1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines common loop utility functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/LoopUtils.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MemorySSAUpdater.h" 23 #include "llvm/Analysis/MustExecute.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpander.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "loop-utils" 46 47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 48 49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 50 MemorySSAUpdater *MSSAU, 51 bool PreserveLCSSA) { 52 bool Changed = false; 53 54 // We re-use a vector for the in-loop predecesosrs. 55 SmallVector<BasicBlock *, 4> InLoopPredecessors; 56 57 auto RewriteExit = [&](BasicBlock *BB) { 58 assert(InLoopPredecessors.empty() && 59 "Must start with an empty predecessors list!"); 60 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 61 62 // See if there are any non-loop predecessors of this exit block and 63 // keep track of the in-loop predecessors. 64 bool IsDedicatedExit = true; 65 for (auto *PredBB : predecessors(BB)) 66 if (L->contains(PredBB)) { 67 if (isa<IndirectBrInst>(PredBB->getTerminator())) 68 // We cannot rewrite exiting edges from an indirectbr. 69 return false; 70 if (isa<CallBrInst>(PredBB->getTerminator())) 71 // We cannot rewrite exiting edges from a callbr. 72 return false; 73 74 InLoopPredecessors.push_back(PredBB); 75 } else { 76 IsDedicatedExit = false; 77 } 78 79 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 80 81 // Nothing to do if this is already a dedicated exit. 82 if (IsDedicatedExit) 83 return false; 84 85 auto *NewExitBB = SplitBlockPredecessors( 86 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); 87 88 if (!NewExitBB) 89 LLVM_DEBUG( 90 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 91 << *L << "\n"); 92 else 93 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 94 << NewExitBB->getName() << "\n"); 95 return true; 96 }; 97 98 // Walk the exit blocks directly rather than building up a data structure for 99 // them, but only visit each one once. 100 SmallPtrSet<BasicBlock *, 4> Visited; 101 for (auto *BB : L->blocks()) 102 for (auto *SuccBB : successors(BB)) { 103 // We're looking for exit blocks so skip in-loop successors. 104 if (L->contains(SuccBB)) 105 continue; 106 107 // Visit each exit block exactly once. 108 if (!Visited.insert(SuccBB).second) 109 continue; 110 111 Changed |= RewriteExit(SuccBB); 112 } 113 114 return Changed; 115 } 116 117 /// Returns the instructions that use values defined in the loop. 118 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 119 SmallVector<Instruction *, 8> UsedOutside; 120 121 for (auto *Block : L->getBlocks()) 122 // FIXME: I believe that this could use copy_if if the Inst reference could 123 // be adapted into a pointer. 124 for (auto &Inst : *Block) { 125 auto Users = Inst.users(); 126 if (any_of(Users, [&](User *U) { 127 auto *Use = cast<Instruction>(U); 128 return !L->contains(Use->getParent()); 129 })) 130 UsedOutside.push_back(&Inst); 131 } 132 133 return UsedOutside; 134 } 135 136 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 137 // By definition, all loop passes need the LoopInfo analysis and the 138 // Dominator tree it depends on. Because they all participate in the loop 139 // pass manager, they must also preserve these. 140 AU.addRequired<DominatorTreeWrapperPass>(); 141 AU.addPreserved<DominatorTreeWrapperPass>(); 142 AU.addRequired<LoopInfoWrapperPass>(); 143 AU.addPreserved<LoopInfoWrapperPass>(); 144 145 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 146 // here because users shouldn't directly get them from this header. 147 extern char &LoopSimplifyID; 148 extern char &LCSSAID; 149 AU.addRequiredID(LoopSimplifyID); 150 AU.addPreservedID(LoopSimplifyID); 151 AU.addRequiredID(LCSSAID); 152 AU.addPreservedID(LCSSAID); 153 // This is used in the LPPassManager to perform LCSSA verification on passes 154 // which preserve lcssa form 155 AU.addRequired<LCSSAVerificationPass>(); 156 AU.addPreserved<LCSSAVerificationPass>(); 157 158 // Loop passes are designed to run inside of a loop pass manager which means 159 // that any function analyses they require must be required by the first loop 160 // pass in the manager (so that it is computed before the loop pass manager 161 // runs) and preserved by all loop pasess in the manager. To make this 162 // reasonably robust, the set needed for most loop passes is maintained here. 163 // If your loop pass requires an analysis not listed here, you will need to 164 // carefully audit the loop pass manager nesting structure that results. 165 AU.addRequired<AAResultsWrapperPass>(); 166 AU.addPreserved<AAResultsWrapperPass>(); 167 AU.addPreserved<BasicAAWrapperPass>(); 168 AU.addPreserved<GlobalsAAWrapperPass>(); 169 AU.addPreserved<SCEVAAWrapperPass>(); 170 AU.addRequired<ScalarEvolutionWrapperPass>(); 171 AU.addPreserved<ScalarEvolutionWrapperPass>(); 172 } 173 174 /// Manually defined generic "LoopPass" dependency initialization. This is used 175 /// to initialize the exact set of passes from above in \c 176 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 177 /// with: 178 /// 179 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 180 /// 181 /// As-if "LoopPass" were a pass. 182 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 183 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 184 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 186 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 188 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 189 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 190 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 191 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 192 } 193 194 /// Create MDNode for input string. 195 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { 196 LLVMContext &Context = TheLoop->getHeader()->getContext(); 197 Metadata *MDs[] = { 198 MDString::get(Context, Name), 199 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 200 return MDNode::get(Context, MDs); 201 } 202 203 /// Set input string into loop metadata by keeping other values intact. 204 /// If the string is already in loop metadata update value if it is 205 /// different. 206 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, 207 unsigned V) { 208 SmallVector<Metadata *, 4> MDs(1); 209 // If the loop already has metadata, retain it. 210 MDNode *LoopID = TheLoop->getLoopID(); 211 if (LoopID) { 212 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 213 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 214 // If it is of form key = value, try to parse it. 215 if (Node->getNumOperands() == 2) { 216 MDString *S = dyn_cast<MDString>(Node->getOperand(0)); 217 if (S && S->getString().equals(StringMD)) { 218 ConstantInt *IntMD = 219 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); 220 if (IntMD && IntMD->getSExtValue() == V) 221 // It is already in place. Do nothing. 222 return; 223 // We need to update the value, so just skip it here and it will 224 // be added after copying other existed nodes. 225 continue; 226 } 227 } 228 MDs.push_back(Node); 229 } 230 } 231 // Add new metadata. 232 MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); 233 // Replace current metadata node with new one. 234 LLVMContext &Context = TheLoop->getHeader()->getContext(); 235 MDNode *NewLoopID = MDNode::get(Context, MDs); 236 // Set operand 0 to refer to the loop id itself. 237 NewLoopID->replaceOperandWith(0, NewLoopID); 238 TheLoop->setLoopID(NewLoopID); 239 } 240 241 /// Find string metadata for loop 242 /// 243 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 244 /// operand or null otherwise. If the string metadata is not found return 245 /// Optional's not-a-value. 246 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 247 StringRef Name) { 248 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 249 if (!MD) 250 return None; 251 switch (MD->getNumOperands()) { 252 case 1: 253 return nullptr; 254 case 2: 255 return &MD->getOperand(1); 256 default: 257 llvm_unreachable("loop metadata has 0 or 1 operand"); 258 } 259 } 260 261 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 262 StringRef Name) { 263 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 264 if (!MD) 265 return None; 266 switch (MD->getNumOperands()) { 267 case 1: 268 // When the value is absent it is interpreted as 'attribute set'. 269 return true; 270 case 2: 271 if (ConstantInt *IntMD = 272 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 273 return IntMD->getZExtValue(); 274 return true; 275 } 276 llvm_unreachable("unexpected number of options"); 277 } 278 279 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 280 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 281 } 282 283 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 284 StringRef Name) { 285 const MDOperand *AttrMD = 286 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 287 if (!AttrMD) 288 return None; 289 290 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 291 if (!IntMD) 292 return None; 293 294 return IntMD->getSExtValue(); 295 } 296 297 Optional<MDNode *> llvm::makeFollowupLoopID( 298 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 299 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 300 if (!OrigLoopID) { 301 if (AlwaysNew) 302 return nullptr; 303 return None; 304 } 305 306 assert(OrigLoopID->getOperand(0) == OrigLoopID); 307 308 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 309 bool InheritSomeAttrs = 310 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 311 SmallVector<Metadata *, 8> MDs; 312 MDs.push_back(nullptr); 313 314 bool Changed = false; 315 if (InheritAllAttrs || InheritSomeAttrs) { 316 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 317 MDNode *Op = cast<MDNode>(Existing.get()); 318 319 auto InheritThisAttribute = [InheritSomeAttrs, 320 InheritOptionsExceptPrefix](MDNode *Op) { 321 if (!InheritSomeAttrs) 322 return false; 323 324 // Skip malformatted attribute metadata nodes. 325 if (Op->getNumOperands() == 0) 326 return true; 327 Metadata *NameMD = Op->getOperand(0).get(); 328 if (!isa<MDString>(NameMD)) 329 return true; 330 StringRef AttrName = cast<MDString>(NameMD)->getString(); 331 332 // Do not inherit excluded attributes. 333 return !AttrName.startswith(InheritOptionsExceptPrefix); 334 }; 335 336 if (InheritThisAttribute(Op)) 337 MDs.push_back(Op); 338 else 339 Changed = true; 340 } 341 } else { 342 // Modified if we dropped at least one attribute. 343 Changed = OrigLoopID->getNumOperands() > 1; 344 } 345 346 bool HasAnyFollowup = false; 347 for (StringRef OptionName : FollowupOptions) { 348 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 349 if (!FollowupNode) 350 continue; 351 352 HasAnyFollowup = true; 353 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 354 MDs.push_back(Option.get()); 355 Changed = true; 356 } 357 } 358 359 // Attributes of the followup loop not specified explicity, so signal to the 360 // transformation pass to add suitable attributes. 361 if (!AlwaysNew && !HasAnyFollowup) 362 return None; 363 364 // If no attributes were added or remove, the previous loop Id can be reused. 365 if (!AlwaysNew && !Changed) 366 return OrigLoopID; 367 368 // No attributes is equivalent to having no !llvm.loop metadata at all. 369 if (MDs.size() == 1) 370 return nullptr; 371 372 // Build the new loop ID. 373 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 374 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 375 return FollowupLoopID; 376 } 377 378 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 379 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 380 } 381 382 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 383 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 384 return TM_SuppressedByUser; 385 386 Optional<int> Count = 387 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 388 if (Count.hasValue()) 389 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 390 391 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 392 return TM_ForcedByUser; 393 394 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 395 return TM_ForcedByUser; 396 397 if (hasDisableAllTransformsHint(L)) 398 return TM_Disable; 399 400 return TM_Unspecified; 401 } 402 403 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 404 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 405 return TM_SuppressedByUser; 406 407 Optional<int> Count = 408 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 409 if (Count.hasValue()) 410 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 411 412 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 413 return TM_ForcedByUser; 414 415 if (hasDisableAllTransformsHint(L)) 416 return TM_Disable; 417 418 return TM_Unspecified; 419 } 420 421 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 422 Optional<bool> Enable = 423 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 424 425 if (Enable == false) 426 return TM_SuppressedByUser; 427 428 Optional<int> VectorizeWidth = 429 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 430 Optional<int> InterleaveCount = 431 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 432 433 // 'Forcing' vector width and interleave count to one effectively disables 434 // this tranformation. 435 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 436 return TM_SuppressedByUser; 437 438 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 439 return TM_Disable; 440 441 if (Enable == true) 442 return TM_ForcedByUser; 443 444 if (VectorizeWidth == 1 && InterleaveCount == 1) 445 return TM_Disable; 446 447 if (VectorizeWidth > 1 || InterleaveCount > 1) 448 return TM_Enable; 449 450 if (hasDisableAllTransformsHint(L)) 451 return TM_Disable; 452 453 return TM_Unspecified; 454 } 455 456 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 457 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 458 return TM_ForcedByUser; 459 460 if (hasDisableAllTransformsHint(L)) 461 return TM_Disable; 462 463 return TM_Unspecified; 464 } 465 466 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 467 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 468 return TM_SuppressedByUser; 469 470 if (hasDisableAllTransformsHint(L)) 471 return TM_Disable; 472 473 return TM_Unspecified; 474 } 475 476 /// Does a BFS from a given node to all of its children inside a given loop. 477 /// The returned vector of nodes includes the starting point. 478 SmallVector<DomTreeNode *, 16> 479 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 480 SmallVector<DomTreeNode *, 16> Worklist; 481 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 482 // Only include subregions in the top level loop. 483 BasicBlock *BB = DTN->getBlock(); 484 if (CurLoop->contains(BB)) 485 Worklist.push_back(DTN); 486 }; 487 488 AddRegionToWorklist(N); 489 490 for (size_t I = 0; I < Worklist.size(); I++) 491 for (DomTreeNode *Child : Worklist[I]->getChildren()) 492 AddRegionToWorklist(Child); 493 494 return Worklist; 495 } 496 497 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 498 ScalarEvolution *SE = nullptr, 499 LoopInfo *LI = nullptr) { 500 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 501 auto *Preheader = L->getLoopPreheader(); 502 assert(Preheader && "Preheader should exist!"); 503 504 // Now that we know the removal is safe, remove the loop by changing the 505 // branch from the preheader to go to the single exit block. 506 // 507 // Because we're deleting a large chunk of code at once, the sequence in which 508 // we remove things is very important to avoid invalidation issues. 509 510 // Tell ScalarEvolution that the loop is deleted. Do this before 511 // deleting the loop so that ScalarEvolution can look at the loop 512 // to determine what it needs to clean up. 513 if (SE) 514 SE->forgetLoop(L); 515 516 auto *ExitBlock = L->getUniqueExitBlock(); 517 assert(ExitBlock && "Should have a unique exit block!"); 518 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 519 520 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 521 assert(OldBr && "Preheader must end with a branch"); 522 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 523 // Connect the preheader to the exit block. Keep the old edge to the header 524 // around to perform the dominator tree update in two separate steps 525 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 526 // preheader -> header. 527 // 528 // 529 // 0. Preheader 1. Preheader 2. Preheader 530 // | | | | 531 // V | V | 532 // Header <--\ | Header <--\ | Header <--\ 533 // | | | | | | | | | | | 534 // | V | | | V | | | V | 535 // | Body --/ | | Body --/ | | Body --/ 536 // V V V V V 537 // Exit Exit Exit 538 // 539 // By doing this is two separate steps we can perform the dominator tree 540 // update without using the batch update API. 541 // 542 // Even when the loop is never executed, we cannot remove the edge from the 543 // source block to the exit block. Consider the case where the unexecuted loop 544 // branches back to an outer loop. If we deleted the loop and removed the edge 545 // coming to this inner loop, this will break the outer loop structure (by 546 // deleting the backedge of the outer loop). If the outer loop is indeed a 547 // non-loop, it will be deleted in a future iteration of loop deletion pass. 548 IRBuilder<> Builder(OldBr); 549 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 550 // Remove the old branch. The conditional branch becomes a new terminator. 551 OldBr->eraseFromParent(); 552 553 // Rewrite phis in the exit block to get their inputs from the Preheader 554 // instead of the exiting block. 555 for (PHINode &P : ExitBlock->phis()) { 556 // Set the zero'th element of Phi to be from the preheader and remove all 557 // other incoming values. Given the loop has dedicated exits, all other 558 // incoming values must be from the exiting blocks. 559 int PredIndex = 0; 560 P.setIncomingBlock(PredIndex, Preheader); 561 // Removes all incoming values from all other exiting blocks (including 562 // duplicate values from an exiting block). 563 // Nuke all entries except the zero'th entry which is the preheader entry. 564 // NOTE! We need to remove Incoming Values in the reverse order as done 565 // below, to keep the indices valid for deletion (removeIncomingValues 566 // updates getNumIncomingValues and shifts all values down into the operand 567 // being deleted). 568 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 569 P.removeIncomingValue(e - i, false); 570 571 assert((P.getNumIncomingValues() == 1 && 572 P.getIncomingBlock(PredIndex) == Preheader) && 573 "Should have exactly one value and that's from the preheader!"); 574 } 575 576 // Disconnect the loop body by branching directly to its exit. 577 Builder.SetInsertPoint(Preheader->getTerminator()); 578 Builder.CreateBr(ExitBlock); 579 // Remove the old branch. 580 Preheader->getTerminator()->eraseFromParent(); 581 582 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 583 if (DT) { 584 // Update the dominator tree by informing it about the new edge from the 585 // preheader to the exit and the removed edge. 586 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, 587 {DominatorTree::Delete, Preheader, L->getHeader()}}); 588 } 589 590 // Use a map to unique and a vector to guarantee deterministic ordering. 591 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 592 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 593 594 // Given LCSSA form is satisfied, we should not have users of instructions 595 // within the dead loop outside of the loop. However, LCSSA doesn't take 596 // unreachable uses into account. We handle them here. 597 // We could do it after drop all references (in this case all users in the 598 // loop will be already eliminated and we have less work to do but according 599 // to API doc of User::dropAllReferences only valid operation after dropping 600 // references, is deletion. So let's substitute all usages of 601 // instruction from the loop with undef value of corresponding type first. 602 for (auto *Block : L->blocks()) 603 for (Instruction &I : *Block) { 604 auto *Undef = UndefValue::get(I.getType()); 605 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 606 Use &U = *UI; 607 ++UI; 608 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 609 if (L->contains(Usr->getParent())) 610 continue; 611 // If we have a DT then we can check that uses outside a loop only in 612 // unreachable block. 613 if (DT) 614 assert(!DT->isReachableFromEntry(U) && 615 "Unexpected user in reachable block"); 616 U.set(Undef); 617 } 618 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 619 if (!DVI) 620 continue; 621 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 622 if (Key != DeadDebugSet.end()) 623 continue; 624 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 625 DeadDebugInst.push_back(DVI); 626 } 627 628 // After the loop has been deleted all the values defined and modified 629 // inside the loop are going to be unavailable. 630 // Since debug values in the loop have been deleted, inserting an undef 631 // dbg.value truncates the range of any dbg.value before the loop where the 632 // loop used to be. This is particularly important for constant values. 633 DIBuilder DIB(*ExitBlock->getModule()); 634 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 635 assert(InsertDbgValueBefore && 636 "There should be a non-PHI instruction in exit block, else these " 637 "instructions will have no parent."); 638 for (auto *DVI : DeadDebugInst) 639 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 640 DVI->getVariable(), DVI->getExpression(), 641 DVI->getDebugLoc(), InsertDbgValueBefore); 642 643 // Remove the block from the reference counting scheme, so that we can 644 // delete it freely later. 645 for (auto *Block : L->blocks()) 646 Block->dropAllReferences(); 647 648 if (LI) { 649 // Erase the instructions and the blocks without having to worry 650 // about ordering because we already dropped the references. 651 // NOTE: This iteration is safe because erasing the block does not remove 652 // its entry from the loop's block list. We do that in the next section. 653 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 654 LpI != LpE; ++LpI) 655 (*LpI)->eraseFromParent(); 656 657 // Finally, the blocks from loopinfo. This has to happen late because 658 // otherwise our loop iterators won't work. 659 660 SmallPtrSet<BasicBlock *, 8> blocks; 661 blocks.insert(L->block_begin(), L->block_end()); 662 for (BasicBlock *BB : blocks) 663 LI->removeBlock(BB); 664 665 // The last step is to update LoopInfo now that we've eliminated this loop. 666 LI->erase(L); 667 } 668 } 669 670 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 671 // Support loops with an exiting latch and other existing exists only 672 // deoptimize. 673 674 // Get the branch weights for the loop's backedge. 675 BasicBlock *Latch = L->getLoopLatch(); 676 if (!Latch) 677 return None; 678 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); 679 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) 680 return None; 681 682 assert((LatchBR->getSuccessor(0) == L->getHeader() || 683 LatchBR->getSuccessor(1) == L->getHeader()) && 684 "At least one edge out of the latch must go to the header"); 685 686 SmallVector<BasicBlock *, 4> ExitBlocks; 687 L->getUniqueNonLatchExitBlocks(ExitBlocks); 688 if (any_of(ExitBlocks, [](const BasicBlock *EB) { 689 return !EB->getTerminatingDeoptimizeCall(); 690 })) 691 return None; 692 693 // To estimate the number of times the loop body was executed, we want to 694 // know the number of times the backedge was taken, vs. the number of times 695 // we exited the loop. 696 uint64_t TrueVal, FalseVal; 697 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 698 return None; 699 700 if (!TrueVal || !FalseVal) 701 return 0; 702 703 // Divide the count of the backedge by the count of the edge exiting the loop, 704 // rounding to nearest. 705 if (LatchBR->getSuccessor(0) == L->getHeader()) 706 return (TrueVal + (FalseVal / 2)) / FalseVal; 707 else 708 return (FalseVal + (TrueVal / 2)) / TrueVal; 709 } 710 711 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 712 ScalarEvolution &SE) { 713 Loop *OuterL = InnerLoop->getParentLoop(); 714 if (!OuterL) 715 return true; 716 717 // Get the backedge taken count for the inner loop 718 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 719 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 720 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 721 !InnerLoopBECountSC->getType()->isIntegerTy()) 722 return false; 723 724 // Get whether count is invariant to the outer loop 725 ScalarEvolution::LoopDisposition LD = 726 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 727 if (LD != ScalarEvolution::LoopInvariant) 728 return false; 729 730 return true; 731 } 732 733 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 734 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 735 Value *Left, Value *Right) { 736 CmpInst::Predicate P = CmpInst::ICMP_NE; 737 switch (RK) { 738 default: 739 llvm_unreachable("Unknown min/max recurrence kind"); 740 case RecurrenceDescriptor::MRK_UIntMin: 741 P = CmpInst::ICMP_ULT; 742 break; 743 case RecurrenceDescriptor::MRK_UIntMax: 744 P = CmpInst::ICMP_UGT; 745 break; 746 case RecurrenceDescriptor::MRK_SIntMin: 747 P = CmpInst::ICMP_SLT; 748 break; 749 case RecurrenceDescriptor::MRK_SIntMax: 750 P = CmpInst::ICMP_SGT; 751 break; 752 case RecurrenceDescriptor::MRK_FloatMin: 753 P = CmpInst::FCMP_OLT; 754 break; 755 case RecurrenceDescriptor::MRK_FloatMax: 756 P = CmpInst::FCMP_OGT; 757 break; 758 } 759 760 // We only match FP sequences that are 'fast', so we can unconditionally 761 // set it on any generated instructions. 762 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 763 FastMathFlags FMF; 764 FMF.setFast(); 765 Builder.setFastMathFlags(FMF); 766 767 Value *Cmp; 768 if (RK == RecurrenceDescriptor::MRK_FloatMin || 769 RK == RecurrenceDescriptor::MRK_FloatMax) 770 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 771 else 772 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 773 774 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 775 return Select; 776 } 777 778 // Helper to generate an ordered reduction. 779 Value * 780 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 781 unsigned Op, 782 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 783 ArrayRef<Value *> RedOps) { 784 unsigned VF = Src->getType()->getVectorNumElements(); 785 786 // Extract and apply reduction ops in ascending order: 787 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 788 Value *Result = Acc; 789 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 790 Value *Ext = 791 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 792 793 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 794 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 795 "bin.rdx"); 796 } else { 797 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 798 "Invalid min/max"); 799 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 800 } 801 802 if (!RedOps.empty()) 803 propagateIRFlags(Result, RedOps); 804 } 805 806 return Result; 807 } 808 809 // Helper to generate a log2 shuffle reduction. 810 Value * 811 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 812 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 813 ArrayRef<Value *> RedOps) { 814 unsigned VF = Src->getType()->getVectorNumElements(); 815 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 816 // and vector ops, reducing the set of values being computed by half each 817 // round. 818 assert(isPowerOf2_32(VF) && 819 "Reduction emission only supported for pow2 vectors!"); 820 Value *TmpVec = Src; 821 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 822 for (unsigned i = VF; i != 1; i >>= 1) { 823 // Move the upper half of the vector to the lower half. 824 for (unsigned j = 0; j != i / 2; ++j) 825 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 826 827 // Fill the rest of the mask with undef. 828 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 829 UndefValue::get(Builder.getInt32Ty())); 830 831 Value *Shuf = Builder.CreateShuffleVector( 832 TmpVec, UndefValue::get(TmpVec->getType()), 833 ConstantVector::get(ShuffleMask), "rdx.shuf"); 834 835 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 836 // The builder propagates its fast-math-flags setting. 837 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 838 "bin.rdx"); 839 } else { 840 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 841 "Invalid min/max"); 842 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 843 } 844 if (!RedOps.empty()) 845 propagateIRFlags(TmpVec, RedOps); 846 } 847 // The result is in the first element of the vector. 848 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 849 } 850 851 /// Create a simple vector reduction specified by an opcode and some 852 /// flags (if generating min/max reductions). 853 Value *llvm::createSimpleTargetReduction( 854 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 855 Value *Src, TargetTransformInfo::ReductionFlags Flags, 856 ArrayRef<Value *> RedOps) { 857 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 858 859 std::function<Value *()> BuildFunc; 860 using RD = RecurrenceDescriptor; 861 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 862 863 switch (Opcode) { 864 case Instruction::Add: 865 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 866 break; 867 case Instruction::Mul: 868 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 869 break; 870 case Instruction::And: 871 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 872 break; 873 case Instruction::Or: 874 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 875 break; 876 case Instruction::Xor: 877 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 878 break; 879 case Instruction::FAdd: 880 BuildFunc = [&]() { 881 auto Rdx = Builder.CreateFAddReduce( 882 Constant::getNullValue(Src->getType()->getVectorElementType()), Src); 883 return Rdx; 884 }; 885 break; 886 case Instruction::FMul: 887 BuildFunc = [&]() { 888 Type *Ty = Src->getType()->getVectorElementType(); 889 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); 890 return Rdx; 891 }; 892 break; 893 case Instruction::ICmp: 894 if (Flags.IsMaxOp) { 895 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 896 BuildFunc = [&]() { 897 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 898 }; 899 } else { 900 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 901 BuildFunc = [&]() { 902 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 903 }; 904 } 905 break; 906 case Instruction::FCmp: 907 if (Flags.IsMaxOp) { 908 MinMaxKind = RD::MRK_FloatMax; 909 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 910 } else { 911 MinMaxKind = RD::MRK_FloatMin; 912 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 913 } 914 break; 915 default: 916 llvm_unreachable("Unhandled opcode"); 917 break; 918 } 919 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 920 return BuildFunc(); 921 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 922 } 923 924 /// Create a vector reduction using a given recurrence descriptor. 925 Value *llvm::createTargetReduction(IRBuilder<> &B, 926 const TargetTransformInfo *TTI, 927 RecurrenceDescriptor &Desc, Value *Src, 928 bool NoNaN) { 929 // TODO: Support in-order reductions based on the recurrence descriptor. 930 using RD = RecurrenceDescriptor; 931 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 932 TargetTransformInfo::ReductionFlags Flags; 933 Flags.NoNaN = NoNaN; 934 935 // All ops in the reduction inherit fast-math-flags from the recurrence 936 // descriptor. 937 IRBuilder<>::FastMathFlagGuard FMFGuard(B); 938 B.setFastMathFlags(Desc.getFastMathFlags()); 939 940 switch (RecKind) { 941 case RD::RK_FloatAdd: 942 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 943 case RD::RK_FloatMult: 944 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 945 case RD::RK_IntegerAdd: 946 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 947 case RD::RK_IntegerMult: 948 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 949 case RD::RK_IntegerAnd: 950 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 951 case RD::RK_IntegerOr: 952 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 953 case RD::RK_IntegerXor: 954 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 955 case RD::RK_IntegerMinMax: { 956 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 957 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 958 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 959 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 960 } 961 case RD::RK_FloatMinMax: { 962 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 963 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 964 } 965 default: 966 llvm_unreachable("Unhandled RecKind"); 967 } 968 } 969 970 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 971 auto *VecOp = dyn_cast<Instruction>(I); 972 if (!VecOp) 973 return; 974 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 975 : dyn_cast<Instruction>(OpValue); 976 if (!Intersection) 977 return; 978 const unsigned Opcode = Intersection->getOpcode(); 979 VecOp->copyIRFlags(Intersection); 980 for (auto *V : VL) { 981 auto *Instr = dyn_cast<Instruction>(V); 982 if (!Instr) 983 continue; 984 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 985 VecOp->andIRFlags(V); 986 } 987 } 988 989 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 990 ScalarEvolution &SE) { 991 const SCEV *Zero = SE.getZero(S->getType()); 992 return SE.isAvailableAtLoopEntry(S, L) && 993 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 994 } 995 996 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 997 ScalarEvolution &SE) { 998 const SCEV *Zero = SE.getZero(S->getType()); 999 return SE.isAvailableAtLoopEntry(S, L) && 1000 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 1001 } 1002 1003 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1004 bool Signed) { 1005 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1006 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 1007 APInt::getMinValue(BitWidth); 1008 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1009 return SE.isAvailableAtLoopEntry(S, L) && 1010 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1011 SE.getConstant(Min)); 1012 } 1013 1014 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 1015 bool Signed) { 1016 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 1017 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 1018 APInt::getMaxValue(BitWidth); 1019 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1020 return SE.isAvailableAtLoopEntry(S, L) && 1021 SE.isLoopEntryGuardedByCond(L, Predicate, S, 1022 SE.getConstant(Max)); 1023 } 1024