1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/MustExecute.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 #define DEBUG_TYPE "loop-utils" 58 59 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 60 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 61 62 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 63 MemorySSAUpdater *MSSAU, 64 bool PreserveLCSSA) { 65 bool Changed = false; 66 67 // We re-use a vector for the in-loop predecesosrs. 68 SmallVector<BasicBlock *, 4> InLoopPredecessors; 69 70 auto RewriteExit = [&](BasicBlock *BB) { 71 assert(InLoopPredecessors.empty() && 72 "Must start with an empty predecessors list!"); 73 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 74 75 // See if there are any non-loop predecessors of this exit block and 76 // keep track of the in-loop predecessors. 77 bool IsDedicatedExit = true; 78 for (auto *PredBB : predecessors(BB)) 79 if (L->contains(PredBB)) { 80 if (isa<IndirectBrInst>(PredBB->getTerminator())) 81 // We cannot rewrite exiting edges from an indirectbr. 82 return false; 83 if (isa<CallBrInst>(PredBB->getTerminator())) 84 // We cannot rewrite exiting edges from a callbr. 85 return false; 86 87 InLoopPredecessors.push_back(PredBB); 88 } else { 89 IsDedicatedExit = false; 90 } 91 92 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 93 94 // Nothing to do if this is already a dedicated exit. 95 if (IsDedicatedExit) 96 return false; 97 98 auto *NewExitBB = SplitBlockPredecessors( 99 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 100 101 if (!NewExitBB) 102 LLVM_DEBUG( 103 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 104 << *L << "\n"); 105 else 106 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 107 << NewExitBB->getName() << "\n"); 108 return true; 109 }; 110 111 // Walk the exit blocks directly rather than building up a data structure for 112 // them, but only visit each one once. 113 SmallPtrSet<BasicBlock *, 4> Visited; 114 for (auto *BB : L->blocks()) 115 for (auto *SuccBB : successors(BB)) { 116 // We're looking for exit blocks so skip in-loop successors. 117 if (L->contains(SuccBB)) 118 continue; 119 120 // Visit each exit block exactly once. 121 if (!Visited.insert(SuccBB).second) 122 continue; 123 124 Changed |= RewriteExit(SuccBB); 125 } 126 127 return Changed; 128 } 129 130 /// Returns the instructions that use values defined in the loop. 131 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 132 SmallVector<Instruction *, 8> UsedOutside; 133 134 for (auto *Block : L->getBlocks()) 135 // FIXME: I believe that this could use copy_if if the Inst reference could 136 // be adapted into a pointer. 137 for (auto &Inst : *Block) { 138 auto Users = Inst.users(); 139 if (any_of(Users, [&](User *U) { 140 auto *Use = cast<Instruction>(U); 141 return !L->contains(Use->getParent()); 142 })) 143 UsedOutside.push_back(&Inst); 144 } 145 146 return UsedOutside; 147 } 148 149 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 150 // By definition, all loop passes need the LoopInfo analysis and the 151 // Dominator tree it depends on. Because they all participate in the loop 152 // pass manager, they must also preserve these. 153 AU.addRequired<DominatorTreeWrapperPass>(); 154 AU.addPreserved<DominatorTreeWrapperPass>(); 155 AU.addRequired<LoopInfoWrapperPass>(); 156 AU.addPreserved<LoopInfoWrapperPass>(); 157 158 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 159 // here because users shouldn't directly get them from this header. 160 extern char &LoopSimplifyID; 161 extern char &LCSSAID; 162 AU.addRequiredID(LoopSimplifyID); 163 AU.addPreservedID(LoopSimplifyID); 164 AU.addRequiredID(LCSSAID); 165 AU.addPreservedID(LCSSAID); 166 // This is used in the LPPassManager to perform LCSSA verification on passes 167 // which preserve lcssa form 168 AU.addRequired<LCSSAVerificationPass>(); 169 AU.addPreserved<LCSSAVerificationPass>(); 170 171 // Loop passes are designed to run inside of a loop pass manager which means 172 // that any function analyses they require must be required by the first loop 173 // pass in the manager (so that it is computed before the loop pass manager 174 // runs) and preserved by all loop pasess in the manager. To make this 175 // reasonably robust, the set needed for most loop passes is maintained here. 176 // If your loop pass requires an analysis not listed here, you will need to 177 // carefully audit the loop pass manager nesting structure that results. 178 AU.addRequired<AAResultsWrapperPass>(); 179 AU.addPreserved<AAResultsWrapperPass>(); 180 AU.addPreserved<BasicAAWrapperPass>(); 181 AU.addPreserved<GlobalsAAWrapperPass>(); 182 AU.addPreserved<SCEVAAWrapperPass>(); 183 AU.addRequired<ScalarEvolutionWrapperPass>(); 184 AU.addPreserved<ScalarEvolutionWrapperPass>(); 185 // FIXME: When all loop passes preserve MemorySSA, it can be required and 186 // preserved here instead of the individual handling in each pass. 187 } 188 189 /// Manually defined generic "LoopPass" dependency initialization. This is used 190 /// to initialize the exact set of passes from above in \c 191 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 192 /// with: 193 /// 194 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 195 /// 196 /// As-if "LoopPass" were a pass. 197 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 198 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 199 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 200 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 201 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 205 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 207 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 208 } 209 210 /// Create MDNode for input string. 211 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 212 LLVMContext &Context = TheLoop->getHeader()->getContext(); 213 Metadata *MDs[] = { 214 MDString::get(Context, Name), 215 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 216 return MDNode::get(Context, MDs); 217 } 218 219 /// Set input string into loop metadata by keeping other values intact. 220 /// If the string is already in loop metadata update value if it is 221 /// different. 222 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 223 unsigned V) { 224 SmallVector<Metadata *, 4> MDs(1); 225 // If the loop already has metadata, retain it. 226 MDNode *LoopID = TheLoop->getLoopID(); 227 if (LoopID) { 228 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 229 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 230 // If it is of form key = value, try to parse it. 231 if (Node->getNumOperands() == 2) { 232 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 233 if (S && S->getString().equals(StringMD)) { 234 ConstantInt *IntMD = 235 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 236 if (IntMD && IntMD->getSExtValue() == V) 237 // It is already in place. Do nothing. 238 return; 239 // We need to update the value, so just skip it here and it will 240 // be added after copying other existed nodes. 241 continue; 242 } 243 } 244 MDs.push_back(Node); 245 } 246 } 247 // Add new metadata. 248 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 249 // Replace current metadata node with new one. 250 LLVMContext &Context = TheLoop->getHeader()->getContext(); 251 MDNode *NewLoopID = MDNode::get(Context, MDs); 252 // Set operand 0 to refer to the loop id itself. 253 NewLoopID->replaceOperandWith(0, NewLoopID); 254 TheLoop->setLoopID(NewLoopID); 255 } 256 257 Optional<ElementCount> 258 llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) { 259 Optional<int> Width = 260 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 261 262 if (Width.hasValue()) { 263 Optional<int> IsScalable = getOptionalIntLoopAttribute( 264 TheLoop, "llvm.loop.vectorize.scalable.enable"); 265 return ElementCount::get(*Width, IsScalable.getValueOr(false)); 266 } 267 268 return None; 269 } 270 271 Optional<MDNode *> llvm::makeFollowupLoopID( 272 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 273 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 274 if (!OrigLoopID) { 275 if (AlwaysNew) 276 return nullptr; 277 return None; 278 } 279 280 assert(OrigLoopID->getOperand(0) == OrigLoopID); 281 282 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 283 bool InheritSomeAttrs = 284 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 285 SmallVector<Metadata *, 8> MDs; 286 MDs.push_back(nullptr); 287 288 bool Changed = false; 289 if (InheritAllAttrs || InheritSomeAttrs) { 290 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 291 MDNode *Op = cast<MDNode>(Existing.get()); 292 293 auto InheritThisAttribute = [InheritSomeAttrs, 294 InheritOptionsExceptPrefix](MDNode *Op) { 295 if (!InheritSomeAttrs) 296 return false; 297 298 // Skip malformatted attribute metadata nodes. 299 if (Op->getNumOperands() == 0) 300 return true; 301 Metadata *NameMD = Op->getOperand(0).get(); 302 if (!isa<MDString>(NameMD)) 303 return true; 304 StringRef AttrName = cast<MDString>(NameMD)->getString(); 305 306 // Do not inherit excluded attributes. 307 return !AttrName.startswith(InheritOptionsExceptPrefix); 308 }; 309 310 if (InheritThisAttribute(Op)) 311 MDs.push_back(Op); 312 else 313 Changed = true; 314 } 315 } else { 316 // Modified if we dropped at least one attribute. 317 Changed = OrigLoopID->getNumOperands() > 1; 318 } 319 320 bool HasAnyFollowup = false; 321 for (StringRef OptionName : FollowupOptions) { 322 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 323 if (!FollowupNode) 324 continue; 325 326 HasAnyFollowup = true; 327 for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 328 MDs.push_back(Option.get()); 329 Changed = true; 330 } 331 } 332 333 // Attributes of the followup loop not specified explicity, so signal to the 334 // transformation pass to add suitable attributes. 335 if (!AlwaysNew && !HasAnyFollowup) 336 return None; 337 338 // If no attributes were added or remove, the previous loop Id can be reused. 339 if (!AlwaysNew && !Changed) 340 return OrigLoopID; 341 342 // No attributes is equivalent to having no !llvm.loop metadata at all. 343 if (MDs.size() == 1) 344 return nullptr; 345 346 // Build the new loop ID. 347 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 348 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 349 return FollowupLoopID; 350 } 351 352 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 353 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 354 } 355 356 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 357 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 358 } 359 360 TransformationMode llvm::hasUnrollTransformation(const Loop *L) { 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 362 return TM_SuppressedByUser; 363 364 Optional<int> Count = 365 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 366 if (Count.hasValue()) 367 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 368 369 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 370 return TM_ForcedByUser; 371 372 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 373 return TM_ForcedByUser; 374 375 if (hasDisableAllTransformsHint(L)) 376 return TM_Disable; 377 378 return TM_Unspecified; 379 } 380 381 TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) { 382 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 383 return TM_SuppressedByUser; 384 385 Optional<int> Count = 386 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 387 if (Count.hasValue()) 388 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 389 390 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 391 return TM_ForcedByUser; 392 393 if (hasDisableAllTransformsHint(L)) 394 return TM_Disable; 395 396 return TM_Unspecified; 397 } 398 399 TransformationMode llvm::hasVectorizeTransformation(const Loop *L) { 400 Optional<bool> Enable = 401 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 402 403 if (Enable == false) 404 return TM_SuppressedByUser; 405 406 Optional<ElementCount> VectorizeWidth = 407 getOptionalElementCountLoopAttribute(L); 408 Optional<int> InterleaveCount = 409 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 410 411 // 'Forcing' vector width and interleave count to one effectively disables 412 // this tranformation. 413 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 414 InterleaveCount == 1) 415 return TM_SuppressedByUser; 416 417 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 418 return TM_Disable; 419 420 if (Enable == true) 421 return TM_ForcedByUser; 422 423 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 424 return TM_Disable; 425 426 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 427 return TM_Enable; 428 429 if (hasDisableAllTransformsHint(L)) 430 return TM_Disable; 431 432 return TM_Unspecified; 433 } 434 435 TransformationMode llvm::hasDistributeTransformation(const Loop *L) { 436 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 437 return TM_ForcedByUser; 438 439 if (hasDisableAllTransformsHint(L)) 440 return TM_Disable; 441 442 return TM_Unspecified; 443 } 444 445 TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) { 446 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 447 return TM_SuppressedByUser; 448 449 if (hasDisableAllTransformsHint(L)) 450 return TM_Disable; 451 452 return TM_Unspecified; 453 } 454 455 /// Does a BFS from a given node to all of its children inside a given loop. 456 /// The returned vector of nodes includes the starting point. 457 SmallVector<DomTreeNode *, 16> 458 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 459 SmallVector<DomTreeNode *, 16> Worklist; 460 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 461 // Only include subregions in the top level loop. 462 BasicBlock *BB = DTN->getBlock(); 463 if (CurLoop->contains(BB)) 464 Worklist.push_back(DTN); 465 }; 466 467 AddRegionToWorklist(N); 468 469 for (size_t I = 0; I < Worklist.size(); I++) { 470 for (DomTreeNode *Child : Worklist[I]->children()) 471 AddRegionToWorklist(Child); 472 } 473 474 return Worklist; 475 } 476 477 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 478 LoopInfo *LI, MemorySSA *MSSA) { 479 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 480 auto *Preheader = L->getLoopPreheader(); 481 assert(Preheader && "Preheader should exist!"); 482 483 std::unique_ptr<MemorySSAUpdater> MSSAU; 484 if (MSSA) 485 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 486 487 // Now that we know the removal is safe, remove the loop by changing the 488 // branch from the preheader to go to the single exit block. 489 // 490 // Because we're deleting a large chunk of code at once, the sequence in which 491 // we remove things is very important to avoid invalidation issues. 492 493 // Tell ScalarEvolution that the loop is deleted. Do this before 494 // deleting the loop so that ScalarEvolution can look at the loop 495 // to determine what it needs to clean up. 496 if (SE) 497 SE->forgetLoop(L); 498 499 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 500 assert(OldBr && "Preheader must end with a branch"); 501 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 502 // Connect the preheader to the exit block. Keep the old edge to the header 503 // around to perform the dominator tree update in two separate steps 504 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 505 // preheader -> header. 506 // 507 // 508 // 0. Preheader 1. Preheader 2. Preheader 509 // | | | | 510 // V | V | 511 // Header <--\ | Header <--\ | Header <--\ 512 // | | | | | | | | | | | 513 // | V | | | V | | | V | 514 // | Body --/ | | Body --/ | | Body --/ 515 // V V V V V 516 // Exit Exit Exit 517 // 518 // By doing this is two separate steps we can perform the dominator tree 519 // update without using the batch update API. 520 // 521 // Even when the loop is never executed, we cannot remove the edge from the 522 // source block to the exit block. Consider the case where the unexecuted loop 523 // branches back to an outer loop. If we deleted the loop and removed the edge 524 // coming to this inner loop, this will break the outer loop structure (by 525 // deleting the backedge of the outer loop). If the outer loop is indeed a 526 // non-loop, it will be deleted in a future iteration of loop deletion pass. 527 IRBuilder<> Builder(OldBr); 528 529 auto *ExitBlock = L->getUniqueExitBlock(); 530 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 531 if (ExitBlock) { 532 assert(ExitBlock && "Should have a unique exit block!"); 533 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 534 535 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 536 // Remove the old branch. The conditional branch becomes a new terminator. 537 OldBr->eraseFromParent(); 538 539 // Rewrite phis in the exit block to get their inputs from the Preheader 540 // instead of the exiting block. 541 for (PHINode &P : ExitBlock->phis()) { 542 // Set the zero'th element of Phi to be from the preheader and remove all 543 // other incoming values. Given the loop has dedicated exits, all other 544 // incoming values must be from the exiting blocks. 545 int PredIndex = 0; 546 P.setIncomingBlock(PredIndex, Preheader); 547 // Removes all incoming values from all other exiting blocks (including 548 // duplicate values from an exiting block). 549 // Nuke all entries except the zero'th entry which is the preheader entry. 550 // NOTE! We need to remove Incoming Values in the reverse order as done 551 // below, to keep the indices valid for deletion (removeIncomingValues 552 // updates getNumIncomingValues and shifts all values down into the 553 // operand being deleted). 554 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 555 P.removeIncomingValue(e - i, false); 556 557 assert((P.getNumIncomingValues() == 1 && 558 P.getIncomingBlock(PredIndex) == Preheader) && 559 "Should have exactly one value and that's from the preheader!"); 560 } 561 562 if (DT) { 563 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 564 if (MSSA) { 565 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 566 *DT); 567 if (VerifyMemorySSA) 568 MSSA->verifyMemorySSA(); 569 } 570 } 571 572 // Disconnect the loop body by branching directly to its exit. 573 Builder.SetInsertPoint(Preheader->getTerminator()); 574 Builder.CreateBr(ExitBlock); 575 // Remove the old branch. 576 Preheader->getTerminator()->eraseFromParent(); 577 } else { 578 assert(L->hasNoExitBlocks() && 579 "Loop should have either zero or one exit blocks."); 580 581 Builder.SetInsertPoint(OldBr); 582 Builder.CreateUnreachable(); 583 Preheader->getTerminator()->eraseFromParent(); 584 } 585 586 if (DT) { 587 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 588 if (MSSA) { 589 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 590 *DT); 591 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 592 L->block_end()); 593 MSSAU->removeBlocks(DeadBlockSet); 594 if (VerifyMemorySSA) 595 MSSA->verifyMemorySSA(); 596 } 597 } 598 599 // Use a map to unique and a vector to guarantee deterministic ordering. 600 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 601 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 602 603 if (ExitBlock) { 604 // Given LCSSA form is satisfied, we should not have users of instructions 605 // within the dead loop outside of the loop. However, LCSSA doesn't take 606 // unreachable uses into account. We handle them here. 607 // We could do it after drop all references (in this case all users in the 608 // loop will be already eliminated and we have less work to do but according 609 // to API doc of User::dropAllReferences only valid operation after dropping 610 // references, is deletion. So let's substitute all usages of 611 // instruction from the loop with undef value of corresponding type first. 612 for (auto *Block : L->blocks()) 613 for (Instruction &I : *Block) { 614 auto *Undef = UndefValue::get(I.getType()); 615 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); 616 UI != E;) { 617 Use &U = *UI; 618 ++UI; 619 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 620 if (L->contains(Usr->getParent())) 621 continue; 622 // If we have a DT then we can check that uses outside a loop only in 623 // unreachable block. 624 if (DT) 625 assert(!DT->isReachableFromEntry(U) && 626 "Unexpected user in reachable block"); 627 U.set(Undef); 628 } 629 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 630 if (!DVI) 631 continue; 632 auto Key = 633 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 634 if (Key != DeadDebugSet.end()) 635 continue; 636 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 637 DeadDebugInst.push_back(DVI); 638 } 639 640 // After the loop has been deleted all the values defined and modified 641 // inside the loop are going to be unavailable. 642 // Since debug values in the loop have been deleted, inserting an undef 643 // dbg.value truncates the range of any dbg.value before the loop where the 644 // loop used to be. This is particularly important for constant values. 645 DIBuilder DIB(*ExitBlock->getModule()); 646 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 647 assert(InsertDbgValueBefore && 648 "There should be a non-PHI instruction in exit block, else these " 649 "instructions will have no parent."); 650 for (auto *DVI : DeadDebugInst) 651 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 652 DVI->getVariable(), DVI->getExpression(), 653 DVI->getDebugLoc(), InsertDbgValueBefore); 654 } 655 656 // Remove the block from the reference counting scheme, so that we can 657 // delete it freely later. 658 for (auto *Block : L->blocks()) 659 Block->dropAllReferences(); 660 661 if (MSSA && VerifyMemorySSA) 662 MSSA->verifyMemorySSA(); 663 664 if (LI) { 665 // Erase the instructions and the blocks without having to worry 666 // about ordering because we already dropped the references. 667 // NOTE: This iteration is safe because erasing the block does not remove 668 // its entry from the loop's block list. We do that in the next section. 669 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 670 LpI != LpE; ++LpI) 671 (*LpI)->eraseFromParent(); 672 673 // Finally, the blocks from loopinfo. This has to happen late because 674 // otherwise our loop iterators won't work. 675 676 SmallPtrSet<BasicBlock *, 8> blocks; 677 blocks.insert(L->block_begin(), L->block_end()); 678 for (BasicBlock *BB : blocks) 679 LI->removeBlock(BB); 680 681 // The last step is to update LoopInfo now that we've eliminated this loop. 682 // Note: LoopInfo::erase remove the given loop and relink its subloops with 683 // its parent. While removeLoop/removeChildLoop remove the given loop but 684 // not relink its subloops, which is what we want. 685 if (Loop *ParentLoop = L->getParentLoop()) { 686 Loop::iterator I = find(*ParentLoop, L); 687 assert(I != ParentLoop->end() && "Couldn't find loop"); 688 ParentLoop->removeChildLoop(I); 689 } else { 690 Loop::iterator I = find(*LI, L); 691 assert(I != LI->end() && "Couldn't find loop"); 692 LI->removeLoop(I); 693 } 694 LI->destroy(L); 695 } 696 } 697 698 static Loop *getOutermostLoop(Loop *L) { 699 while (Loop *Parent = L->getParentLoop()) 700 L = Parent; 701 return L; 702 } 703 704 void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 705 LoopInfo &LI, MemorySSA *MSSA) { 706 auto *Latch = L->getLoopLatch(); 707 assert(Latch && "multiple latches not yet supported"); 708 auto *Header = L->getHeader(); 709 Loop *OutermostLoop = getOutermostLoop(L); 710 711 SE.forgetLoop(L); 712 713 std::unique_ptr<MemorySSAUpdater> MSSAU; 714 if (MSSA) 715 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 716 717 // Update the CFG and domtree. We chose to special case a couple of 718 // of common cases for code quality and test readability reasons. 719 [&]() -> void { 720 if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) { 721 if (!BI->isConditional()) { 722 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 723 (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU, 724 MSSAU.get()); 725 return; 726 } 727 728 // Conditional latch/exit - note that latch can be shared by inner 729 // and outer loop so the other target doesn't need to an exit 730 if (L->isLoopExiting(Latch)) { 731 // TODO: Generalize ConstantFoldTerminator so that it can be used 732 // here without invalidating LCSSA or MemorySSA. (Tricky case for 733 // LCSSA: header is an exit block of a preceeding sibling loop w/o 734 // dedicated exits.) 735 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0; 736 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx); 737 738 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 739 Header->removePredecessor(Latch, true); 740 741 IRBuilder<> Builder(BI); 742 auto *NewBI = Builder.CreateBr(ExitBB); 743 // Transfer the metadata to the new branch instruction (minus the 744 // loop info since this is no longer a loop) 745 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg, 746 LLVMContext::MD_annotation}); 747 748 BI->eraseFromParent(); 749 DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}}); 750 if (MSSA) 751 MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT); 752 return; 753 } 754 } 755 756 // General case. By splitting the backedge, and then explicitly making it 757 // unreachable we gracefully handle corner cases such as switch and invoke 758 // termiantors. 759 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 760 761 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 762 (void)changeToUnreachable(BackedgeBB->getTerminator(), 763 /*PreserveLCSSA*/ true, &DTU, MSSAU.get()); 764 }(); 765 766 // Erase (and destroy) this loop instance. Handles relinking sub-loops 767 // and blocks within the loop as needed. 768 LI.erase(L); 769 770 // If the loop we broke had a parent, then changeToUnreachable might have 771 // caused a block to be removed from the parent loop (see loop_nest_lcssa 772 // test case in zero-btc.ll for an example), thus changing the parent's 773 // exit blocks. If that happened, we need to rebuild LCSSA on the outermost 774 // loop which might have a had a block removed. 775 if (OutermostLoop != L) 776 formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 777 } 778 779 780 /// Checks if \p L has single exit through latch block except possibly 781 /// "deoptimizing" exits. Returns branch instruction terminating the loop 782 /// latch if above check is successful, nullptr otherwise. 783 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 784 BasicBlock *Latch = L->getLoopLatch(); 785 if (!Latch) 786 return nullptr; 787 788 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 789 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 790 return nullptr; 791 792 assert((LatchBR->getSuccessor(0) == L->getHeader() || 793 LatchBR->getSuccessor(1) == L->getHeader()) && 794 "At least one edge out of the latch must go to the header"); 795 796 SmallVector<BasicBlock *, 4> ExitBlocks; 797 L->getUniqueNonLatchExitBlocks(ExitBlocks); 798 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 799 return !EB->getTerminatingDeoptimizeCall(); 800 })) 801 return nullptr; 802 803 return LatchBR; 804 } 805 806 Optional<unsigned> 807 llvm::getLoopEstimatedTripCount(Loop *L, 808 unsigned *EstimatedLoopInvocationWeight) { 809 // Support loops with an exiting latch and other existing exists only 810 // deoptimize. 811 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 812 if (!LatchBranch) 813 return None; 814 815 // To estimate the number of times the loop body was executed, we want to 816 // know the number of times the backedge was taken, vs. the number of times 817 // we exited the loop. 818 uint64_t BackedgeTakenWeight, LatchExitWeight; 819 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 820 return None; 821 822 if (LatchBranch->getSuccessor(0) != L->getHeader()) 823 std::swap(BackedgeTakenWeight, LatchExitWeight); 824 825 if (!LatchExitWeight) 826 return None; 827 828 if (EstimatedLoopInvocationWeight) 829 *EstimatedLoopInvocationWeight = LatchExitWeight; 830 831 // Estimated backedge taken count is a ratio of the backedge taken weight by 832 // the weight of the edge exiting the loop, rounded to nearest. 833 uint64_t BackedgeTakenCount = 834 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 835 // Estimated trip count is one plus estimated backedge taken count. 836 return BackedgeTakenCount + 1; 837 } 838 839 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 840 unsigned EstimatedloopInvocationWeight) { 841 // Support loops with an exiting latch and other existing exists only 842 // deoptimize. 843 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 844 if (!LatchBranch) 845 return false; 846 847 // Calculate taken and exit weights. 848 unsigned LatchExitWeight = 0; 849 unsigned BackedgeTakenWeight = 0; 850 851 if (EstimatedTripCount > 0) { 852 LatchExitWeight = EstimatedloopInvocationWeight; 853 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 854 } 855 856 // Make a swap if back edge is taken when condition is "false". 857 if (LatchBranch->getSuccessor(0) != L->getHeader()) 858 std::swap(BackedgeTakenWeight, LatchExitWeight); 859 860 MDBuilder MDB(LatchBranch->getContext()); 861 862 // Set/Update profile metadata. 863 LatchBranch->setMetadata( 864 LLVMContext::MD_prof, 865 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 866 867 return true; 868 } 869 870 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 871 ScalarEvolution &SE) { 872 Loop *OuterL = InnerLoop->getParentLoop(); 873 if (!OuterL) 874 return true; 875 876 // Get the backedge taken count for the inner loop 877 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 878 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 879 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 880 !InnerLoopBECountSC->getType()->isIntegerTy()) 881 return false; 882 883 // Get whether count is invariant to the outer loop 884 ScalarEvolution::LoopDisposition LD = 885 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 886 if (LD != ScalarEvolution::LoopInvariant) 887 return false; 888 889 return true; 890 } 891 892 CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) { 893 switch (RK) { 894 default: 895 llvm_unreachable("Unknown min/max recurrence kind"); 896 case RecurKind::UMin: 897 return CmpInst::ICMP_ULT; 898 case RecurKind::UMax: 899 return CmpInst::ICMP_UGT; 900 case RecurKind::SMin: 901 return CmpInst::ICMP_SLT; 902 case RecurKind::SMax: 903 return CmpInst::ICMP_SGT; 904 case RecurKind::FMin: 905 return CmpInst::FCMP_OLT; 906 case RecurKind::FMax: 907 return CmpInst::FCMP_OGT; 908 } 909 } 910 911 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 912 Value *Right) { 913 CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK); 914 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 915 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 916 return Select; 917 } 918 919 // Helper to generate an ordered reduction. 920 Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 921 unsigned Op, RecurKind RdxKind, 922 ArrayRef<Value *> RedOps) { 923 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 924 925 // Extract and apply reduction ops in ascending order: 926 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 927 Value *Result = Acc; 928 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 929 Value *Ext = 930 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 931 932 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 933 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 934 "bin.rdx"); 935 } else { 936 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 937 "Invalid min/max"); 938 Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 939 } 940 941 if (!RedOps.empty()) 942 propagateIRFlags(Result, RedOps); 943 } 944 945 return Result; 946 } 947 948 // Helper to generate a log2 shuffle reduction. 949 Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 950 unsigned Op, RecurKind RdxKind, 951 ArrayRef<Value *> RedOps) { 952 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements(); 953 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 954 // and vector ops, reducing the set of values being computed by half each 955 // round. 956 assert(isPowerOf2_32(VF) && 957 "Reduction emission only supported for pow2 vectors!"); 958 Value *TmpVec = Src; 959 SmallVector<int, 32> ShuffleMask(VF); 960 for (unsigned i = VF; i != 1; i >>= 1) { 961 // Move the upper half of the vector to the lower half. 962 for (unsigned j = 0; j != i / 2; ++j) 963 ShuffleMask[j] = i / 2 + j; 964 965 // Fill the rest of the mask with undef. 966 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 967 968 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 969 970 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 971 // The builder propagates its fast-math-flags setting. 972 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 973 "bin.rdx"); 974 } else { 975 assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 976 "Invalid min/max"); 977 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 978 } 979 if (!RedOps.empty()) 980 propagateIRFlags(TmpVec, RedOps); 981 982 // We may compute the reassociated scalar ops in a way that does not 983 // preserve nsw/nuw etc. Conservatively, drop those flags. 984 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 985 ReductionInst->dropPoisonGeneratingFlags(); 986 } 987 // The result is in the first element of the vector. 988 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 989 } 990 991 Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 992 const TargetTransformInfo *TTI, 993 Value *Src, RecurKind RdxKind, 994 ArrayRef<Value *> RedOps) { 995 auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 996 switch (RdxKind) { 997 case RecurKind::Add: 998 return Builder.CreateAddReduce(Src); 999 case RecurKind::Mul: 1000 return Builder.CreateMulReduce(Src); 1001 case RecurKind::And: 1002 return Builder.CreateAndReduce(Src); 1003 case RecurKind::Or: 1004 return Builder.CreateOrReduce(Src); 1005 case RecurKind::Xor: 1006 return Builder.CreateXorReduce(Src); 1007 case RecurKind::FAdd: 1008 return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 1009 Src); 1010 case RecurKind::FMul: 1011 return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 1012 case RecurKind::SMax: 1013 return Builder.CreateIntMaxReduce(Src, true); 1014 case RecurKind::SMin: 1015 return Builder.CreateIntMinReduce(Src, true); 1016 case RecurKind::UMax: 1017 return Builder.CreateIntMaxReduce(Src, false); 1018 case RecurKind::UMin: 1019 return Builder.CreateIntMinReduce(Src, false); 1020 case RecurKind::FMax: 1021 return Builder.CreateFPMaxReduce(Src); 1022 case RecurKind::FMin: 1023 return Builder.CreateFPMinReduce(Src); 1024 default: 1025 llvm_unreachable("Unhandled opcode"); 1026 } 1027 } 1028 1029 Value *llvm::createTargetReduction(IRBuilderBase &B, 1030 const TargetTransformInfo *TTI, 1031 const RecurrenceDescriptor &Desc, 1032 Value *Src) { 1033 // TODO: Support in-order reductions based on the recurrence descriptor. 1034 // All ops in the reduction inherit fast-math-flags from the recurrence 1035 // descriptor. 1036 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1037 B.setFastMathFlags(Desc.getFastMathFlags()); 1038 return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); 1039 } 1040 1041 Value *llvm::createOrderedReduction(IRBuilderBase &B, 1042 const RecurrenceDescriptor &Desc, 1043 Value *Src, Value *Start) { 1044 assert(Desc.getRecurrenceKind() == RecurKind::FAdd && 1045 "Unexpected reduction kind"); 1046 assert(Src->getType()->isVectorTy() && "Expected a vector type"); 1047 assert(!Start->getType()->isVectorTy() && "Expected a scalar type"); 1048 1049 return B.CreateFAddReduce(Start, Src); 1050 } 1051 1052 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1053 auto *VecOp = dyn_cast<Instruction>(I); 1054 if (!VecOp) 1055 return; 1056 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1057 : dyn_cast<Instruction>(OpValue); 1058 if (!Intersection) 1059 return; 1060 const unsigned Opcode = Intersection->getOpcode(); 1061 VecOp->copyIRFlags(Intersection); 1062 for (auto *V : VL) { 1063 auto *Instr = dyn_cast<Instruction>(V); 1064 if (!Instr) 1065 continue; 1066 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1067 VecOp->andIRFlags(V); 1068 } 1069 } 1070 1071 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1072 ScalarEvolution &SE) { 1073 const SCEV *Zero = SE.getZero(S->getType()); 1074 return SE.isAvailableAtLoopEntry(S, L) && 1075 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1076 } 1077 1078 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1079 ScalarEvolution &SE) { 1080 const SCEV *Zero = SE.getZero(S->getType()); 1081 return SE.isAvailableAtLoopEntry(S, L) && 1082 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1083 } 1084 1085 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1086 bool Signed) { 1087 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1088 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1089 APInt::getMinValue(BitWidth); 1090 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1091 return SE.isAvailableAtLoopEntry(S, L) && 1092 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1093 SE.getConstant(Min)); 1094 } 1095 1096 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1097 bool Signed) { 1098 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1099 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1100 APInt::getMaxValue(BitWidth); 1101 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1102 return SE.isAvailableAtLoopEntry(S, L) && 1103 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1104 SE.getConstant(Max)); 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // rewriteLoopExitValues - Optimize IV users outside the loop. 1109 // As a side effect, reduces the amount of IV processing within the loop. 1110 //===----------------------------------------------------------------------===// 1111 1112 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1113 SmallPtrSet<const Instruction *, 8> Visited; 1114 SmallVector<const Instruction *, 8> WorkList; 1115 Visited.insert(I); 1116 WorkList.push_back(I); 1117 while (!WorkList.empty()) { 1118 const Instruction *Curr = WorkList.pop_back_val(); 1119 // This use is outside the loop, nothing to do. 1120 if (!L->contains(Curr)) 1121 continue; 1122 // Do we assume it is a "hard" use which will not be eliminated easily? 1123 if (Curr->mayHaveSideEffects()) 1124 return true; 1125 // Otherwise, add all its users to worklist. 1126 for (auto U : Curr->users()) { 1127 auto *UI = cast<Instruction>(U); 1128 if (Visited.insert(UI).second) 1129 WorkList.push_back(UI); 1130 } 1131 } 1132 return false; 1133 } 1134 1135 // Collect information about PHI nodes which can be transformed in 1136 // rewriteLoopExitValues. 1137 struct RewritePhi { 1138 PHINode *PN; // For which PHI node is this replacement? 1139 unsigned Ith; // For which incoming value? 1140 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting. 1141 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV? 1142 bool HighCost; // Is this expansion a high-cost? 1143 1144 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, 1145 bool H) 1146 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt), 1147 HighCost(H) {} 1148 }; 1149 1150 // Check whether it is possible to delete the loop after rewriting exit 1151 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1152 // aggressively. 1153 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1154 BasicBlock *Preheader = L->getLoopPreheader(); 1155 // If there is no preheader, the loop will not be deleted. 1156 if (!Preheader) 1157 return false; 1158 1159 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1160 // We obviate multiple ExitingBlocks case for simplicity. 1161 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1162 // after exit value rewriting, we can enhance the logic here. 1163 SmallVector<BasicBlock *, 4> ExitingBlocks; 1164 L->getExitingBlocks(ExitingBlocks); 1165 SmallVector<BasicBlock *, 8> ExitBlocks; 1166 L->getUniqueExitBlocks(ExitBlocks); 1167 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1168 return false; 1169 1170 BasicBlock *ExitBlock = ExitBlocks[0]; 1171 BasicBlock::iterator BI = ExitBlock->begin(); 1172 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1173 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1174 1175 // If the Incoming value of P is found in RewritePhiSet, we know it 1176 // could be rewritten to use a loop invariant value in transformation 1177 // phase later. Skip it in the loop invariant check below. 1178 bool found = false; 1179 for (const RewritePhi &Phi : RewritePhiSet) { 1180 unsigned i = Phi.Ith; 1181 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1182 found = true; 1183 break; 1184 } 1185 } 1186 1187 Instruction *I; 1188 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1189 if (!L->hasLoopInvariantOperands(I)) 1190 return false; 1191 1192 ++BI; 1193 } 1194 1195 for (auto *BB : L->blocks()) 1196 if (llvm::any_of(*BB, [](Instruction &I) { 1197 return I.mayHaveSideEffects(); 1198 })) 1199 return false; 1200 1201 return true; 1202 } 1203 1204 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1205 ScalarEvolution *SE, 1206 const TargetTransformInfo *TTI, 1207 SCEVExpander &Rewriter, DominatorTree *DT, 1208 ReplaceExitVal ReplaceExitValue, 1209 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1210 // Check a pre-condition. 1211 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1212 "Indvars did not preserve LCSSA!"); 1213 1214 SmallVector<BasicBlock*, 8> ExitBlocks; 1215 L->getUniqueExitBlocks(ExitBlocks); 1216 1217 SmallVector<RewritePhi, 8> RewritePhiSet; 1218 // Find all values that are computed inside the loop, but used outside of it. 1219 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1220 // the exit blocks of the loop to find them. 1221 for (BasicBlock *ExitBB : ExitBlocks) { 1222 // If there are no PHI nodes in this exit block, then no values defined 1223 // inside the loop are used on this path, skip it. 1224 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1225 if (!PN) continue; 1226 1227 unsigned NumPreds = PN->getNumIncomingValues(); 1228 1229 // Iterate over all of the PHI nodes. 1230 BasicBlock::iterator BBI = ExitBB->begin(); 1231 while ((PN = dyn_cast<PHINode>(BBI++))) { 1232 if (PN->use_empty()) 1233 continue; // dead use, don't replace it 1234 1235 if (!SE->isSCEVable(PN->getType())) 1236 continue; 1237 1238 // It's necessary to tell ScalarEvolution about this explicitly so that 1239 // it can walk the def-use list and forget all SCEVs, as it may not be 1240 // watching the PHI itself. Once the new exit value is in place, there 1241 // may not be a def-use connection between the loop and every instruction 1242 // which got a SCEVAddRecExpr for that loop. 1243 SE->forgetValue(PN); 1244 1245 // Iterate over all of the values in all the PHI nodes. 1246 for (unsigned i = 0; i != NumPreds; ++i) { 1247 // If the value being merged in is not integer or is not defined 1248 // in the loop, skip it. 1249 Value *InVal = PN->getIncomingValue(i); 1250 if (!isa<Instruction>(InVal)) 1251 continue; 1252 1253 // If this pred is for a subloop, not L itself, skip it. 1254 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1255 continue; // The Block is in a subloop, skip it. 1256 1257 // Check that InVal is defined in the loop. 1258 Instruction *Inst = cast<Instruction>(InVal); 1259 if (!L->contains(Inst)) 1260 continue; 1261 1262 // Okay, this instruction has a user outside of the current loop 1263 // and varies predictably *inside* the loop. Evaluate the value it 1264 // contains when the loop exits, if possible. We prefer to start with 1265 // expressions which are true for all exits (so as to maximize 1266 // expression reuse by the SCEVExpander), but resort to per-exit 1267 // evaluation if that fails. 1268 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1269 if (isa<SCEVCouldNotCompute>(ExitValue) || 1270 !SE->isLoopInvariant(ExitValue, L) || 1271 !isSafeToExpand(ExitValue, *SE)) { 1272 // TODO: This should probably be sunk into SCEV in some way; maybe a 1273 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1274 // most SCEV expressions and other recurrence types (e.g. shift 1275 // recurrences). Is there existing code we can reuse? 1276 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1277 if (isa<SCEVCouldNotCompute>(ExitCount)) 1278 continue; 1279 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1280 if (AddRec->getLoop() == L) 1281 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1282 if (isa<SCEVCouldNotCompute>(ExitValue) || 1283 !SE->isLoopInvariant(ExitValue, L) || 1284 !isSafeToExpand(ExitValue, *SE)) 1285 continue; 1286 } 1287 1288 // Computing the value outside of the loop brings no benefit if it is 1289 // definitely used inside the loop in a way which can not be optimized 1290 // away. Avoid doing so unless we know we have a value which computes 1291 // the ExitValue already. TODO: This should be merged into SCEV 1292 // expander to leverage its knowledge of existing expressions. 1293 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1294 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1295 continue; 1296 1297 // Check if expansions of this SCEV would count as being high cost. 1298 bool HighCost = Rewriter.isHighCostExpansion( 1299 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1300 1301 // Note that we must not perform expansions until after 1302 // we query *all* the costs, because if we perform temporary expansion 1303 // inbetween, one that we might not intend to keep, said expansion 1304 // *may* affect cost calculation of the the next SCEV's we'll query, 1305 // and next SCEV may errneously get smaller cost. 1306 1307 // Collect all the candidate PHINodes to be rewritten. 1308 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost); 1309 } 1310 } 1311 } 1312 1313 // TODO: evaluate whether it is beneficial to change how we calculate 1314 // high-cost: if we have SCEV 'A' which we know we will expand, should we 1315 // calculate the cost of other SCEV's after expanding SCEV 'A', thus 1316 // potentially giving cost bonus to those other SCEV's? 1317 1318 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1319 int NumReplaced = 0; 1320 1321 // Transformation. 1322 for (const RewritePhi &Phi : RewritePhiSet) { 1323 PHINode *PN = Phi.PN; 1324 1325 // Only do the rewrite when the ExitValue can be expanded cheaply. 1326 // If LoopCanBeDel is true, rewrite exit value aggressively. 1327 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) 1328 continue; 1329 1330 Value *ExitVal = Rewriter.expandCodeFor( 1331 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint); 1332 1333 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal 1334 << '\n' 1335 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n"); 1336 1337 #ifndef NDEBUG 1338 // If we reuse an instruction from a loop which is neither L nor one of 1339 // its containing loops, we end up breaking LCSSA form for this loop by 1340 // creating a new use of its instruction. 1341 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1342 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1343 if (EVL != L) 1344 assert(EVL->contains(L) && "LCSSA breach detected!"); 1345 #endif 1346 1347 NumReplaced++; 1348 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1349 PN->setIncomingValue(Phi.Ith, ExitVal); 1350 1351 // If this instruction is dead now, delete it. Don't do it now to avoid 1352 // invalidating iterators. 1353 if (isInstructionTriviallyDead(Inst, TLI)) 1354 DeadInsts.push_back(Inst); 1355 1356 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1357 if (PN->getNumIncomingValues() == 1 && 1358 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1359 PN->replaceAllUsesWith(ExitVal); 1360 PN->eraseFromParent(); 1361 } 1362 } 1363 1364 // The insertion point instruction may have been deleted; clear it out 1365 // so that the rewriter doesn't trip over it later. 1366 Rewriter.clearInsertPoint(); 1367 return NumReplaced; 1368 } 1369 1370 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1371 /// \p OrigLoop. 1372 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1373 Loop *RemainderLoop, uint64_t UF) { 1374 assert(UF > 0 && "Zero unrolled factor is not supported"); 1375 assert(UnrolledLoop != RemainderLoop && 1376 "Unrolled and Remainder loops are expected to distinct"); 1377 1378 // Get number of iterations in the original scalar loop. 1379 unsigned OrigLoopInvocationWeight = 0; 1380 Optional<unsigned> OrigAverageTripCount = 1381 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1382 if (!OrigAverageTripCount) 1383 return; 1384 1385 // Calculate number of iterations in unrolled loop. 1386 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1387 // Calculate number of iterations for remainder loop. 1388 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1389 1390 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1391 OrigLoopInvocationWeight); 1392 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1393 OrigLoopInvocationWeight); 1394 } 1395 1396 /// Utility that implements appending of loops onto a worklist. 1397 /// Loops are added in preorder (analogous for reverse postorder for trees), 1398 /// and the worklist is processed LIFO. 1399 template <typename RangeT> 1400 void llvm::appendReversedLoopsToWorklist( 1401 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1402 // We use an internal worklist to build up the preorder traversal without 1403 // recursion. 1404 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1405 1406 // We walk the initial sequence of loops in reverse because we generally want 1407 // to visit defs before uses and the worklist is LIFO. 1408 for (Loop *RootL : Loops) { 1409 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1410 assert(PreOrderWorklist.empty() && 1411 "Must start with an empty preorder walk worklist."); 1412 PreOrderWorklist.push_back(RootL); 1413 do { 1414 Loop *L = PreOrderWorklist.pop_back_val(); 1415 PreOrderWorklist.append(L->begin(), L->end()); 1416 PreOrderLoops.push_back(L); 1417 } while (!PreOrderWorklist.empty()); 1418 1419 Worklist.insert(std::move(PreOrderLoops)); 1420 PreOrderLoops.clear(); 1421 } 1422 } 1423 1424 template <typename RangeT> 1425 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1426 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1427 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1428 } 1429 1430 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1431 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1432 1433 template void 1434 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1435 SmallPriorityWorklist<Loop *, 4> &Worklist); 1436 1437 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1438 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1439 appendReversedLoopsToWorklist(LI, Worklist); 1440 } 1441 1442 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1443 LoopInfo *LI, LPPassManager *LPM) { 1444 Loop &New = *LI->AllocateLoop(); 1445 if (PL) 1446 PL->addChildLoop(&New); 1447 else 1448 LI->addTopLevelLoop(&New); 1449 1450 if (LPM) 1451 LPM->addLoop(New); 1452 1453 // Add all of the blocks in L to the new loop. 1454 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1455 I != E; ++I) 1456 if (LI->getLoopFor(*I) == L) 1457 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1458 1459 // Add all of the subloops to the new loop. 1460 for (Loop *I : *L) 1461 cloneLoop(I, &New, VM, LI, LPM); 1462 1463 return &New; 1464 } 1465 1466 /// IR Values for the lower and upper bounds of a pointer evolution. We 1467 /// need to use value-handles because SCEV expansion can invalidate previously 1468 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 1469 /// a previous one. 1470 struct PointerBounds { 1471 TrackingVH<Value> Start; 1472 TrackingVH<Value> End; 1473 }; 1474 1475 /// Expand code for the lower and upper bound of the pointer group \p CG 1476 /// in \p TheLoop. \return the values for the bounds. 1477 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, 1478 Loop *TheLoop, Instruction *Loc, 1479 SCEVExpander &Exp) { 1480 LLVMContext &Ctx = Loc->getContext(); 1481 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace); 1482 1483 Value *Start = nullptr, *End = nullptr; 1484 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 1485 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 1486 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 1487 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n"); 1488 return {Start, End}; 1489 } 1490 1491 /// Turns a collection of checks into a collection of expanded upper and 1492 /// lower bounds for both pointers in the check. 1493 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> 1494 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L, 1495 Instruction *Loc, SCEVExpander &Exp) { 1496 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 1497 1498 // Here we're relying on the SCEV Expander's cache to only emit code for the 1499 // same bounds once. 1500 transform(PointerChecks, std::back_inserter(ChecksWithBounds), 1501 [&](const RuntimePointerCheck &Check) { 1502 PointerBounds First = expandBounds(Check.first, L, Loc, Exp), 1503 Second = expandBounds(Check.second, L, Loc, Exp); 1504 return std::make_pair(First, Second); 1505 }); 1506 1507 return ChecksWithBounds; 1508 } 1509 1510 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks( 1511 Instruction *Loc, Loop *TheLoop, 1512 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, 1513 SCEVExpander &Exp) { 1514 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible. 1515 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible 1516 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp); 1517 1518 LLVMContext &Ctx = Loc->getContext(); 1519 Instruction *FirstInst = nullptr; 1520 IRBuilder<> ChkBuilder(Loc); 1521 // Our instructions might fold to a constant. 1522 Value *MemoryRuntimeCheck = nullptr; 1523 1524 // FIXME: this helper is currently a duplicate of the one in 1525 // LoopVectorize.cpp. 1526 auto GetFirstInst = [](Instruction *FirstInst, Value *V, 1527 Instruction *Loc) -> Instruction * { 1528 if (FirstInst) 1529 return FirstInst; 1530 if (Instruction *I = dyn_cast<Instruction>(V)) 1531 return I->getParent() == Loc->getParent() ? I : nullptr; 1532 return nullptr; 1533 }; 1534 1535 for (const auto &Check : ExpandedChecks) { 1536 const PointerBounds &A = Check.first, &B = Check.second; 1537 // Check if two pointers (A and B) conflict where conflict is computed as: 1538 // start(A) <= end(B) && start(B) <= end(A) 1539 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 1540 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 1541 1542 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 1543 (AS1 == A.End->getType()->getPointerAddressSpace()) && 1544 "Trying to bounds check pointers with different address spaces"); 1545 1546 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1547 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1548 1549 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 1550 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 1551 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 1552 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 1553 1554 // [A|B].Start points to the first accessed byte under base [A|B]. 1555 // [A|B].End points to the last accessed byte, plus one. 1556 // There is no conflict when the intervals are disjoint: 1557 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 1558 // 1559 // bound0 = (B.Start < A.End) 1560 // bound1 = (A.Start < B.End) 1561 // IsConflict = bound0 & bound1 1562 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 1563 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc); 1564 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 1565 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc); 1566 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1567 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1568 if (MemoryRuntimeCheck) { 1569 IsConflict = 1570 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 1571 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc); 1572 } 1573 MemoryRuntimeCheck = IsConflict; 1574 } 1575 1576 if (!MemoryRuntimeCheck) 1577 return std::make_pair(nullptr, nullptr); 1578 1579 // We have to do this trickery because the IRBuilder might fold the check to a 1580 // constant expression in which case there is no Instruction anchored in a 1581 // the block. 1582 Instruction *Check = 1583 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx)); 1584 ChkBuilder.Insert(Check, "memcheck.conflict"); 1585 FirstInst = GetFirstInst(FirstInst, Check, Loc); 1586 return std::make_pair(FirstInst, Check); 1587 } 1588 1589 Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L, 1590 unsigned MSSAThreshold, 1591 MemorySSA &MSSA, 1592 AAResults &AA) { 1593 auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator()); 1594 if (!TI || !TI->isConditional()) 1595 return {}; 1596 1597 auto *CondI = dyn_cast<CmpInst>(TI->getCondition()); 1598 // The case with the condition outside the loop should already be handled 1599 // earlier. 1600 if (!CondI || !L.contains(CondI)) 1601 return {}; 1602 1603 SmallVector<Instruction *> InstToDuplicate; 1604 InstToDuplicate.push_back(CondI); 1605 1606 SmallVector<Value *, 4> WorkList; 1607 WorkList.append(CondI->op_begin(), CondI->op_end()); 1608 1609 SmallVector<MemoryAccess *, 4> AccessesToCheck; 1610 SmallVector<MemoryLocation, 4> AccessedLocs; 1611 while (!WorkList.empty()) { 1612 Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val()); 1613 if (!I || !L.contains(I)) 1614 continue; 1615 1616 // TODO: support additional instructions. 1617 if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I)) 1618 return {}; 1619 1620 // Do not duplicate volatile and atomic loads. 1621 if (auto *LI = dyn_cast<LoadInst>(I)) 1622 if (LI->isVolatile() || LI->isAtomic()) 1623 return {}; 1624 1625 InstToDuplicate.push_back(I); 1626 if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) { 1627 if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) { 1628 // Queue the defining access to check for alias checks. 1629 AccessesToCheck.push_back(MemUse->getDefiningAccess()); 1630 AccessedLocs.push_back(MemoryLocation::get(I)); 1631 } else { 1632 // MemoryDefs may clobber the location or may be atomic memory 1633 // operations. Bail out. 1634 return {}; 1635 } 1636 } 1637 WorkList.append(I->op_begin(), I->op_end()); 1638 } 1639 1640 if (InstToDuplicate.empty()) 1641 return {}; 1642 1643 SmallVector<BasicBlock *, 4> ExitingBlocks; 1644 L.getExitingBlocks(ExitingBlocks); 1645 auto HasNoClobbersOnPath = 1646 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate, 1647 MSSAThreshold](BasicBlock *Succ, BasicBlock *Header, 1648 SmallVector<MemoryAccess *, 4> AccessesToCheck) 1649 -> Optional<IVConditionInfo> { 1650 IVConditionInfo Info; 1651 // First, collect all blocks in the loop that are on a patch from Succ 1652 // to the header. 1653 SmallVector<BasicBlock *, 4> WorkList; 1654 WorkList.push_back(Succ); 1655 WorkList.push_back(Header); 1656 SmallPtrSet<BasicBlock *, 4> Seen; 1657 Seen.insert(Header); 1658 Info.PathIsNoop &= 1659 all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1660 1661 while (!WorkList.empty()) { 1662 BasicBlock *Current = WorkList.pop_back_val(); 1663 if (!L.contains(Current)) 1664 continue; 1665 const auto &SeenIns = Seen.insert(Current); 1666 if (!SeenIns.second) 1667 continue; 1668 1669 Info.PathIsNoop &= all_of( 1670 *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); }); 1671 WorkList.append(succ_begin(Current), succ_end(Current)); 1672 } 1673 1674 // Require at least 2 blocks on a path through the loop. This skips 1675 // paths that directly exit the loop. 1676 if (Seen.size() < 2) 1677 return {}; 1678 1679 // Next, check if there are any MemoryDefs that are on the path through 1680 // the loop (in the Seen set) and they may-alias any of the locations in 1681 // AccessedLocs. If that is the case, they may modify the condition and 1682 // partial unswitching is not possible. 1683 SmallPtrSet<MemoryAccess *, 4> SeenAccesses; 1684 while (!AccessesToCheck.empty()) { 1685 MemoryAccess *Current = AccessesToCheck.pop_back_val(); 1686 auto SeenI = SeenAccesses.insert(Current); 1687 if (!SeenI.second || !Seen.contains(Current->getBlock())) 1688 continue; 1689 1690 // Bail out if exceeded the threshold. 1691 if (SeenAccesses.size() >= MSSAThreshold) 1692 return {}; 1693 1694 // MemoryUse are read-only accesses. 1695 if (isa<MemoryUse>(Current)) 1696 continue; 1697 1698 // For a MemoryDef, check if is aliases any of the location feeding 1699 // the original condition. 1700 if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) { 1701 if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) { 1702 return isModSet( 1703 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc)); 1704 })) 1705 return {}; 1706 } 1707 1708 for (Use &U : Current->uses()) 1709 AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser())); 1710 } 1711 1712 // We could also allow loops with known trip counts without mustprogress, 1713 // but ScalarEvolution may not be available. 1714 Info.PathIsNoop &= isMustProgress(&L); 1715 1716 // If the path is considered a no-op so far, check if it reaches a 1717 // single exit block without any phis. This ensures no values from the 1718 // loop are used outside of the loop. 1719 if (Info.PathIsNoop) { 1720 for (auto *Exiting : ExitingBlocks) { 1721 if (!Seen.contains(Exiting)) 1722 continue; 1723 for (auto *Succ : successors(Exiting)) { 1724 if (L.contains(Succ)) 1725 continue; 1726 1727 Info.PathIsNoop &= llvm::empty(Succ->phis()) && 1728 (!Info.ExitForPath || Info.ExitForPath == Succ); 1729 if (!Info.PathIsNoop) 1730 break; 1731 assert((!Info.ExitForPath || Info.ExitForPath == Succ) && 1732 "cannot have multiple exit blocks"); 1733 Info.ExitForPath = Succ; 1734 } 1735 } 1736 } 1737 if (!Info.ExitForPath) 1738 Info.PathIsNoop = false; 1739 1740 Info.InstToDuplicate = InstToDuplicate; 1741 return Info; 1742 }; 1743 1744 // If we branch to the same successor, partial unswitching will not be 1745 // beneficial. 1746 if (TI->getSuccessor(0) == TI->getSuccessor(1)) 1747 return {}; 1748 1749 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(), 1750 AccessesToCheck)) { 1751 Info->KnownValue = ConstantInt::getTrue(TI->getContext()); 1752 return Info; 1753 } 1754 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(), 1755 AccessesToCheck)) { 1756 Info->KnownValue = ConstantInt::getFalse(TI->getContext()); 1757 return Info; 1758 } 1759 1760 return {}; 1761 } 1762