1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSAUpdater.h" 23 #include "llvm/Analysis/MustExecute.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpander.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "loop-utils" 46 47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 48 49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 50 MemorySSAUpdater *MSSAU, 51 bool PreserveLCSSA) { 52 bool Changed = false; 53 54 // We re-use a vector for the in-loop predecesosrs. 55 SmallVector<BasicBlock *, 4> InLoopPredecessors; 56 57 auto RewriteExit = [&](BasicBlock *BB) { 58 assert(InLoopPredecessors.empty() && 59 "Must start with an empty predecessors list!"); 60 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 61 62 // See if there are any non-loop predecessors of this exit block and 63 // keep track of the in-loop predecessors. 64 bool IsDedicatedExit = true; 65 for (auto *PredBB : predecessors(BB)) 66 if (L->contains(PredBB)) { 67 if (isa<IndirectBrInst>(PredBB->getTerminator())) 68 // We cannot rewrite exiting edges from an indirectbr. 69 return false; 70 if (isa<CallBrInst>(PredBB->getTerminator())) 71 // We cannot rewrite exiting edges from a callbr. 72 return false; 73 74 InLoopPredecessors.push_back(PredBB); 75 } else { 76 IsDedicatedExit = false; 77 } 78 79 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 80 81 // Nothing to do if this is already a dedicated exit. 82 if (IsDedicatedExit) 83 return false; 84 85 auto *NewExitBB = SplitBlockPredecessors( 86 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 87 88 if (!NewExitBB) 89 LLVM_DEBUG( 90 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 91 << *L << "\n"); 92 else 93 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 94 << NewExitBB->getName() << "\n"); 95 return true; 96 }; 97 98 // Walk the exit blocks directly rather than building up a data structure for 99 // them, but only visit each one once. 100 SmallPtrSet<BasicBlock *, 4> Visited; 101 for (auto *BB : L->blocks()) 102 for (auto *SuccBB : successors(BB)) { 103 // We're looking for exit blocks so skip in-loop successors. 104 if (L->contains(SuccBB)) 105 continue; 106 107 // Visit each exit block exactly once. 108 if (!Visited.insert(SuccBB).second) 109 continue; 110 111 Changed |= RewriteExit(SuccBB); 112 } 113 114 return Changed; 115 } 116 117 /// Returns the instructions that use values defined in the loop. 118 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 119 SmallVector<Instruction *, 8> UsedOutside; 120 121 for (auto *Block : L->getBlocks()) 122 // FIXME: I believe that this could use copy_if if the Inst reference could 123 // be adapted into a pointer. 124 for (auto &Inst : *Block) { 125 auto Users = Inst.users(); 126 if (any_of(Users, [&](User *U) { 127 auto *Use = cast<Instruction>(U); 128 return !L->contains(Use->getParent()); 129 })) 130 UsedOutside.push_back(&Inst); 131 } 132 133 return UsedOutside; 134 } 135 136 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 137 // By definition, all loop passes need the LoopInfo analysis and the 138 // Dominator tree it depends on. Because they all participate in the loop 139 // pass manager, they must also preserve these. 140 AU.addRequired<DominatorTreeWrapperPass>(); 141 AU.addPreserved<DominatorTreeWrapperPass>(); 142 AU.addRequired<LoopInfoWrapperPass>(); 143 AU.addPreserved<LoopInfoWrapperPass>(); 144 145 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 146 // here because users shouldn't directly get them from this header. 147 extern char &LoopSimplifyID; 148 extern char &LCSSAID; 149 AU.addRequiredID(LoopSimplifyID); 150 AU.addPreservedID(LoopSimplifyID); 151 AU.addRequiredID(LCSSAID); 152 AU.addPreservedID(LCSSAID); 153 // This is used in the LPPassManager to perform LCSSA verification on passes 154 // which preserve lcssa form 155 AU.addRequired<LCSSAVerificationPass>(); 156 AU.addPreserved<LCSSAVerificationPass>(); 157 158 // Loop passes are designed to run inside of a loop pass manager which means 159 // that any function analyses they require must be required by the first loop 160 // pass in the manager (so that it is computed before the loop pass manager 161 // runs) and preserved by all loop pasess in the manager. To make this 162 // reasonably robust, the set needed for most loop passes is maintained here. 163 // If your loop pass requires an analysis not listed here, you will need to 164 // carefully audit the loop pass manager nesting structure that results. 165 AU.addRequired<AAResultsWrapperPass>(); 166 AU.addPreserved<AAResultsWrapperPass>(); 167 AU.addPreserved<BasicAAWrapperPass>(); 168 AU.addPreserved<GlobalsAAWrapperPass>(); 169 AU.addPreserved<SCEVAAWrapperPass>(); 170 AU.addRequired<ScalarEvolutionWrapperPass>(); 171 AU.addPreserved<ScalarEvolutionWrapperPass>(); 172 } 173 174 /// Manually defined generic "LoopPass" dependency initialization. This is used 175 /// to initialize the exact set of passes from above in \c 176 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 177 /// with: 178 /// 179 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 180 /// 181 /// As-if "LoopPass" were a pass. 182 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 183 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 184 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 186 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 190 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 192 } 193 194 /// Find string metadata for loop 195 /// 196 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 197 /// operand or null otherwise. If the string metadata is not found return 198 /// Optional's not-a-value. 199 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 200 StringRef Name) { 201 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 202 if (!MD) 203 return None; 204 switch (MD->getNumOperands()) { 205 case 1: 206 return nullptr; 207 case 2: 208 return &MD->getOperand(1); 209 default: 210 llvm_unreachable("loop metadata has 0 or 1 operand"); 211 } 212 } 213 214 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 215 StringRef Name) { 216 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 217 if (!MD) 218 return None; 219 switch (MD->getNumOperands()) { 220 case 1: 221 // When the value is absent it is interpreted as 'attribute set'. 222 return true; 223 case 2: 224 if (ConstantInt *IntMD = 225 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 226 return IntMD->getZExtValue(); 227 return true; 228 } 229 llvm_unreachable("unexpected number of options"); 230 } 231 232 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 233 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 234 } 235 236 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 237 StringRef Name) { 238 const MDOperand *AttrMD = 239 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 240 if (!AttrMD) 241 return None; 242 243 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 244 if (!IntMD) 245 return None; 246 247 return IntMD->getSExtValue(); 248 } 249 250 Optional<MDNode *> llvm::makeFollowupLoopID( 251 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 252 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 253 if (!OrigLoopID) { 254 if (AlwaysNew) 255 return nullptr; 256 return None; 257 } 258 259 assert(OrigLoopID->getOperand(0) == OrigLoopID); 260 261 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 262 bool InheritSomeAttrs = 263 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 264 SmallVector<Metadata *, 8> MDs; 265 MDs.push_back(nullptr); 266 267 bool Changed = false; 268 if (InheritAllAttrs || InheritSomeAttrs) { 269 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 270 MDNode *Op = cast<MDNode>(Existing.get()); 271 272 auto InheritThisAttribute = [InheritSomeAttrs, 273 InheritOptionsExceptPrefix](MDNode *Op) { 274 if (!InheritSomeAttrs) 275 return false; 276 277 // Skip malformatted attribute metadata nodes. 278 if (Op->getNumOperands() == 0) 279 return true; 280 Metadata *NameMD = Op->getOperand(0).get(); 281 if (!isa<MDString>(NameMD)) 282 return true; 283 StringRef AttrName = cast<MDString>(NameMD)->getString(); 284 285 // Do not inherit excluded attributes. 286 return !AttrName.startswith(InheritOptionsExceptPrefix); 287 }; 288 289 if (InheritThisAttribute(Op)) 290 MDs.push_back(Op); 291 else 292 Changed = true; 293 } 294 } else { 295 // Modified if we dropped at least one attribute. 296 Changed = OrigLoopID->getNumOperands() > 1; 297 } 298 299 bool HasAnyFollowup = false; 300 for (StringRef OptionName : FollowupOptions) { 301 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 302 if (!FollowupNode) 303 continue; 304 305 HasAnyFollowup = true; 306 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 307 MDs.push_back(Option.get()); 308 Changed = true; 309 } 310 } 311 312 // Attributes of the followup loop not specified explicity, so signal to the 313 // transformation pass to add suitable attributes. 314 if (!AlwaysNew && !HasAnyFollowup) 315 return None; 316 317 // If no attributes were added or remove, the previous loop Id can be reused. 318 if (!AlwaysNew && !Changed) 319 return OrigLoopID; 320 321 // No attributes is equivalent to having no !llvm.loop metadata at all. 322 if (MDs.size() == 1) 323 return nullptr; 324 325 // Build the new loop ID. 326 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 327 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 328 return FollowupLoopID; 329 } 330 331 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 332 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 333 } 334 335 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 336 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 337 return TM_SuppressedByUser; 338 339 Optional<int> Count = 340 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 341 if (Count.hasValue()) 342 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 343 344 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 345 return TM_ForcedByUser; 346 347 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 348 return TM_ForcedByUser; 349 350 if (hasDisableAllTransformsHint(L)) 351 return TM_Disable; 352 353 return TM_Unspecified; 354 } 355 356 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 357 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 358 return TM_SuppressedByUser; 359 360 Optional<int> Count = 361 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 362 if (Count.hasValue()) 363 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 364 365 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 366 return TM_ForcedByUser; 367 368 if (hasDisableAllTransformsHint(L)) 369 return TM_Disable; 370 371 return TM_Unspecified; 372 } 373 374 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 375 Optional<bool> Enable = 376 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 377 378 if (Enable == false) 379 return TM_SuppressedByUser; 380 381 Optional<int> VectorizeWidth = 382 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 383 Optional<int> InterleaveCount = 384 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 385 386 // 'Forcing' vector width and interleave count to one effectively disables 387 // this tranformation. 388 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 389 return TM_SuppressedByUser; 390 391 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 392 return TM_Disable; 393 394 if (Enable == true) 395 return TM_ForcedByUser; 396 397 if (VectorizeWidth == 1 && InterleaveCount == 1) 398 return TM_Disable; 399 400 if (VectorizeWidth > 1 || InterleaveCount > 1) 401 return TM_Enable; 402 403 if (hasDisableAllTransformsHint(L)) 404 return TM_Disable; 405 406 return TM_Unspecified; 407 } 408 409 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 410 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 411 return TM_ForcedByUser; 412 413 if (hasDisableAllTransformsHint(L)) 414 return TM_Disable; 415 416 return TM_Unspecified; 417 } 418 419 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 420 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 421 return TM_SuppressedByUser; 422 423 if (hasDisableAllTransformsHint(L)) 424 return TM_Disable; 425 426 return TM_Unspecified; 427 } 428 429 /// Does a BFS from a given node to all of its children inside a given loop. 430 /// The returned vector of nodes includes the starting point. 431 SmallVector<DomTreeNode *, 16> 432 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 433 SmallVector<DomTreeNode *, 16> Worklist; 434 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 435 // Only include subregions in the top level loop. 436 BasicBlock *BB = DTN->getBlock(); 437 if (CurLoop->contains(BB)) 438 Worklist.push_back(DTN); 439 }; 440 441 AddRegionToWorklist(N); 442 443 for (size_t I = 0; I < Worklist.size(); I++) 444 for (DomTreeNode *Child : Worklist[I]->getChildren()) 445 AddRegionToWorklist(Child); 446 447 return Worklist; 448 } 449 450 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 451 ScalarEvolution *SE = nullptr, 452 LoopInfo *LI = nullptr) { 453 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 454 auto *Preheader = L->getLoopPreheader(); 455 assert(Preheader && "Preheader should exist!"); 456 457 // Now that we know the removal is safe, remove the loop by changing the 458 // branch from the preheader to go to the single exit block. 459 // 460 // Because we're deleting a large chunk of code at once, the sequence in which 461 // we remove things is very important to avoid invalidation issues. 462 463 // Tell ScalarEvolution that the loop is deleted. Do this before 464 // deleting the loop so that ScalarEvolution can look at the loop 465 // to determine what it needs to clean up. 466 if (SE) 467 SE->forgetLoop(L); 468 469 auto *ExitBlock = L->getUniqueExitBlock(); 470 assert(ExitBlock && "Should have a unique exit block!"); 471 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 472 473 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 474 assert(OldBr && "Preheader must end with a branch"); 475 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 476 // Connect the preheader to the exit block. Keep the old edge to the header 477 // around to perform the dominator tree update in two separate steps 478 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 479 // preheader -> header. 480 // 481 // 482 // 0. Preheader 1. Preheader 2. Preheader 483 // | | | | 484 // V | V | 485 // Header <--\ | Header <--\ | Header <--\ 486 // | | | | | | | | | | | 487 // | V | | | V | | | V | 488 // | Body --/ | | Body --/ | | Body --/ 489 // V V V V V 490 // Exit Exit Exit 491 // 492 // By doing this is two separate steps we can perform the dominator tree 493 // update without using the batch update API. 494 // 495 // Even when the loop is never executed, we cannot remove the edge from the 496 // source block to the exit block. Consider the case where the unexecuted loop 497 // branches back to an outer loop. If we deleted the loop and removed the edge 498 // coming to this inner loop, this will break the outer loop structure (by 499 // deleting the backedge of the outer loop). If the outer loop is indeed a 500 // non-loop, it will be deleted in a future iteration of loop deletion pass. 501 IRBuilder<> Builder(OldBr); 502 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 503 // Remove the old branch. The conditional branch becomes a new terminator. 504 OldBr->eraseFromParent(); 505 506 // Rewrite phis in the exit block to get their inputs from the Preheader 507 // instead of the exiting block. 508 for (PHINode &P : ExitBlock->phis()) { 509 // Set the zero'th element of Phi to be from the preheader and remove all 510 // other incoming values. Given the loop has dedicated exits, all other 511 // incoming values must be from the exiting blocks. 512 int PredIndex = 0; 513 P.setIncomingBlock(PredIndex, Preheader); 514 // Removes all incoming values from all other exiting blocks (including 515 // duplicate values from an exiting block). 516 // Nuke all entries except the zero'th entry which is the preheader entry. 517 // NOTE! We need to remove Incoming Values in the reverse order as done 518 // below, to keep the indices valid for deletion (removeIncomingValues 519 // updates getNumIncomingValues and shifts all values down into the operand 520 // being deleted). 521 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 522 P.removeIncomingValue(e - i, false); 523 524 assert((P.getNumIncomingValues() == 1 && 525 P.getIncomingBlock(PredIndex) == Preheader) && 526 "Should have exactly one value and that's from the preheader!"); 527 } 528 529 // Disconnect the loop body by branching directly to its exit. 530 Builder.SetInsertPoint(Preheader->getTerminator()); 531 Builder.CreateBr(ExitBlock); 532 // Remove the old branch. 533 Preheader->getTerminator()->eraseFromParent(); 534 535 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 536 if (DT) { 537 // Update the dominator tree by informing it about the new edge from the 538 // preheader to the exit and the removed edge. 539 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, 540 {DominatorTree::Delete, Preheader, L->getHeader()}}); 541 } 542 543 // Use a map to unique and a vector to guarantee deterministic ordering. 544 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 545 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 546 547 // Given LCSSA form is satisfied, we should not have users of instructions 548 // within the dead loop outside of the loop. However, LCSSA doesn't take 549 // unreachable uses into account. We handle them here. 550 // We could do it after drop all references (in this case all users in the 551 // loop will be already eliminated and we have less work to do but according 552 // to API doc of User::dropAllReferences only valid operation after dropping 553 // references, is deletion. So let's substitute all usages of 554 // instruction from the loop with undef value of corresponding type first. 555 for (auto *Block : L->blocks()) 556 for (Instruction &I : *Block) { 557 auto *Undef = UndefValue::get(I.getType()); 558 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 559 Use &U = *UI; 560 ++UI; 561 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 562 if (L->contains(Usr->getParent())) 563 continue; 564 // If we have a DT then we can check that uses outside a loop only in 565 // unreachable block. 566 if (DT) 567 assert(!DT->isReachableFromEntry(U) && 568 "Unexpected user in reachable block"); 569 U.set(Undef); 570 } 571 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 572 if (!DVI) 573 continue; 574 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 575 if (Key != DeadDebugSet.end()) 576 continue; 577 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 578 DeadDebugInst.push_back(DVI); 579 } 580 581 // After the loop has been deleted all the values defined and modified 582 // inside the loop are going to be unavailable. 583 // Since debug values in the loop have been deleted, inserting an undef 584 // dbg.value truncates the range of any dbg.value before the loop where the 585 // loop used to be. This is particularly important for constant values. 586 DIBuilder DIB(*ExitBlock->getModule()); 587 for (auto *DVI : DeadDebugInst) 588 DIB.insertDbgValueIntrinsic( 589 UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), 590 DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI()); 591 592 // Remove the block from the reference counting scheme, so that we can 593 // delete it freely later. 594 for (auto *Block : L->blocks()) 595 Block->dropAllReferences(); 596 597 if (LI) { 598 // Erase the instructions and the blocks without having to worry 599 // about ordering because we already dropped the references. 600 // NOTE: This iteration is safe because erasing the block does not remove 601 // its entry from the loop's block list. We do that in the next section. 602 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 603 LpI != LpE; ++LpI) 604 (*LpI)->eraseFromParent(); 605 606 // Finally, the blocks from loopinfo. This has to happen late because 607 // otherwise our loop iterators won't work. 608 609 SmallPtrSet<BasicBlock *, 8> blocks; 610 blocks.insert(L->block_begin(), L->block_end()); 611 for (BasicBlock *BB : blocks) 612 LI->removeBlock(BB); 613 614 // The last step is to update LoopInfo now that we've eliminated this loop. 615 LI->erase(L); 616 } 617 } 618 619 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 620 // Only support loops with a unique exiting block, and a latch. 621 if (!L->getExitingBlock()) 622 return None; 623 624 // Get the branch weights for the loop's backedge. 625 BranchInst *LatchBR = 626 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 627 if (!LatchBR || LatchBR->getNumSuccessors() != 2) 628 return None; 629 630 assert((LatchBR->getSuccessor(0) == L->getHeader() || 631 LatchBR->getSuccessor(1) == L->getHeader()) && 632 "At least one edge out of the latch must go to the header"); 633 634 // To estimate the number of times the loop body was executed, we want to 635 // know the number of times the backedge was taken, vs. the number of times 636 // we exited the loop. 637 uint64_t TrueVal, FalseVal; 638 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 639 return None; 640 641 if (!TrueVal || !FalseVal) 642 return 0; 643 644 // Divide the count of the backedge by the count of the edge exiting the loop, 645 // rounding to nearest. 646 if (LatchBR->getSuccessor(0) == L->getHeader()) 647 return (TrueVal + (FalseVal / 2)) / FalseVal; 648 else 649 return (FalseVal + (TrueVal / 2)) / TrueVal; 650 } 651 652 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 653 ScalarEvolution &SE) { 654 Loop *OuterL = InnerLoop->getParentLoop(); 655 if (!OuterL) 656 return true; 657 658 // Get the backedge taken count for the inner loop 659 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 660 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 661 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 662 !InnerLoopBECountSC->getType()->isIntegerTy()) 663 return false; 664 665 // Get whether count is invariant to the outer loop 666 ScalarEvolution::LoopDisposition LD = 667 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 668 if (LD != ScalarEvolution::LoopInvariant) 669 return false; 670 671 return true; 672 } 673 674 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 675 if (isa<FPMathOperator>(V)) 676 cast<Instruction>(V)->setFastMathFlags(FMF); 677 return V; 678 } 679 680 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 681 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 682 Value *Left, Value *Right) { 683 CmpInst::Predicate P = CmpInst::ICMP_NE; 684 switch (RK) { 685 default: 686 llvm_unreachable("Unknown min/max recurrence kind"); 687 case RecurrenceDescriptor::MRK_UIntMin: 688 P = CmpInst::ICMP_ULT; 689 break; 690 case RecurrenceDescriptor::MRK_UIntMax: 691 P = CmpInst::ICMP_UGT; 692 break; 693 case RecurrenceDescriptor::MRK_SIntMin: 694 P = CmpInst::ICMP_SLT; 695 break; 696 case RecurrenceDescriptor::MRK_SIntMax: 697 P = CmpInst::ICMP_SGT; 698 break; 699 case RecurrenceDescriptor::MRK_FloatMin: 700 P = CmpInst::FCMP_OLT; 701 break; 702 case RecurrenceDescriptor::MRK_FloatMax: 703 P = CmpInst::FCMP_OGT; 704 break; 705 } 706 707 // We only match FP sequences that are 'fast', so we can unconditionally 708 // set it on any generated instructions. 709 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 710 FastMathFlags FMF; 711 FMF.setFast(); 712 Builder.setFastMathFlags(FMF); 713 714 Value *Cmp; 715 if (RK == RecurrenceDescriptor::MRK_FloatMin || 716 RK == RecurrenceDescriptor::MRK_FloatMax) 717 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 718 else 719 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 720 721 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 722 return Select; 723 } 724 725 // Helper to generate an ordered reduction. 726 Value * 727 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 728 unsigned Op, 729 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 730 ArrayRef<Value *> RedOps) { 731 unsigned VF = Src->getType()->getVectorNumElements(); 732 733 // Extract and apply reduction ops in ascending order: 734 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 735 Value *Result = Acc; 736 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 737 Value *Ext = 738 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 739 740 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 741 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 742 "bin.rdx"); 743 } else { 744 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 745 "Invalid min/max"); 746 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 747 } 748 749 if (!RedOps.empty()) 750 propagateIRFlags(Result, RedOps); 751 } 752 753 return Result; 754 } 755 756 // Helper to generate a log2 shuffle reduction. 757 Value * 758 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 759 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 760 FastMathFlags FMF, ArrayRef<Value *> RedOps) { 761 unsigned VF = Src->getType()->getVectorNumElements(); 762 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 763 // and vector ops, reducing the set of values being computed by half each 764 // round. 765 assert(isPowerOf2_32(VF) && 766 "Reduction emission only supported for pow2 vectors!"); 767 Value *TmpVec = Src; 768 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 769 for (unsigned i = VF; i != 1; i >>= 1) { 770 // Move the upper half of the vector to the lower half. 771 for (unsigned j = 0; j != i / 2; ++j) 772 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 773 774 // Fill the rest of the mask with undef. 775 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 776 UndefValue::get(Builder.getInt32Ty())); 777 778 Value *Shuf = Builder.CreateShuffleVector( 779 TmpVec, UndefValue::get(TmpVec->getType()), 780 ConstantVector::get(ShuffleMask), "rdx.shuf"); 781 782 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 783 // Floating point operations had to be 'fast' to enable the reduction. 784 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 785 TmpVec, Shuf, "bin.rdx"), 786 FMF); 787 } else { 788 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 789 "Invalid min/max"); 790 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 791 } 792 if (!RedOps.empty()) 793 propagateIRFlags(TmpVec, RedOps); 794 } 795 // The result is in the first element of the vector. 796 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 797 } 798 799 /// Create a simple vector reduction specified by an opcode and some 800 /// flags (if generating min/max reductions). 801 Value *llvm::createSimpleTargetReduction( 802 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 803 Value *Src, TargetTransformInfo::ReductionFlags Flags, FastMathFlags FMF, 804 ArrayRef<Value *> RedOps) { 805 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 806 807 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 808 std::function<Value *()> BuildFunc; 809 using RD = RecurrenceDescriptor; 810 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 811 // TODO: Support creating ordered reductions. 812 FastMathFlags FMFFast; 813 FMFFast.setFast(); 814 815 switch (Opcode) { 816 case Instruction::Add: 817 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 818 break; 819 case Instruction::Mul: 820 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 821 break; 822 case Instruction::And: 823 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 824 break; 825 case Instruction::Or: 826 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 827 break; 828 case Instruction::Xor: 829 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 830 break; 831 case Instruction::FAdd: 832 BuildFunc = [&]() { 833 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 834 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 835 return Rdx; 836 }; 837 break; 838 case Instruction::FMul: 839 BuildFunc = [&]() { 840 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 841 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 842 return Rdx; 843 }; 844 break; 845 case Instruction::ICmp: 846 if (Flags.IsMaxOp) { 847 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 848 BuildFunc = [&]() { 849 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 850 }; 851 } else { 852 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 853 BuildFunc = [&]() { 854 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 855 }; 856 } 857 break; 858 case Instruction::FCmp: 859 if (Flags.IsMaxOp) { 860 MinMaxKind = RD::MRK_FloatMax; 861 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 862 } else { 863 MinMaxKind = RD::MRK_FloatMin; 864 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 865 } 866 break; 867 default: 868 llvm_unreachable("Unhandled opcode"); 869 break; 870 } 871 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 872 return BuildFunc(); 873 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, FMF, RedOps); 874 } 875 876 /// Create a vector reduction using a given recurrence descriptor. 877 Value *llvm::createTargetReduction(IRBuilder<> &B, 878 const TargetTransformInfo *TTI, 879 RecurrenceDescriptor &Desc, Value *Src, 880 bool NoNaN) { 881 // TODO: Support in-order reductions based on the recurrence descriptor. 882 using RD = RecurrenceDescriptor; 883 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 884 TargetTransformInfo::ReductionFlags Flags; 885 Flags.NoNaN = NoNaN; 886 switch (RecKind) { 887 case RD::RK_FloatAdd: 888 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags, 889 Desc.getFastMathFlags()); 890 case RD::RK_FloatMult: 891 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags, 892 Desc.getFastMathFlags()); 893 case RD::RK_IntegerAdd: 894 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags, 895 Desc.getFastMathFlags()); 896 case RD::RK_IntegerMult: 897 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags, 898 Desc.getFastMathFlags()); 899 case RD::RK_IntegerAnd: 900 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags, 901 Desc.getFastMathFlags()); 902 case RD::RK_IntegerOr: 903 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags, 904 Desc.getFastMathFlags()); 905 case RD::RK_IntegerXor: 906 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags, 907 Desc.getFastMathFlags()); 908 case RD::RK_IntegerMinMax: { 909 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 910 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 911 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 912 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags, 913 Desc.getFastMathFlags()); 914 } 915 case RD::RK_FloatMinMax: { 916 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 917 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags, 918 Desc.getFastMathFlags()); 919 } 920 default: 921 llvm_unreachable("Unhandled RecKind"); 922 } 923 } 924 925 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 926 auto *VecOp = dyn_cast<Instruction>(I); 927 if (!VecOp) 928 return; 929 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 930 : dyn_cast<Instruction>(OpValue); 931 if (!Intersection) 932 return; 933 const unsigned Opcode = Intersection->getOpcode(); 934 VecOp->copyIRFlags(Intersection); 935 for (auto *V : VL) { 936 auto *Instr = dyn_cast<Instruction>(V); 937 if (!Instr) 938 continue; 939 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 940 VecOp->andIRFlags(V); 941 } 942 } 943 944 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 945 ScalarEvolution &SE) { 946 const SCEV *Zero = SE.getZero(S->getType()); 947 return SE.isAvailableAtLoopEntry(S, L) && 948 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 949 } 950 951 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 952 ScalarEvolution &SE) { 953 const SCEV *Zero = SE.getZero(S->getType()); 954 return SE.isAvailableAtLoopEntry(S, L) && 955 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 956 } 957 958 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 959 bool Signed) { 960 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 961 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 962 APInt::getMinValue(BitWidth); 963 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 964 return SE.isAvailableAtLoopEntry(S, L) && 965 SE.isLoopEntryGuardedByCond(L, Predicate, S, 966 SE.getConstant(Min)); 967 } 968 969 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 970 bool Signed) { 971 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 972 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 973 APInt::getMaxValue(BitWidth); 974 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 975 return SE.isAvailableAtLoopEntry(S, L) && 976 SE.isLoopEntryGuardedByCond(L, Predicate, S, 977 SE.getConstant(Max)); 978 } 979