----------------------------------------------------------------------===// 1134 1135 // Return true if the SCEV expansion generated by the rewriter can replace the 1136 // original value. SCEV guarantees that it produces the same value, but the way 1137 // it is produced may be illegal IR. Ideally, this function will only be 1138 // called for verification. 1139 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 1140 // If an SCEV expression subsumed multiple pointers, its expansion could 1141 // reassociate the GEP changing the base pointer. This is illegal because the 1142 // final address produced by a GEP chain must be inbounds relative to its 1143 // underlying object. Otherwise basic alias analysis, among other things, 1144 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 1145 // producing an expression involving multiple pointers. Until then, we must 1146 // bail out here. 1147 // 1148 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 1149 // because it understands lcssa phis while SCEV does not. 1150 Value *FromPtr = FromVal; 1151 Value *ToPtr = ToVal; 1152 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 1153 FromPtr = GEP->getPointerOperand(); 1154 1155 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 1156 ToPtr = GEP->getPointerOperand(); 1157 1158 if (FromPtr != FromVal || ToPtr != ToVal) { 1159 // Quickly check the common case 1160 if (FromPtr == ToPtr) 1161 return true; 1162 1163 // SCEV may have rewritten an expression that produces the GEP's pointer 1164 // operand. That's ok as long as the pointer operand has the same base 1165 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 1166 // base of a recurrence. This handles the case in which SCEV expansion 1167 // converts a pointer type recurrence into a nonrecurrent pointer base 1168 // indexed by an integer recurrence. 1169 1170 // If the GEP base pointer is a vector of pointers, abort. 1171 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 1172 return false; 1173 1174 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 1175 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 1176 if (FromBase == ToBase) 1177 return true; 1178 1179 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 1180 << *FromBase << " != " << *ToBase << "\n"); 1181 1182 return false; 1183 } 1184 return true; 1185 } 1186 1187 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1188 SmallPtrSet<const Instruction *, 8> Visited; 1189 SmallVector<const Instruction *, 8> WorkList; 1190 Visited.insert(I); 1191 WorkList.push_back(I); 1192 while (!WorkList.empty()) { 1193 const Instruction *Curr = WorkList.pop_back_val(); 1194 // This use is outside the loop, nothing to do. 1195 if (!L->contains(Curr)) 1196 continue; 1197 // Do we assume it is a "hard" use which will not be eliminated easily? 1198 if (Curr->mayHaveSideEffects()) 1199 return true; 1200 // Otherwise, add all its users to worklist. 1201 for (auto U : Curr->users()) { 1202 auto *UI = cast<Instruction>(U); 1203 if (Visited.insert(UI).second) 1204 WorkList.push_back(UI); 1205 } 1206 } 1207 return false; 1208 } 1209 1210 // Collect information about PHI nodes which can be transformed in 1211 // rewriteLoopExitValues. 1212 struct RewritePhi { 1213 PHINode *PN; 1214 unsigned Ith; // Ith incoming value. 1215 Value *Val; // Exit value after expansion. 1216 bool HighCost; // High Cost when expansion. 1217 1218 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 1219 : PN(P), Ith(I), Val(V), HighCost(H) {} 1220 }; 1221 1222 // Check whether it is possible to delete the loop after rewriting exit 1223 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1224 // aggressively. 1225 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1226 BasicBlock *Preheader = L->getLoopPreheader(); 1227 // If there is no preheader, the loop will not be deleted. 1228 if (!Preheader) 1229 return false; 1230 1231 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1232 // We obviate multiple ExitingBlocks case for simplicity. 1233 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1234 // after exit value rewriting, we can enhance the logic here. 1235 SmallVector<BasicBlock *, 4> ExitingBlocks; 1236 L->getExitingBlocks(ExitingBlocks); 1237 SmallVector<BasicBlock *, 8> ExitBlocks; 1238 L->getUniqueExitBlocks(ExitBlocks); 1239 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1240 return false; 1241 1242 BasicBlock *ExitBlock = ExitBlocks[0]; 1243 BasicBlock::iterator BI = ExitBlock->begin(); 1244 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1245 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1246 1247 // If the Incoming value of P is found in RewritePhiSet, we know it 1248 // could be rewritten to use a loop invariant value in transformation 1249 // phase later. Skip it in the loop invariant check below. 1250 bool found = false; 1251 for (const RewritePhi &Phi : RewritePhiSet) { 1252 unsigned i = Phi.Ith; 1253 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1254 found = true; 1255 break; 1256 } 1257 } 1258 1259 Instruction *I; 1260 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1261 if (!L->hasLoopInvariantOperands(I)) 1262 return false; 1263 1264 ++BI; 1265 } 1266 1267 for (auto *BB : L->blocks()) 1268 if (llvm::any_of(*BB, [](Instruction &I) { 1269 return I.mayHaveSideEffects(); 1270 })) 1271 return false; 1272 1273 return true; 1274 } 1275 1276 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1277 ScalarEvolution *SE, 1278 const TargetTransformInfo *TTI, 1279 SCEVExpander &Rewriter, DominatorTree *DT, 1280 ReplaceExitVal ReplaceExitValue, 1281 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1282 // Check a pre-condition. 1283 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1284 "Indvars did not preserve LCSSA!"); 1285 1286 SmallVector<BasicBlock*, 8> ExitBlocks; 1287 L->getUniqueExitBlocks(ExitBlocks); 1288 1289 SmallVector<RewritePhi, 8> RewritePhiSet; 1290 // Find all values that are computed inside the loop, but used outside of it. 1291 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1292 // the exit blocks of the loop to find them. 1293 for (BasicBlock *ExitBB : ExitBlocks) { 1294 // If there are no PHI nodes in this exit block, then no values defined 1295 // inside the loop are used on this path, skip it. 1296 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1297 if (!PN) continue; 1298 1299 unsigned NumPreds = PN->getNumIncomingValues(); 1300 1301 // Iterate over all of the PHI nodes. 1302 BasicBlock::iterator BBI = ExitBB->begin(); 1303 while ((PN = dyn_cast<PHINode>(BBI++))) { 1304 if (PN->use_empty()) 1305 continue; // dead use, don't replace it 1306 1307 if (!SE->isSCEVable(PN->getType())) 1308 continue; 1309 1310 // It's necessary to tell ScalarEvolution about this explicitly so that 1311 // it can walk the def-use list and forget all SCEVs, as it may not be 1312 // watching the PHI itself. Once the new exit value is in place, there 1313 // may not be a def-use connection between the loop and every instruction 1314 // which got a SCEVAddRecExpr for that loop. 1315 SE->forgetValue(PN); 1316 1317 // Iterate over all of the values in all the PHI nodes. 1318 for (unsigned i = 0; i != NumPreds; ++i) { 1319 // If the value being merged in is not integer or is not defined 1320 // in the loop, skip it. 1321 Value *InVal = PN->getIncomingValue(i); 1322 if (!isa<Instruction>(InVal)) 1323 continue; 1324 1325 // If this pred is for a subloop, not L itself, skip it. 1326 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1327 continue; // The Block is in a subloop, skip it. 1328 1329 // Check that InVal is defined in the loop. 1330 Instruction *Inst = cast<Instruction>(InVal); 1331 if (!L->contains(Inst)) 1332 continue; 1333 1334 // Okay, this instruction has a user outside of the current loop 1335 // and varies predictably *inside* the loop. Evaluate the value it 1336 // contains when the loop exits, if possible. We prefer to start with 1337 // expressions which are true for all exits (so as to maximize 1338 // expression reuse by the SCEVExpander), but resort to per-exit 1339 // evaluation if that fails. 1340 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1341 if (isa<SCEVCouldNotCompute>(ExitValue) || 1342 !SE->isLoopInvariant(ExitValue, L) || 1343 !isSafeToExpand(ExitValue, *SE)) { 1344 // TODO: This should probably be sunk into SCEV in some way; maybe a 1345 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1346 // most SCEV expressions and other recurrence types (e.g. shift 1347 // recurrences). Is there existing code we can reuse? 1348 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1349 if (isa<SCEVCouldNotCompute>(ExitCount)) 1350 continue; 1351 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1352 if (AddRec->getLoop() == L) 1353 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1354 if (isa<SCEVCouldNotCompute>(ExitValue) || 1355 !SE->isLoopInvariant(ExitValue, L) || 1356 !isSafeToExpand(ExitValue, *SE)) 1357 continue; 1358 } 1359 1360 // Computing the value outside of the loop brings no benefit if it is 1361 // definitely used inside the loop in a way which can not be optimized 1362 // away. Avoid doing so unless we know we have a value which computes 1363 // the ExitValue already. TODO: This should be merged into SCEV 1364 // expander to leverage its knowledge of existing expressions. 1365 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1366 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1367 continue; 1368 1369 bool HighCost = Rewriter.isHighCostExpansion( 1370 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1371 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 1372 1373 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1374 << *ExitVal << '\n' << " LoopVal = " << *Inst 1375 << "\n"); 1376 1377 if (!isValidRewrite(SE, Inst, ExitVal)) { 1378 DeadInsts.push_back(ExitVal); 1379 continue; 1380 } 1381 1382 #ifndef NDEBUG 1383 // If we reuse an instruction from a loop which is neither L nor one of 1384 // its containing loops, we end up breaking LCSSA form for this loop by 1385 // creating a new use of its instruction. 1386 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1387 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1388 if (EVL != L) 1389 assert(EVL->contains(L) && "LCSSA breach detected!"); 1390 #endif 1391 1392 // Collect all the candidate PHINodes to be rewritten. 1393 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 1394 } 1395 } 1396 } 1397 1398 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1399 int NumReplaced = 0; 1400 1401 // Transformation. 1402 for (const RewritePhi &Phi : RewritePhiSet) { 1403 PHINode *PN = Phi.PN; 1404 Value *ExitVal = Phi.Val; 1405 1406 // Only do the rewrite when the ExitValue can be expanded cheaply. 1407 // If LoopCanBeDel is true, rewrite exit value aggressively. 1408 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 1409 DeadInsts.push_back(ExitVal); 1410 continue; 1411 } 1412 1413 NumReplaced++; 1414 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1415 PN->setIncomingValue(Phi.Ith, ExitVal); 1416 1417 // If this instruction is dead now, delete it. Don't do it now to avoid 1418 // invalidating iterators. 1419 if (isInstructionTriviallyDead(Inst, TLI)) 1420 DeadInsts.push_back(Inst); 1421 1422 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1423 if (PN->getNumIncomingValues() == 1 && 1424 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1425 PN->replaceAllUsesWith(ExitVal); 1426 PN->eraseFromParent(); 1427 } 1428 } 1429 1430 // The insertion point instruction may have been deleted; clear it out 1431 // so that the rewriter doesn't trip over it later. 1432 Rewriter.clearInsertPoint(); 1433 return NumReplaced; 1434 } 1435 1436 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1437 /// \p OrigLoop. 1438 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1439 Loop *RemainderLoop, uint64_t UF) { 1440 assert(UF > 0 && "Zero unrolled factor is not supported"); 1441 assert(UnrolledLoop != RemainderLoop && 1442 "Unrolled and Remainder loops are expected to distinct"); 1443 1444 // Get number of iterations in the original scalar loop. 1445 unsigned OrigLoopInvocationWeight = 0; 1446 Optional<unsigned> OrigAverageTripCount = 1447 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1448 if (!OrigAverageTripCount) 1449 return; 1450 1451 // Calculate number of iterations in unrolled loop. 1452 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1453 // Calculate number of iterations for remainder loop. 1454 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1455 1456 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1457 OrigLoopInvocationWeight); 1458 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1459 OrigLoopInvocationWeight); 1460 } 1461 1462 /// Utility that implements appending of loops onto a worklist. 1463 /// Loops are added in preorder (analogous for reverse postorder for trees), 1464 /// and the worklist is processed LIFO. 1465 template <typename RangeT> 1466 void llvm::appendReversedLoopsToWorklist( 1467 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1468 // We use an internal worklist to build up the preorder traversal without 1469 // recursion. 1470 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1471 1472 // We walk the initial sequence of loops in reverse because we generally want 1473 // to visit defs before uses and the worklist is LIFO. 1474 for (Loop *RootL : Loops) { 1475 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1476 assert(PreOrderWorklist.empty() && 1477 "Must start with an empty preorder walk worklist."); 1478 PreOrderWorklist.push_back(RootL); 1479 do { 1480 Loop *L = PreOrderWorklist.pop_back_val(); 1481 PreOrderWorklist.append(L->begin(), L->end()); 1482 PreOrderLoops.push_back(L); 1483 } while (!PreOrderWorklist.empty()); 1484 1485 Worklist.insert(std::move(PreOrderLoops)); 1486 PreOrderLoops.clear(); 1487 } 1488 } 1489 1490 template <typename RangeT> 1491 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1492 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1493 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1494 } 1495 1496 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1497 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1498 1499 template void 1500 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1501 SmallPriorityWorklist<Loop *, 4> &Worklist); 1502 1503 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1504 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1505 appendReversedLoopsToWorklist(LI, Worklist); 1506 } 1507 1508 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1509 LoopInfo *LI, LPPassManager *LPM) { 1510 Loop &New = *LI->AllocateLoop(); 1511 if (PL) 1512 PL->addChildLoop(&New); 1513 else 1514 LI->addTopLevelLoop(&New); 1515 1516 if (LPM) 1517 LPM->addLoop(New); 1518 1519 // Add all of the blocks in L to the new loop. 1520 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1521 I != E; ++I) 1522 if (LI->getLoopFor(*I) == L) 1523 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1524 1525 // Add all of the subloops to the new loop. 1526 for (Loop *I : *L) 1527 cloneLoop(I, &New, VM, LI, LPM); 1528 1529 return &New; 1530 } 1531