1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/PriorityWorklist.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DomTreeUpdater.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/LoopPass.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/MustExecute.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DIBuilder.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/ValueHandle.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 53 using namespace llvm; 54 using namespace llvm::PatternMatch; 55 56 static cl::opt<bool> ForceReductionIntrinsic( 57 "force-reduction-intrinsics", cl::Hidden, 58 cl::desc("Force creating reduction intrinsics for testing."), 59 cl::init(false)); 60 61 #define DEBUG_TYPE "loop-utils" 62 63 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 64 static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; 65 66 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 67 MemorySSAUpdater *MSSAU, 68 bool PreserveLCSSA) { 69 bool Changed = false; 70 71 // We re-use a vector for the in-loop predecesosrs. 72 SmallVector<BasicBlock *, 4> InLoopPredecessors; 73 74 auto RewriteExit = [&](BasicBlock *BB) { 75 assert(InLoopPredecessors.empty() && 76 "Must start with an empty predecessors list!"); 77 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 78 79 // See if there are any non-loop predecessors of this exit block and 80 // keep track of the in-loop predecessors. 81 bool IsDedicatedExit = true; 82 for (auto *PredBB : predecessors(BB)) 83 if (L->contains(PredBB)) { 84 if (isa<IndirectBrInst>(PredBB->getTerminator())) 85 // We cannot rewrite exiting edges from an indirectbr. 86 return false; 87 if (isa<CallBrInst>(PredBB->getTerminator())) 88 // We cannot rewrite exiting edges from a callbr. 89 return false; 90 91 InLoopPredecessors.push_back(PredBB); 92 } else { 93 IsDedicatedExit = false; 94 } 95 96 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 97 98 // Nothing to do if this is already a dedicated exit. 99 if (IsDedicatedExit) 100 return false; 101 102 auto *NewExitBB = SplitBlockPredecessors( 103 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 104 105 if (!NewExitBB) 106 LLVM_DEBUG( 107 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 108 << *L << "\n"); 109 else 110 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 111 << NewExitBB->getName() << "\n"); 112 return true; 113 }; 114 115 // Walk the exit blocks directly rather than building up a data structure for 116 // them, but only visit each one once. 117 SmallPtrSet<BasicBlock *, 4> Visited; 118 for (auto *BB : L->blocks()) 119 for (auto *SuccBB : successors(BB)) { 120 // We're looking for exit blocks so skip in-loop successors. 121 if (L->contains(SuccBB)) 122 continue; 123 124 // Visit each exit block exactly once. 125 if (!Visited.insert(SuccBB).second) 126 continue; 127 128 Changed |= RewriteExit(SuccBB); 129 } 130 131 return Changed; 132 } 133 134 /// Returns the instructions that use values defined in the loop. 135 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 136 SmallVector<Instruction *, 8> UsedOutside; 137 138 for (auto *Block : L->getBlocks()) 139 // FIXME: I believe that this could use copy_if if the Inst reference could 140 // be adapted into a pointer. 141 for (auto &Inst : *Block) { 142 auto Users = Inst.users(); 143 if (any_of(Users, [&](User *U) { 144 auto *Use = cast<Instruction>(U); 145 return !L->contains(Use->getParent()); 146 })) 147 UsedOutside.push_back(&Inst); 148 } 149 150 return UsedOutside; 151 } 152 153 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 154 // By definition, all loop passes need the LoopInfo analysis and the 155 // Dominator tree it depends on. Because they all participate in the loop 156 // pass manager, they must also preserve these. 157 AU.addRequired<DominatorTreeWrapperPass>(); 158 AU.addPreserved<DominatorTreeWrapperPass>(); 159 AU.addRequired<LoopInfoWrapperPass>(); 160 AU.addPreserved<LoopInfoWrapperPass>(); 161 162 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 163 // here because users shouldn't directly get them from this header. 164 extern char &LoopSimplifyID; 165 extern char &LCSSAID; 166 AU.addRequiredID(LoopSimplifyID); 167 AU.addPreservedID(LoopSimplifyID); 168 AU.addRequiredID(LCSSAID); 169 AU.addPreservedID(LCSSAID); 170 // This is used in the LPPassManager to perform LCSSA verification on passes 171 // which preserve lcssa form 172 AU.addRequired<LCSSAVerificationPass>(); 173 AU.addPreserved<LCSSAVerificationPass>(); 174 175 // Loop passes are designed to run inside of a loop pass manager which means 176 // that any function analyses they require must be required by the first loop 177 // pass in the manager (so that it is computed before the loop pass manager 178 // runs) and preserved by all loop pasess in the manager. To make this 179 // reasonably robust, the set needed for most loop passes is maintained here. 180 // If your loop pass requires an analysis not listed here, you will need to 181 // carefully audit the loop pass manager nesting structure that results. 182 AU.addRequired<AAResultsWrapperPass>(); 183 AU.addPreserved<AAResultsWrapperPass>(); 184 AU.addPreserved<BasicAAWrapperPass>(); 185 AU.addPreserved<GlobalsAAWrapperPass>(); 186 AU.addPreserved<SCEVAAWrapperPass>(); 187 AU.addRequired<ScalarEvolutionWrapperPass>(); 188 AU.addPreserved<ScalarEvolutionWrapperPass>(); 189 // FIXME: When all loop passes preserve MemorySSA, it can be required and 190 // preserved here instead of the individual handling in each pass. 191 } 192 193 /// Manually defined generic "LoopPass" dependency initialization. This is used 194 /// to initialize the exact set of passes from above in \c 195 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 196 /// with: 197 /// 198 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 199 /// 200 /// As-if "LoopPass" were a pass. 201 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 202 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 204 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 205 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 206 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 207 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 208 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 209 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 210 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 211 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 212 } 213 214 /// Create MDNode for input string. 215 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 216 LLVMContext &Context = TheLoop->getHeader()->getContext(); 217 Metadata *MDs[] = { 218 MDString::get(Context, Name), 219 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 220 return MDNode::get(Context, MDs); 221 } 222 223 /// Set input string into loop metadata by keeping other values intact. 224 /// If the string is already in loop metadata update value if it is 225 /// different. 226 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 227 unsigned V) { 228 SmallVector<Metadata *, 4> MDs(1); 229 // If the loop already has metadata, retain it. 230 MDNode *LoopID = TheLoop->getLoopID(); 231 if (LoopID) { 232 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 233 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 234 // If it is of form key = value, try to parse it. 235 if (Node->getNumOperands() == 2) { 236 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 237 if (S && S->getString().equals(StringMD)) { 238 ConstantInt *IntMD = 239 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 240 if (IntMD && IntMD->getSExtValue() == V) 241 // It is already in place. Do nothing. 242 return; 243 // We need to update the value, so just skip it here and it will 244 // be added after copying other existed nodes. 245 continue; 246 } 247 } 248 MDs.push_back(Node); 249 } 250 } 251 // Add new metadata. 252 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 253 // Replace current metadata node with new one. 254 LLVMContext &Context = TheLoop->getHeader()->getContext(); 255 MDNode *NewLoopID = MDNode::get(Context, MDs); 256 // Set operand 0 to refer to the loop id itself. 257 NewLoopID->replaceOperandWith(0, NewLoopID); 258 TheLoop->setLoopID(NewLoopID); 259 } 260 261 /// Find string metadata for loop 262 /// 263 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 264 /// operand or null otherwise. If the string metadata is not found return 265 /// Optional's not-a-value. 266 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 267 StringRef Name) { 268 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 269 if (!MD) 270 return None; 271 switch (MD->getNumOperands()) { 272 case 1: 273 return nullptr; 274 case 2: 275 return &MD->getOperand(1); 276 default: 277 llvm_unreachable("loop metadata has 0 or 1 operand"); 278 } 279 } 280 281 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 282 StringRef Name) { 283 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 284 if (!MD) 285 return None; 286 switch (MD->getNumOperands()) { 287 case 1: 288 // When the value is absent it is interpreted as 'attribute set'. 289 return true; 290 case 2: 291 if (ConstantInt *IntMD = 292 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 293 return IntMD->getZExtValue(); 294 return true; 295 } 296 llvm_unreachable("unexpected number of options"); 297 } 298 299 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 300 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 301 } 302 303 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 304 StringRef Name) { 305 const MDOperand *AttrMD = 306 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 307 if (!AttrMD) 308 return None; 309 310 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 311 if (!IntMD) 312 return None; 313 314 return IntMD->getSExtValue(); 315 } 316 317 Optional<MDNode *> llvm::makeFollowupLoopID( 318 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 319 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 320 if (!OrigLoopID) { 321 if (AlwaysNew) 322 return nullptr; 323 return None; 324 } 325 326 assert(OrigLoopID->getOperand(0) == OrigLoopID); 327 328 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 329 bool InheritSomeAttrs = 330 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 331 SmallVector<Metadata *, 8> MDs; 332 MDs.push_back(nullptr); 333 334 bool Changed = false; 335 if (InheritAllAttrs || InheritSomeAttrs) { 336 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 337 MDNode *Op = cast<MDNode>(Existing.get()); 338 339 auto InheritThisAttribute = [InheritSomeAttrs, 340 InheritOptionsExceptPrefix](MDNode *Op) { 341 if (!InheritSomeAttrs) 342 return false; 343 344 // Skip malformatted attribute metadata nodes. 345 if (Op->getNumOperands() == 0) 346 return true; 347 Metadata *NameMD = Op->getOperand(0).get(); 348 if (!isa<MDString>(NameMD)) 349 return true; 350 StringRef AttrName = cast<MDString>(NameMD)->getString(); 351 352 // Do not inherit excluded attributes. 353 return !AttrName.startswith(InheritOptionsExceptPrefix); 354 }; 355 356 if (InheritThisAttribute(Op)) 357 MDs.push_back(Op); 358 else 359 Changed = true; 360 } 361 } else { 362 // Modified if we dropped at least one attribute. 363 Changed = OrigLoopID->getNumOperands() > 1; 364 } 365 366 bool HasAnyFollowup = false; 367 for (StringRef OptionName : FollowupOptions) { 368 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 369 if (!FollowupNode) 370 continue; 371 372 HasAnyFollowup = true; 373 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 374 MDs.push_back(Option.get()); 375 Changed = true; 376 } 377 } 378 379 // Attributes of the followup loop not specified explicity, so signal to the 380 // transformation pass to add suitable attributes. 381 if (!AlwaysNew && !HasAnyFollowup) 382 return None; 383 384 // If no attributes were added or remove, the previous loop Id can be reused. 385 if (!AlwaysNew && !Changed) 386 return OrigLoopID; 387 388 // No attributes is equivalent to having no !llvm.loop metadata at all. 389 if (MDs.size() == 1) 390 return nullptr; 391 392 // Build the new loop ID. 393 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 394 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 395 return FollowupLoopID; 396 } 397 398 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 399 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 400 } 401 402 bool llvm::hasDisableLICMTransformsHint(const Loop *L) { 403 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); 404 } 405 406 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 407 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 408 return TM_SuppressedByUser; 409 410 Optional<int> Count = 411 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 412 if (Count.hasValue()) 413 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 414 415 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 416 return TM_ForcedByUser; 417 418 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 419 return TM_ForcedByUser; 420 421 if (hasDisableAllTransformsHint(L)) 422 return TM_Disable; 423 424 return TM_Unspecified; 425 } 426 427 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 428 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 429 return TM_SuppressedByUser; 430 431 Optional<int> Count = 432 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 433 if (Count.hasValue()) 434 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 435 436 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 437 return TM_ForcedByUser; 438 439 if (hasDisableAllTransformsHint(L)) 440 return TM_Disable; 441 442 return TM_Unspecified; 443 } 444 445 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 446 Optional<bool> Enable = 447 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 448 449 if (Enable == false) 450 return TM_SuppressedByUser; 451 452 Optional<int> VectorizeWidth = 453 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 454 Optional<int> InterleaveCount = 455 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 456 457 // 'Forcing' vector width and interleave count to one effectively disables 458 // this tranformation. 459 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 460 return TM_SuppressedByUser; 461 462 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 463 return TM_Disable; 464 465 if (Enable == true) 466 return TM_ForcedByUser; 467 468 if (VectorizeWidth == 1 && InterleaveCount == 1) 469 return TM_Disable; 470 471 if (VectorizeWidth > 1 || InterleaveCount > 1) 472 return TM_Enable; 473 474 if (hasDisableAllTransformsHint(L)) 475 return TM_Disable; 476 477 return TM_Unspecified; 478 } 479 480 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 481 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 482 return TM_ForcedByUser; 483 484 if (hasDisableAllTransformsHint(L)) 485 return TM_Disable; 486 487 return TM_Unspecified; 488 } 489 490 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 491 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 492 return TM_SuppressedByUser; 493 494 if (hasDisableAllTransformsHint(L)) 495 return TM_Disable; 496 497 return TM_Unspecified; 498 } 499 500 /// Does a BFS from a given node to all of its children inside a given loop. 501 /// The returned vector of nodes includes the starting point. 502 SmallVector<DomTreeNode *, 16> 503 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 504 SmallVector<DomTreeNode *, 16> Worklist; 505 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 506 // Only include subregions in the top level loop. 507 BasicBlock *BB = DTN->getBlock(); 508 if (CurLoop->contains(BB)) 509 Worklist.push_back(DTN); 510 }; 511 512 AddRegionToWorklist(N); 513 514 for (size_t I = 0; I < Worklist.size(); I++) 515 for (DomTreeNode *Child : Worklist[I]->getChildren()) 516 AddRegionToWorklist(Child); 517 518 return Worklist; 519 } 520 521 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, 522 LoopInfo *LI, MemorySSA *MSSA) { 523 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 524 auto *Preheader = L->getLoopPreheader(); 525 assert(Preheader && "Preheader should exist!"); 526 527 std::unique_ptr<MemorySSAUpdater> MSSAU; 528 if (MSSA) 529 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 530 531 // Now that we know the removal is safe, remove the loop by changing the 532 // branch from the preheader to go to the single exit block. 533 // 534 // Because we're deleting a large chunk of code at once, the sequence in which 535 // we remove things is very important to avoid invalidation issues. 536 537 // Tell ScalarEvolution that the loop is deleted. Do this before 538 // deleting the loop so that ScalarEvolution can look at the loop 539 // to determine what it needs to clean up. 540 if (SE) 541 SE->forgetLoop(L); 542 543 auto *ExitBlock = L->getUniqueExitBlock(); 544 assert(ExitBlock && "Should have a unique exit block!"); 545 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 546 547 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 548 assert(OldBr && "Preheader must end with a branch"); 549 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 550 // Connect the preheader to the exit block. Keep the old edge to the header 551 // around to perform the dominator tree update in two separate steps 552 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 553 // preheader -> header. 554 // 555 // 556 // 0. Preheader 1. Preheader 2. Preheader 557 // | | | | 558 // V | V | 559 // Header <--\ | Header <--\ | Header <--\ 560 // | | | | | | | | | | | 561 // | V | | | V | | | V | 562 // | Body --/ | | Body --/ | | Body --/ 563 // V V V V V 564 // Exit Exit Exit 565 // 566 // By doing this is two separate steps we can perform the dominator tree 567 // update without using the batch update API. 568 // 569 // Even when the loop is never executed, we cannot remove the edge from the 570 // source block to the exit block. Consider the case where the unexecuted loop 571 // branches back to an outer loop. If we deleted the loop and removed the edge 572 // coming to this inner loop, this will break the outer loop structure (by 573 // deleting the backedge of the outer loop). If the outer loop is indeed a 574 // non-loop, it will be deleted in a future iteration of loop deletion pass. 575 IRBuilder<> Builder(OldBr); 576 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 577 // Remove the old branch. The conditional branch becomes a new terminator. 578 OldBr->eraseFromParent(); 579 580 // Rewrite phis in the exit block to get their inputs from the Preheader 581 // instead of the exiting block. 582 for (PHINode &P : ExitBlock->phis()) { 583 // Set the zero'th element of Phi to be from the preheader and remove all 584 // other incoming values. Given the loop has dedicated exits, all other 585 // incoming values must be from the exiting blocks. 586 int PredIndex = 0; 587 P.setIncomingBlock(PredIndex, Preheader); 588 // Removes all incoming values from all other exiting blocks (including 589 // duplicate values from an exiting block). 590 // Nuke all entries except the zero'th entry which is the preheader entry. 591 // NOTE! We need to remove Incoming Values in the reverse order as done 592 // below, to keep the indices valid for deletion (removeIncomingValues 593 // updates getNumIncomingValues and shifts all values down into the operand 594 // being deleted). 595 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 596 P.removeIncomingValue(e - i, false); 597 598 assert((P.getNumIncomingValues() == 1 && 599 P.getIncomingBlock(PredIndex) == Preheader) && 600 "Should have exactly one value and that's from the preheader!"); 601 } 602 603 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 604 if (DT) { 605 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 606 if (MSSA) { 607 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT); 608 if (VerifyMemorySSA) 609 MSSA->verifyMemorySSA(); 610 } 611 } 612 613 // Disconnect the loop body by branching directly to its exit. 614 Builder.SetInsertPoint(Preheader->getTerminator()); 615 Builder.CreateBr(ExitBlock); 616 // Remove the old branch. 617 Preheader->getTerminator()->eraseFromParent(); 618 619 if (DT) { 620 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}); 621 if (MSSA) { 622 MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}}, 623 *DT); 624 if (VerifyMemorySSA) 625 MSSA->verifyMemorySSA(); 626 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(), 627 L->block_end()); 628 MSSAU->removeBlocks(DeadBlockSet); 629 } 630 } 631 632 // Use a map to unique and a vector to guarantee deterministic ordering. 633 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 634 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 635 636 // Given LCSSA form is satisfied, we should not have users of instructions 637 // within the dead loop outside of the loop. However, LCSSA doesn't take 638 // unreachable uses into account. We handle them here. 639 // We could do it after drop all references (in this case all users in the 640 // loop will be already eliminated and we have less work to do but according 641 // to API doc of User::dropAllReferences only valid operation after dropping 642 // references, is deletion. So let's substitute all usages of 643 // instruction from the loop with undef value of corresponding type first. 644 for (auto *Block : L->blocks()) 645 for (Instruction &I : *Block) { 646 auto *Undef = UndefValue::get(I.getType()); 647 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 648 Use &U = *UI; 649 ++UI; 650 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 651 if (L->contains(Usr->getParent())) 652 continue; 653 // If we have a DT then we can check that uses outside a loop only in 654 // unreachable block. 655 if (DT) 656 assert(!DT->isReachableFromEntry(U) && 657 "Unexpected user in reachable block"); 658 U.set(Undef); 659 } 660 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 661 if (!DVI) 662 continue; 663 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 664 if (Key != DeadDebugSet.end()) 665 continue; 666 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 667 DeadDebugInst.push_back(DVI); 668 } 669 670 // After the loop has been deleted all the values defined and modified 671 // inside the loop are going to be unavailable. 672 // Since debug values in the loop have been deleted, inserting an undef 673 // dbg.value truncates the range of any dbg.value before the loop where the 674 // loop used to be. This is particularly important for constant values. 675 DIBuilder DIB(*ExitBlock->getModule()); 676 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 677 assert(InsertDbgValueBefore && 678 "There should be a non-PHI instruction in exit block, else these " 679 "instructions will have no parent."); 680 for (auto *DVI : DeadDebugInst) 681 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 682 DVI->getVariable(), DVI->getExpression(), 683 DVI->getDebugLoc(), InsertDbgValueBefore); 684 685 // Remove the block from the reference counting scheme, so that we can 686 // delete it freely later. 687 for (auto *Block : L->blocks()) 688 Block->dropAllReferences(); 689 690 if (MSSA && VerifyMemorySSA) 691 MSSA->verifyMemorySSA(); 692 693 if (LI) { 694 // Erase the instructions and the blocks without having to worry 695 // about ordering because we already dropped the references. 696 // NOTE: This iteration is safe because erasing the block does not remove 697 // its entry from the loop's block list. We do that in the next section. 698 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 699 LpI != LpE; ++LpI) 700 (*LpI)->eraseFromParent(); 701 702 // Finally, the blocks from loopinfo. This has to happen late because 703 // otherwise our loop iterators won't work. 704 705 SmallPtrSet<BasicBlock *, 8> blocks; 706 blocks.insert(L->block_begin(), L->block_end()); 707 for (BasicBlock *BB : blocks) 708 LI->removeBlock(BB); 709 710 // The last step is to update LoopInfo now that we've eliminated this loop. 711 // Note: LoopInfo::erase remove the given loop and relink its subloops with 712 // its parent. While removeLoop/removeChildLoop remove the given loop but 713 // not relink its subloops, which is what we want. 714 if (Loop *ParentLoop = L->getParentLoop()) { 715 Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L); 716 assert(I != ParentLoop->end() && "Couldn't find loop"); 717 ParentLoop->removeChildLoop(I); 718 } else { 719 Loop::iterator I = find(LI->begin(), LI->end(), L); 720 assert(I != LI->end() && "Couldn't find loop"); 721 LI->removeLoop(I); 722 } 723 LI->destroy(L); 724 } 725 } 726 727 /// Checks if \p L has single exit through latch block except possibly 728 /// "deoptimizing" exits. Returns branch instruction terminating the loop 729 /// latch if above check is successful, nullptr otherwise. 730 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) { 731 BasicBlock *Latch = L->getLoopLatch(); 732 if (!Latch) 733 return nullptr; 734 735 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 736 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 737 return nullptr; 738 739 assert((LatchBR->getSuccessor(0) == L->getHeader() || 740 LatchBR->getSuccessor(1) == L->getHeader()) && 741 "At least one edge out of the latch must go to the header"); 742 743 SmallVector<BasicBlock *, 4> ExitBlocks; 744 L->getUniqueNonLatchExitBlocks(ExitBlocks); 745 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 746 return !EB->getTerminatingDeoptimizeCall(); 747 })) 748 return nullptr; 749 750 return LatchBR; 751 } 752 753 Optional<unsigned> 754 llvm::getLoopEstimatedTripCount(Loop *L, 755 unsigned *EstimatedLoopInvocationWeight) { 756 // Support loops with an exiting latch and other existing exists only 757 // deoptimize. 758 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 759 if (!LatchBranch) 760 return None; 761 762 // To estimate the number of times the loop body was executed, we want to 763 // know the number of times the backedge was taken, vs. the number of times 764 // we exited the loop. 765 uint64_t BackedgeTakenWeight, LatchExitWeight; 766 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) 767 return None; 768 769 if (LatchBranch->getSuccessor(0) != L->getHeader()) 770 std::swap(BackedgeTakenWeight, LatchExitWeight); 771 772 if (!LatchExitWeight) 773 return None; 774 775 if (EstimatedLoopInvocationWeight) 776 *EstimatedLoopInvocationWeight = LatchExitWeight; 777 778 // Estimated backedge taken count is a ratio of the backedge taken weight by 779 // the weight of the edge exiting the loop, rounded to nearest. 780 uint64_t BackedgeTakenCount = 781 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); 782 // Estimated trip count is one plus estimated backedge taken count. 783 return BackedgeTakenCount + 1; 784 } 785 786 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, 787 unsigned EstimatedloopInvocationWeight) { 788 // Support loops with an exiting latch and other existing exists only 789 // deoptimize. 790 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L); 791 if (!LatchBranch) 792 return false; 793 794 // Calculate taken and exit weights. 795 unsigned LatchExitWeight = 0; 796 unsigned BackedgeTakenWeight = 0; 797 798 if (EstimatedTripCount > 0) { 799 LatchExitWeight = EstimatedloopInvocationWeight; 800 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight; 801 } 802 803 // Make a swap if back edge is taken when condition is "false". 804 if (LatchBranch->getSuccessor(0) != L->getHeader()) 805 std::swap(BackedgeTakenWeight, LatchExitWeight); 806 807 MDBuilder MDB(LatchBranch->getContext()); 808 809 // Set/Update profile metadata. 810 LatchBranch->setMetadata( 811 LLVMContext::MD_prof, 812 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight)); 813 814 return true; 815 } 816 817 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 818 ScalarEvolution &SE) { 819 Loop *OuterL = InnerLoop->getParentLoop(); 820 if (!OuterL) 821 return true; 822 823 // Get the backedge taken count for the inner loop 824 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 825 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 826 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 827 !InnerLoopBECountSC->getType()->isIntegerTy()) 828 return false; 829 830 // Get whether count is invariant to the outer loop 831 ScalarEvolution::LoopDisposition LD = 832 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 833 if (LD != ScalarEvolution::LoopInvariant) 834 return false; 835 836 return true; 837 } 838 839 Value *llvm::createMinMaxOp(IRBuilderBase &Builder, 840 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 841 Value *Left, Value *Right) { 842 CmpInst::Predicate P = CmpInst::ICMP_NE; 843 switch (RK) { 844 default: 845 llvm_unreachable("Unknown min/max recurrence kind"); 846 case RecurrenceDescriptor::MRK_UIntMin: 847 P = CmpInst::ICMP_ULT; 848 break; 849 case RecurrenceDescriptor::MRK_UIntMax: 850 P = CmpInst::ICMP_UGT; 851 break; 852 case RecurrenceDescriptor::MRK_SIntMin: 853 P = CmpInst::ICMP_SLT; 854 break; 855 case RecurrenceDescriptor::MRK_SIntMax: 856 P = CmpInst::ICMP_SGT; 857 break; 858 case RecurrenceDescriptor::MRK_FloatMin: 859 P = CmpInst::FCMP_OLT; 860 break; 861 case RecurrenceDescriptor::MRK_FloatMax: 862 P = CmpInst::FCMP_OGT; 863 break; 864 } 865 866 // We only match FP sequences that are 'fast', so we can unconditionally 867 // set it on any generated instructions. 868 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 869 FastMathFlags FMF; 870 FMF.setFast(); 871 Builder.setFastMathFlags(FMF); 872 873 Value *Cmp; 874 if (RK == RecurrenceDescriptor::MRK_FloatMin || 875 RK == RecurrenceDescriptor::MRK_FloatMax) 876 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 877 else 878 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 879 880 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 881 return Select; 882 } 883 884 // Helper to generate an ordered reduction. 885 Value * 886 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 887 unsigned Op, 888 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 889 ArrayRef<Value *> RedOps) { 890 unsigned VF = cast<VectorType>(Src->getType())->getNumElements(); 891 892 // Extract and apply reduction ops in ascending order: 893 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 894 Value *Result = Acc; 895 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 896 Value *Ext = 897 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 898 899 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 900 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 901 "bin.rdx"); 902 } else { 903 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 904 "Invalid min/max"); 905 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 906 } 907 908 if (!RedOps.empty()) 909 propagateIRFlags(Result, RedOps); 910 } 911 912 return Result; 913 } 914 915 // Helper to generate a log2 shuffle reduction. 916 Value * 917 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, 918 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 919 ArrayRef<Value *> RedOps) { 920 unsigned VF = cast<VectorType>(Src->getType())->getNumElements(); 921 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 922 // and vector ops, reducing the set of values being computed by half each 923 // round. 924 assert(isPowerOf2_32(VF) && 925 "Reduction emission only supported for pow2 vectors!"); 926 Value *TmpVec = Src; 927 SmallVector<int, 32> ShuffleMask(VF); 928 for (unsigned i = VF; i != 1; i >>= 1) { 929 // Move the upper half of the vector to the lower half. 930 for (unsigned j = 0; j != i / 2; ++j) 931 ShuffleMask[j] = i / 2 + j; 932 933 // Fill the rest of the mask with undef. 934 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1); 935 936 Value *Shuf = Builder.CreateShuffleVector( 937 TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf"); 938 939 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 940 // The builder propagates its fast-math-flags setting. 941 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 942 "bin.rdx"); 943 } else { 944 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 945 "Invalid min/max"); 946 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 947 } 948 if (!RedOps.empty()) 949 propagateIRFlags(TmpVec, RedOps); 950 951 // We may compute the reassociated scalar ops in a way that does not 952 // preserve nsw/nuw etc. Conservatively, drop those flags. 953 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec)) 954 ReductionInst->dropPoisonGeneratingFlags(); 955 } 956 // The result is in the first element of the vector. 957 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 958 } 959 960 /// Create a simple vector reduction specified by an opcode and some 961 /// flags (if generating min/max reductions). 962 Value *llvm::createSimpleTargetReduction( 963 IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 964 Value *Src, TargetTransformInfo::ReductionFlags Flags, 965 ArrayRef<Value *> RedOps) { 966 auto *SrcVTy = cast<VectorType>(Src->getType()); 967 968 std::function<Value *()> BuildFunc; 969 using RD = RecurrenceDescriptor; 970 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 971 972 switch (Opcode) { 973 case Instruction::Add: 974 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 975 break; 976 case Instruction::Mul: 977 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 978 break; 979 case Instruction::And: 980 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 981 break; 982 case Instruction::Or: 983 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 984 break; 985 case Instruction::Xor: 986 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 987 break; 988 case Instruction::FAdd: 989 BuildFunc = [&]() { 990 auto Rdx = Builder.CreateFAddReduce( 991 Constant::getNullValue(SrcVTy->getElementType()), Src); 992 return Rdx; 993 }; 994 break; 995 case Instruction::FMul: 996 BuildFunc = [&]() { 997 Type *Ty = SrcVTy->getElementType(); 998 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 999 return Rdx; 1000 }; 1001 break; 1002 case Instruction::ICmp: 1003 if (Flags.IsMaxOp) { 1004 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 1005 BuildFunc = [&]() { 1006 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 1007 }; 1008 } else { 1009 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 1010 BuildFunc = [&]() { 1011 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 1012 }; 1013 } 1014 break; 1015 case Instruction::FCmp: 1016 if (Flags.IsMaxOp) { 1017 MinMaxKind = RD::MRK_FloatMax; 1018 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 1019 } else { 1020 MinMaxKind = RD::MRK_FloatMin; 1021 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 1022 } 1023 break; 1024 default: 1025 llvm_unreachable("Unhandled opcode"); 1026 break; 1027 } 1028 if (ForceReductionIntrinsic || 1029 TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 1030 return BuildFunc(); 1031 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 1032 } 1033 1034 /// Create a vector reduction using a given recurrence descriptor. 1035 Value *llvm::createTargetReduction(IRBuilderBase &B, 1036 const TargetTransformInfo *TTI, 1037 RecurrenceDescriptor &Desc, Value *Src, 1038 bool NoNaN) { 1039 // TODO: Support in-order reductions based on the recurrence descriptor. 1040 using RD = RecurrenceDescriptor; 1041 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 1042 TargetTransformInfo::ReductionFlags Flags; 1043 Flags.NoNaN = NoNaN; 1044 1045 // All ops in the reduction inherit fast-math-flags from the recurrence 1046 // descriptor. 1047 IRBuilderBase::FastMathFlagGuard FMFGuard(B); 1048 B.setFastMathFlags(Desc.getFastMathFlags()); 1049 1050 switch (RecKind) { 1051 case RD::RK_FloatAdd: 1052 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 1053 case RD::RK_FloatMult: 1054 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 1055 case RD::RK_IntegerAdd: 1056 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 1057 case RD::RK_IntegerMult: 1058 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 1059 case RD::RK_IntegerAnd: 1060 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 1061 case RD::RK_IntegerOr: 1062 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 1063 case RD::RK_IntegerXor: 1064 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 1065 case RD::RK_IntegerMinMax: { 1066 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 1067 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 1068 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 1069 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 1070 } 1071 case RD::RK_FloatMinMax: { 1072 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 1073 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 1074 } 1075 default: 1076 llvm_unreachable("Unhandled RecKind"); 1077 } 1078 } 1079 1080 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 1081 auto *VecOp = dyn_cast<Instruction>(I); 1082 if (!VecOp) 1083 return; 1084 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 1085 : dyn_cast<Instruction>(OpValue); 1086 if (!Intersection) 1087 return; 1088 const unsigned Opcode = Intersection->getOpcode(); 1089 VecOp->copyIRFlags(Intersection); 1090 for (auto *V : VL) { 1091 auto *Instr = dyn_cast<Instruction>(V); 1092 if (!Instr) 1093 continue; 1094 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 1095 VecOp->andIRFlags(V); 1096 } 1097 } 1098 1099 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 1100 ScalarEvolution &SE) { 1101 const SCEV *Zero = SE.getZero(S->getType()); 1102 return SE.isAvailableAtLoopEntry(S, L) && 1103 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 1104 } 1105 1106 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 1107 ScalarEvolution &SE) { 1108 const SCEV *Zero = SE.getZero(S->getType()); 1109 return SE.isAvailableAtLoopEntry(S, L) && 1110 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1111 } 1112 1113 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1114 bool Signed) { 1115 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1116 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1117 APInt::getMinValue(BitWidth); 1118 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1119 return SE.isAvailableAtLoopEntry(S, L) && 1120 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1121 SE.getConstant(Min)); 1122 } 1123 1124 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1125 bool Signed) { 1126 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1127 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1128 APInt::getMaxValue(BitWidth); 1129 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1130 return SE.isAvailableAtLoopEntry(S, L) && 1131 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1132 SE.getConstant(Max)); 1133 } 1134 1135 //===----------------------------------------------------------------------===// 1136 // rewriteLoopExitValues - Optimize IV users outside the loop. 1137 // As a side effect, reduces the amount of IV processing within the loop. 1138 //===----------------------------------------------------------------------===// 1139 1140 // Return true if the SCEV expansion generated by the rewriter can replace the 1141 // original value. SCEV guarantees that it produces the same value, but the way 1142 // it is produced may be illegal IR. Ideally, this function will only be 1143 // called for verification. 1144 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) { 1145 // If an SCEV expression subsumed multiple pointers, its expansion could 1146 // reassociate the GEP changing the base pointer. This is illegal because the 1147 // final address produced by a GEP chain must be inbounds relative to its 1148 // underlying object. Otherwise basic alias analysis, among other things, 1149 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 1150 // producing an expression involving multiple pointers. Until then, we must 1151 // bail out here. 1152 // 1153 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 1154 // because it understands lcssa phis while SCEV does not. 1155 Value *FromPtr = FromVal; 1156 Value *ToPtr = ToVal; 1157 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) 1158 FromPtr = GEP->getPointerOperand(); 1159 1160 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) 1161 ToPtr = GEP->getPointerOperand(); 1162 1163 if (FromPtr != FromVal || ToPtr != ToVal) { 1164 // Quickly check the common case 1165 if (FromPtr == ToPtr) 1166 return true; 1167 1168 // SCEV may have rewritten an expression that produces the GEP's pointer 1169 // operand. That's ok as long as the pointer operand has the same base 1170 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 1171 // base of a recurrence. This handles the case in which SCEV expansion 1172 // converts a pointer type recurrence into a nonrecurrent pointer base 1173 // indexed by an integer recurrence. 1174 1175 // If the GEP base pointer is a vector of pointers, abort. 1176 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 1177 return false; 1178 1179 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 1180 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 1181 if (FromBase == ToBase) 1182 return true; 1183 1184 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out " 1185 << *FromBase << " != " << *ToBase << "\n"); 1186 1187 return false; 1188 } 1189 return true; 1190 } 1191 1192 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) { 1193 SmallPtrSet<const Instruction *, 8> Visited; 1194 SmallVector<const Instruction *, 8> WorkList; 1195 Visited.insert(I); 1196 WorkList.push_back(I); 1197 while (!WorkList.empty()) { 1198 const Instruction *Curr = WorkList.pop_back_val(); 1199 // This use is outside the loop, nothing to do. 1200 if (!L->contains(Curr)) 1201 continue; 1202 // Do we assume it is a "hard" use which will not be eliminated easily? 1203 if (Curr->mayHaveSideEffects()) 1204 return true; 1205 // Otherwise, add all its users to worklist. 1206 for (auto U : Curr->users()) { 1207 auto *UI = cast<Instruction>(U); 1208 if (Visited.insert(UI).second) 1209 WorkList.push_back(UI); 1210 } 1211 } 1212 return false; 1213 } 1214 1215 // Collect information about PHI nodes which can be transformed in 1216 // rewriteLoopExitValues. 1217 struct RewritePhi { 1218 PHINode *PN; 1219 unsigned Ith; // Ith incoming value. 1220 Value *Val; // Exit value after expansion. 1221 bool HighCost; // High Cost when expansion. 1222 1223 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 1224 : PN(P), Ith(I), Val(V), HighCost(H) {} 1225 }; 1226 1227 // Check whether it is possible to delete the loop after rewriting exit 1228 // value. If it is possible, ignore ReplaceExitValue and do rewriting 1229 // aggressively. 1230 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 1231 BasicBlock *Preheader = L->getLoopPreheader(); 1232 // If there is no preheader, the loop will not be deleted. 1233 if (!Preheader) 1234 return false; 1235 1236 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 1237 // We obviate multiple ExitingBlocks case for simplicity. 1238 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 1239 // after exit value rewriting, we can enhance the logic here. 1240 SmallVector<BasicBlock *, 4> ExitingBlocks; 1241 L->getExitingBlocks(ExitingBlocks); 1242 SmallVector<BasicBlock *, 8> ExitBlocks; 1243 L->getUniqueExitBlocks(ExitBlocks); 1244 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1) 1245 return false; 1246 1247 BasicBlock *ExitBlock = ExitBlocks[0]; 1248 BasicBlock::iterator BI = ExitBlock->begin(); 1249 while (PHINode *P = dyn_cast<PHINode>(BI)) { 1250 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 1251 1252 // If the Incoming value of P is found in RewritePhiSet, we know it 1253 // could be rewritten to use a loop invariant value in transformation 1254 // phase later. Skip it in the loop invariant check below. 1255 bool found = false; 1256 for (const RewritePhi &Phi : RewritePhiSet) { 1257 unsigned i = Phi.Ith; 1258 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 1259 found = true; 1260 break; 1261 } 1262 } 1263 1264 Instruction *I; 1265 if (!found && (I = dyn_cast<Instruction>(Incoming))) 1266 if (!L->hasLoopInvariantOperands(I)) 1267 return false; 1268 1269 ++BI; 1270 } 1271 1272 for (auto *BB : L->blocks()) 1273 if (llvm::any_of(*BB, [](Instruction &I) { 1274 return I.mayHaveSideEffects(); 1275 })) 1276 return false; 1277 1278 return true; 1279 } 1280 1281 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, 1282 ScalarEvolution *SE, 1283 const TargetTransformInfo *TTI, 1284 SCEVExpander &Rewriter, DominatorTree *DT, 1285 ReplaceExitVal ReplaceExitValue, 1286 SmallVector<WeakTrackingVH, 16> &DeadInsts) { 1287 // Check a pre-condition. 1288 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1289 "Indvars did not preserve LCSSA!"); 1290 1291 SmallVector<BasicBlock*, 8> ExitBlocks; 1292 L->getUniqueExitBlocks(ExitBlocks); 1293 1294 SmallVector<RewritePhi, 8> RewritePhiSet; 1295 // Find all values that are computed inside the loop, but used outside of it. 1296 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 1297 // the exit blocks of the loop to find them. 1298 for (BasicBlock *ExitBB : ExitBlocks) { 1299 // If there are no PHI nodes in this exit block, then no values defined 1300 // inside the loop are used on this path, skip it. 1301 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 1302 if (!PN) continue; 1303 1304 unsigned NumPreds = PN->getNumIncomingValues(); 1305 1306 // Iterate over all of the PHI nodes. 1307 BasicBlock::iterator BBI = ExitBB->begin(); 1308 while ((PN = dyn_cast<PHINode>(BBI++))) { 1309 if (PN->use_empty()) 1310 continue; // dead use, don't replace it 1311 1312 if (!SE->isSCEVable(PN->getType())) 1313 continue; 1314 1315 // It's necessary to tell ScalarEvolution about this explicitly so that 1316 // it can walk the def-use list and forget all SCEVs, as it may not be 1317 // watching the PHI itself. Once the new exit value is in place, there 1318 // may not be a def-use connection between the loop and every instruction 1319 // which got a SCEVAddRecExpr for that loop. 1320 SE->forgetValue(PN); 1321 1322 // Iterate over all of the values in all the PHI nodes. 1323 for (unsigned i = 0; i != NumPreds; ++i) { 1324 // If the value being merged in is not integer or is not defined 1325 // in the loop, skip it. 1326 Value *InVal = PN->getIncomingValue(i); 1327 if (!isa<Instruction>(InVal)) 1328 continue; 1329 1330 // If this pred is for a subloop, not L itself, skip it. 1331 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 1332 continue; // The Block is in a subloop, skip it. 1333 1334 // Check that InVal is defined in the loop. 1335 Instruction *Inst = cast<Instruction>(InVal); 1336 if (!L->contains(Inst)) 1337 continue; 1338 1339 // Okay, this instruction has a user outside of the current loop 1340 // and varies predictably *inside* the loop. Evaluate the value it 1341 // contains when the loop exits, if possible. We prefer to start with 1342 // expressions which are true for all exits (so as to maximize 1343 // expression reuse by the SCEVExpander), but resort to per-exit 1344 // evaluation if that fails. 1345 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 1346 if (isa<SCEVCouldNotCompute>(ExitValue) || 1347 !SE->isLoopInvariant(ExitValue, L) || 1348 !isSafeToExpand(ExitValue, *SE)) { 1349 // TODO: This should probably be sunk into SCEV in some way; maybe a 1350 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for 1351 // most SCEV expressions and other recurrence types (e.g. shift 1352 // recurrences). Is there existing code we can reuse? 1353 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i)); 1354 if (isa<SCEVCouldNotCompute>(ExitCount)) 1355 continue; 1356 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst))) 1357 if (AddRec->getLoop() == L) 1358 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE); 1359 if (isa<SCEVCouldNotCompute>(ExitValue) || 1360 !SE->isLoopInvariant(ExitValue, L) || 1361 !isSafeToExpand(ExitValue, *SE)) 1362 continue; 1363 } 1364 1365 // Computing the value outside of the loop brings no benefit if it is 1366 // definitely used inside the loop in a way which can not be optimized 1367 // away. Avoid doing so unless we know we have a value which computes 1368 // the ExitValue already. TODO: This should be merged into SCEV 1369 // expander to leverage its knowledge of existing expressions. 1370 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) && 1371 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 1372 continue; 1373 1374 bool HighCost = Rewriter.isHighCostExpansion( 1375 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst); 1376 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 1377 1378 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " 1379 << *ExitVal << '\n' << " LoopVal = " << *Inst 1380 << "\n"); 1381 1382 if (!isValidRewrite(SE, Inst, ExitVal)) { 1383 DeadInsts.push_back(ExitVal); 1384 continue; 1385 } 1386 1387 #ifndef NDEBUG 1388 // If we reuse an instruction from a loop which is neither L nor one of 1389 // its containing loops, we end up breaking LCSSA form for this loop by 1390 // creating a new use of its instruction. 1391 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 1392 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 1393 if (EVL != L) 1394 assert(EVL->contains(L) && "LCSSA breach detected!"); 1395 #endif 1396 1397 // Collect all the candidate PHINodes to be rewritten. 1398 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 1399 } 1400 } 1401 } 1402 1403 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 1404 int NumReplaced = 0; 1405 1406 // Transformation. 1407 for (const RewritePhi &Phi : RewritePhiSet) { 1408 PHINode *PN = Phi.PN; 1409 Value *ExitVal = Phi.Val; 1410 1411 // Only do the rewrite when the ExitValue can be expanded cheaply. 1412 // If LoopCanBeDel is true, rewrite exit value aggressively. 1413 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 1414 DeadInsts.push_back(ExitVal); 1415 continue; 1416 } 1417 1418 NumReplaced++; 1419 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 1420 PN->setIncomingValue(Phi.Ith, ExitVal); 1421 1422 // If this instruction is dead now, delete it. Don't do it now to avoid 1423 // invalidating iterators. 1424 if (isInstructionTriviallyDead(Inst, TLI)) 1425 DeadInsts.push_back(Inst); 1426 1427 // Replace PN with ExitVal if that is legal and does not break LCSSA. 1428 if (PN->getNumIncomingValues() == 1 && 1429 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 1430 PN->replaceAllUsesWith(ExitVal); 1431 PN->eraseFromParent(); 1432 } 1433 } 1434 1435 // The insertion point instruction may have been deleted; clear it out 1436 // so that the rewriter doesn't trip over it later. 1437 Rewriter.clearInsertPoint(); 1438 return NumReplaced; 1439 } 1440 1441 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for 1442 /// \p OrigLoop. 1443 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, 1444 Loop *RemainderLoop, uint64_t UF) { 1445 assert(UF > 0 && "Zero unrolled factor is not supported"); 1446 assert(UnrolledLoop != RemainderLoop && 1447 "Unrolled and Remainder loops are expected to distinct"); 1448 1449 // Get number of iterations in the original scalar loop. 1450 unsigned OrigLoopInvocationWeight = 0; 1451 Optional<unsigned> OrigAverageTripCount = 1452 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight); 1453 if (!OrigAverageTripCount) 1454 return; 1455 1456 // Calculate number of iterations in unrolled loop. 1457 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF; 1458 // Calculate number of iterations for remainder loop. 1459 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF; 1460 1461 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount, 1462 OrigLoopInvocationWeight); 1463 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount, 1464 OrigLoopInvocationWeight); 1465 } 1466 1467 /// Utility that implements appending of loops onto a worklist. 1468 /// Loops are added in preorder (analogous for reverse postorder for trees), 1469 /// and the worklist is processed LIFO. 1470 template <typename RangeT> 1471 void llvm::appendReversedLoopsToWorklist( 1472 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) { 1473 // We use an internal worklist to build up the preorder traversal without 1474 // recursion. 1475 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1476 1477 // We walk the initial sequence of loops in reverse because we generally want 1478 // to visit defs before uses and the worklist is LIFO. 1479 for (Loop *RootL : Loops) { 1480 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1481 assert(PreOrderWorklist.empty() && 1482 "Must start with an empty preorder walk worklist."); 1483 PreOrderWorklist.push_back(RootL); 1484 do { 1485 Loop *L = PreOrderWorklist.pop_back_val(); 1486 PreOrderWorklist.append(L->begin(), L->end()); 1487 PreOrderLoops.push_back(L); 1488 } while (!PreOrderWorklist.empty()); 1489 1490 Worklist.insert(std::move(PreOrderLoops)); 1491 PreOrderLoops.clear(); 1492 } 1493 } 1494 1495 template <typename RangeT> 1496 void llvm::appendLoopsToWorklist(RangeT &&Loops, 1497 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1498 appendReversedLoopsToWorklist(reverse(Loops), Worklist); 1499 } 1500 1501 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>( 1502 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist); 1503 1504 template void 1505 llvm::appendLoopsToWorklist<Loop &>(Loop &L, 1506 SmallPriorityWorklist<Loop *, 4> &Worklist); 1507 1508 void llvm::appendLoopsToWorklist(LoopInfo &LI, 1509 SmallPriorityWorklist<Loop *, 4> &Worklist) { 1510 appendReversedLoopsToWorklist(LI, Worklist); 1511 } 1512 1513 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 1514 LoopInfo *LI, LPPassManager *LPM) { 1515 Loop &New = *LI->AllocateLoop(); 1516 if (PL) 1517 PL->addChildLoop(&New); 1518 else 1519 LI->addTopLevelLoop(&New); 1520 1521 if (LPM) 1522 LPM->addLoop(New); 1523 1524 // Add all of the blocks in L to the new loop. 1525 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 1526 I != E; ++I) 1527 if (LI->getLoopFor(*I) == L) 1528 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 1529 1530 // Add all of the subloops to the new loop. 1531 for (Loop *I : *L) 1532 cloneLoop(I, &New, VM, LI, LPM); 1533 1534 return &New; 1535 } 1536